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Abstract. Parity games are 2-player games of perfect information and
infinite duration that have important applications in automata theory
and decision procedures (validity as well as model checking) for tempo-
ral logics. In this paper we investigate practical aspects of solving parity
games. The main contribution is a suggestion on how to solve parity
games efficiently in practice: we present a generic solver that intertwines
optimisations with any of the existing parity game algorithms which is
only called on parts of a game that cannot be solved faster by simpler
methods. This approach is evaluated empirically on a series of bench-
marking games from the aforementioned application domains, showing
that using this approach vastly speeds up the solving process. As a
side-effect we obtain the surprising observation that Zielonka’s recursive
algorithm is the best parity game solver in practice.

1 Introduction

Parity games are two-player games of perfect information played on directed
graphs whose nodes are labeled with priorities. The winner of a play is deter-
mined by the parity (even or odd) of the maximal priority occurring infinitely
often. Parity games have various applications in computer science, and the the-
ory of formal languages and automata in particular. They are closely related to
other games of infinite duration, in particular mean and discounted payoff as well
as stochastic games [4,14]. An efficient parity game solver may be extendable to
efficient solvers for those games as well.

Solving a parity game is equivalent (from a complexity-theoretic point of
view) under linear-time reductions to the model checking problem for the modal
μ-calculus [14]. Hence, any parity game solver is also a model checker for the
μ-calculus (and vice-versa) and all its fragments like CTL, PDL, CTL∗, etc.
However, typical verification problems result in parity games with few priorities
only for which specialised algorithms should be more efficient than a general
solver.

Parity games also arise in decision procedures for temporal logics. While the
satisfiability problem for linear-time logics like LTL, PSL or the linear-time μ-
calculus reduces – in one form or the other – to the inclusion problem for non-
deterministic Büchi automata (NBA) and therefore requires complementation
thereof, branching-time logics require the determinisation of NBA in addition.
So far, the only known constructions for determinising and complementing an
NBA are Safra’s [10], Piterman’s [9], and Kähler and Wilke’s [7]. The first one
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yields a deterministic Streett automaton which is algorithmically not very easy
to handle. The two others yield parity automata. Using these, the satisfiability
(or validity) problem for branching-time logics not only reduces to the solving
of parity games, there also does not seem to be a feasible alternative. The same
holds for controller synthesis problems which are tackled by a reduction to the
satisfiability problem of, typically, some branching-time logic like the modal μ-
calculus [2]. Hence, being able to solve parity games well in practice is also vital
for obtaining good satisfiability and controller synthesis tools.

A variety of algorithms for solving parity games has been invented so far.
The most prominent deterministic ones are the constructive proof of memory-
less determinacy by Zielonka [18] which yields a recursive algorithm, the local
μ-calculus model checker by Stevens and Stirling [13], Jurdziński’s small progress
measures algorithm [5] with a symbolic version [8], the strategy improvement al-
gorithm by Jurdziński and Vöge [17] with a locally optimal variation by Schewe
[12], and the subexponential algorithm by Jurdziński, Paterson and Zwick [6]
with a so-called big-step variant by Schewe [11]. This variety is owed to the the-
oretical challenge of answering the question whether parity games can be solved
in polynomial time, rather than practical motivations. Nonetheless, a parity
game solver that is efficient in practice is necessary for practical decision proce-
dure for branching-time logics and for controller synthesis, and may even be used
as a model checker. Van de Pol and Weber describe a parallel implementation
of Jurdziński’s small progress measures algorithm [16] but it turns out that in
many cases, this algorithm is not the most efficient one. Also, their implementa-
tion does not feature known tricks that are supposed to be optimisations to any
parity game solver.

The literature contains a few suggestions on how to tune a parity game solver.
Jurdziński [5] mentions decomposition into SCCs and solving SCC-wise, removal
of self-cycles on nodes, and priority compression. Huth et al. [1] mention the
latter two and, in addition, priority propagation. In any case, these are suggested
heuristics that have not been put to the test yet. While it is plausible that they
are useful in speeding up parity game solvers in practice, no proper evidence of
this has been given so far.

In this paper we present a rigorous empirical treatment of these optimisations.
After recalling the theory of parity games in Sect. 2, we shortly describe such
optimisations in Sect. 3 and devise a so-called generic solver. It is an algorithm
which employs some of these optimisations in a certain order and fashion, and
intertwines them with calls to a real algorithm for solving parity games. The
choice of the optimisations and the design of the order etc. is motivated by
common sense and experience in practice. Hence, this paper presents a particular
way of employing particular optimisations that has turned out to be successful
while others are less succesful (or even harmful). The success is quantified in
Sect. 4 which examines the result that employing these optimisations has on the
times needed to solve certain games. There are no families of games that people
agree on as standard benchmarks. We therefore use hand-made games, some of
which are taken from application domains listed above.
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The approach presented in this paper is implemented in a publicly available
tool which shows that parity games can – despite the lack of proof or fact about
being polynomial-time solvable – be solved efficiently in practice. It also bears
some surprises. All of the deterministic algorithms for solving parity games that
have appeared in the literature so far have been implemented in the tool which
therefore allows them to be compared w.r.t. their usability in practice. As a
result, the small progress measures algorithm as well as the strategy improvement
turn out to be generally slower than the recursive algorithm. This is a huge
surprise since this algorithm was commonly accepted to be a constructive proof of
determinacy but nothing more, in particular not to have any practical relevance
at all. Furthermore, there are “optimisations” that have been suggested as a
means for speeding up the solving which one should not employ because they
turn out to slow down the solving.

The rest of the paper is organised as follows. Sect. 2 recalls parity games and
necessary technicalities. Sect. 3 describes the aforementioned optimisations and
presents the generic solver which is assembled out of these. Sect. 4 evaluates the
solver empirically on some families of benchmarking games.

2 Preliminaries

A parity game is a tuple G = (V, V0, V1, E,Ω) where (V,E) forms a directed
graph in which each node has at least one successor. The set of nodes is parti-
tioned into V = V0∪V1 with V0∩V1 = ∅, and Ω : V → N is the priority function
that assigns to each node a natural number called the priority of the node. We
write |Ω| for the index of the parity game, that is the number of different prior-
ities assigned to its nodes. The graph is required to be total, i.e. for every v ∈ V
there is a w ∈ W s.t. (v, w) ∈ E. Here we only consider games based on finite
graphs.

We also use infix notation vEw instead of (v, w) ∈ E and define the set of
all successors of v as vE := {w | vEw}, as well as the set of all predecessors
of w as Ew := {v | vEw}. For a set U ⊆ V and nodes v, w ∈ V we will write
G \ U for the game that is obtained from G by eliminating all nodes in U , i.e.
(V \U, V0 \U, V1 \U,E \ (V ×U ∪U ×V ), Ω) and G \ {(v, w)} for the game that
results from eliminating a possible edge between v and w – assuming that the
result is still total – i.e. (V, V0, V1, E \ {(v, w)}, Ω).

The game is played between two players called 0 and 1 in the following way.
Starting in a node v0 ∈ V they construct an infinite path through the graph
as follows. If the construction so far has yielded a finite sequence v0 . . . vn and
vn ∈ Vi then player i selects a w ∈ vnE and the play continues with the sequence
v0 . . . vnw.

Every play has a unique winner given by the parity of the greatest priority
that occurs infinitely often in a play. The winner of the play v0v1v2 . . . is player
i iff max{p | ∀j ∈ N ∃k ≥ j : Ω(vk) = p} ≡2 i (where i ≡2 j holds iff |i − j|
mod 2 = 0). That is, player 0 tries to make an even priority occur infinitely often
without any greater odd priorities occurring infinitely often, player 1 attempts
the converse.
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A positional strategy for player i in G is a – possibly partial – function σ :
Vi → V . A play v0v1 . . . conforms to a strategy σ for player i if for all j ∈ N we
have: if vj ∈ Vi then vj+1 = σ(vj). Intuitively, conforming to a strategy means
to always make those choices that are prescribed by the strategy. A strategy σ
for player i is a winning strategy in node v if player i wins every play that begins
in v and conforms to σ. We say that player i wins the game G starting in v iff
he/she has a winning strategy for G starting in v.

With G we associate two sets W0,W1 ⊆ V ; Wi is the set of all nodes v s.t.
player i wins the game G starting in v. Here we restrict ourselves to positional
strategies because it is well-known that a player has a (general) winning strategy
iff she has a positional winning strategy for a given game. In fact, parity games
enjoy positional determinacy meaning that for every node v in the game either
v ∈ W0 or v ∈ W1 [3]. Furthermore, it is not difficult to show that, whenever
player i has winning strategies σv for all v ∈ U for some U ⊆ V , then there is
also a single strategy σ that is winning for player i from every node in U .

The problem of solving a given parity game is to compute W0 and W1 as well
as corresponding winning strategies σ0 and σ1 for the players on their respective
winning regions. We will write [] for the strategy with empty domain, and σ[v �→
w] with vEw for the strategy that behaves like σ on all nodes in V \ {v} and
that maps v to w. Given two strategies σ, σ′ for player i, we define their right-
join σ +� σ′ as (σ +� σ′)(v) = σ(v) if σ′(v) is undefined and (σ +� σ′)(v) = σ′(v)
otherwise.

Let U ⊆ V and i ∈ {0, 1}. The i-attractor of U contains all nodes from
which player i can move “towards” U and player 1− i must move “towards” U .
Attractors will play an important role in the solving procedure described below
because they can efficiently be computed using breadth-first search on the inverse
graph underlying the game. At the same time, it is possible to construct an
attractor strategy which is a positional strategy in a reachability game. Following
this strategy guarantees player i to reach a node in U eventually, regardless of
the opponent’s choices. Define, for all k ∈ N:

Attr0
i (U) := U

Attrk+1
i (U) := Attrk

i (U) ∪ {v ∈ Vi | ∃w ∈ Attrk
i (U) s.t. vEw}

∪ {v ∈ V1−i | ∀w : vEw ⇒ w ∈ Attrk
i (U)}

Attri(U) :=
⋃
k∈N

Attrk
i (U)

Note that any attractor on a finite game is necessarily finite, and the approxi-
mation defined above thus terminates after at most |V | many steps. It is also not
difficult to see that Attr i(U) can be computed in time O(|E|) for any i and U
if the set operations take constant time only, using boolean arrays for example.
The corresponding attractor strategy is defined as

σAttr
i (v) :=

⎧⎪⎨
⎪⎩
w, if there is k > 0 s.t. v ∈ (Vi ∩ Attrk

i (U)) \Attrk−1
i (U)

and w ∈ Attrk−1
i (U) ∩ vE

⊥, otherwise
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Note that the choice of w is not unique, but any w with the prescribed property
will suffice.

An important property that has been noted before [18,14] is that removing
the i-attractor of any set of nodes from a game will still result in a total game
graph.

3 Universal Optimisations and a Generic Solver

This section describes some universal optimisations – in the form of pre-transfor-
mations or incomplete solvers. These try to efficiently reduce the overall com-
plexity of a given parity game in order to reduce the effort spent by any solver.
Clearly, such optimisations have to ensure that a solution of the modified game
can be effectively and efficiently translated back into a valid solution of the orig-
inal game. Here we describe four: (1) SCC decomposition [5]; (2) detection of
three special cases – two from [1]; (3) priority compression [5], and (4) priority
propagation [1]. At the end we present a generic solver that makes use of most of
them. The choice is motivated by two facts: their worst-case running time is low
in comparison to that of a real solver: at most O(|Ω| · |E|), resp. O(|V | log |V |).
More importantly, they are empirically found to be beneficial.

3.1 SCC Decomposition

Let G = (V, V0, V1, E,Ω) be a parity game. A strongly connected component
(SCC) is a non-empty set C ⊆ V with the property that every node in C can
reach every other node in C, i.e. uE∗v for all u, v ∈ C (where E∗ denotes the
reflexive-transitive closure of E). We always assume SCCs to be maximal. We
call an SCC C proper if |C| > 1 or C = {v} for some v with vEv. Every
parity game G = (V, V0, V1, E,Ω) can, in time O(|E|), be partitioned into SCCs
C0, ..., Cn using Tarjan’s algorithm for example [15].

There is a topological ordering → on these SCCs which is defined as Ci → Cj

iff i �= j and there are u ∈ Ci, v ∈ Cj with uEv. An SCC C is called final if
there is no SCC C′ s.t. C → C′. Note that every finite graph must have at least
one final SCC.

Parity games can be solved SCC-wise. Each play eventually gets trapped in an
SCC, and the winner of the play is determined by the priorities of the nodes in
this SCC alone, in particular not by priorities of nodes not in this SCC. Hence,
an entire parity game can be solved by solving its SCCs starting with the final
ones and working backwards in their order.

It is reasonable to assume that SCC decomposition speeds up the solving of
a game. Suppose that the time it takes to solve a game G is f(G), and that
G can be decomposed into SCCs C0, . . . , Cn. Then solving SCC-wise will take
time f(C1) + . . .+ f(Cn) + O(|G|) which is asymptotically better than f(G) if
f is superlinear. Note that it takes at least linear time to solve a parity game
because every node has to be visited at least once in order to determine which
Wi it belongs to.
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W1
W0

Attr 0(W0)

W1
W0

Fig. 1. Solving a game SCC-wise with refined decompositions

A näıve implementation of SCC-wise solving handles final SCCs and replaces
the winning regions in those with two single self-looping nodes that are won by
the respective players, and then continues with the next SCCs. A slightly more
clever way is the following, as suggested by Jurdziński [5]. First, let WG

i and σG
i

be empty sets resp. strategies for the players i ∈ {0, 1} on G.

1. Decompose G into SCCs C0, . . . , Cn. W.l.o.g. say that C0, . . . , Cm are final
for some m ≤ n. Then one solves these obtaining winning regions W j

i and
strategies σj

i for i ∈ {0, 1} and j = 0, . . . ,m. Add W j
i to WG

i for every i, j
and add σj

i to σG
i via right-join.

2. Compute Ai := Attr i(W 0
i ∪ . . . ∪ Wm

i ) for i ∈ {0, 1} and corresponding
attractor strategies σi which are also added to WG

i and σG
i via right-join.

3. Repeat step 1 with (G \A0) \A1 until G is entirely solved.

Note that the attractors of the winning regions in some SCC can extend into
SCCs further up, and eliminating them can result in a finer SCC structure than
before. Hence, it suffices to decompose those of Cm+1, . . . , Cn that intersect with
one of the attractors.

An example is depicted in Fig. 1. On the left it shows a parity game that
is decomposed into 5 SCCs of which one is final. That is then solved using an
arbitrary solver which partitions it into the winning regions W0 and W1. The
middle then shows the attractor of W0 reaching into other SCCs. On the right it
shows the shaded regions already declared as winning for the respective players,
and the two affected non-final SCCs being decomposed into SCCs again. This
then yields a smaller parity game with 6 SCCs which can be solved iteratively
until the winning regions partition the entire game.

3.2 Detection of Special Cases

There are certain games that can be solved very efficiently. W.l.o.g. we assume
games to be proper and final SCCs. Note that non-proper SCCs are being solved
using attractor computations in the procedure described above.

Self-cycle games. Suppose there is a node v such that vEv. Then there are two
cases depending on the node’s owner p and the parity of the node’s priority. If
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Ω(v) �≡2 p then taking the edge (v, v) is always a bad choice for player p and this
edge can be removed from the game. If v is v’s only successor then v itself can be
removed and the process iterated in order to preserve totality. If Ω(v) ≡2 p then
taking this edge is always good in the sense that the partial function [v �→ v]
is a winning strategy for player p on v. Hence, its attractor can be removed
as described above. It is therefore possible to remove self-cycles from a game
in time O(|E|), returning winning sets Wi and strategies σi for i ∈ {0, 1} that
result from the attractors of those nodes that are good for the respective players.

One-parity games. If all nodes in a proper SCC have the same parity the whole
game is won by the corresponding player no matter which choice she makes.
Hence, a winning strategy can be found by random choice in time O(|V |).
One-player games. A game G is a one-player game for player i iff for all v ∈ V1−i

we have |vE| = 1. It can be solved in time O(|Ω| · |E|) as follows. Consider the
largest priority p in G, and let P := {v | Ω(v) = p}. There are two cases.

– If p ≡2 i then player i wins the entire G because it is assumed to be a proper
SCC and player 1− i does not make any choices, so she can reach a node in
P from any node in the game. A winning strategy can easily be constructed
from an attractor strategy for P .

– If p �≡2 then let A := Attr1−i(P ). Note that A consists of all nodes from
which player i has to move through a node with priority p which is bad for
her. Let C0, . . . , Cm be a decomposition of G \ A into SCCs. Now, player i
wins from all nodes in G iff she wins from all nodes in one of C0, . . . , Cm,
simply because they are part of the original SCC G in which player 1 − i
does not move, so the attractor of any winning node is always the entire G.

This gives a simple recursive algorithm which considers the largest priority and
either terminates or removes attractors, decomposes into SCCs and calls itself
recursively on the sub-SCCs. If player 1 − i does not win on the entire G, then
player 1− i wins on the entire G, and this is the case if in all the recursive calls
no sub-SCC is won by player i. Clearly, this can be realised in time O(|Ω| · |E|).

3.3 Priority Compression

The complexity of a parity game rises with |Ω|. This optimisation step attempts
to reduce this number. Note that it is not the actual values of priorities that
determine the winner. It is rather their parity on the one hand and their ordering
on the other. For instance, if there are two priorities p1 < p2 in a game with
p1 ≡2 p2 but there is no p′ such that p1 < p′ < p2 and p′ �≡2 p1 then every
occurrence of p2 can be replaced by p1.

The compression of G is a partial mapping ω : N → N that is defined on
all Ω(v) for any node v of the underlying game G; monotonic (x ≤ y implies
ω(x) ≤ ω(y)); decreasing (ω(x) ≤ x); parity-preserving (ω(x) ≡2 x); dense
(ω(x) < ω(y) − 1 implies ∃z.ω(x) < ω(z) < ω(y)); and minimal (min{ω(x) |
ω(x) �= ⊥} < 2). Note that a compression of G is unique and can easily be
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computed in time O(|V | log |V |): sort all nodes in ascending order of priority
and then construct ω in a single sweep through this order, starting with 0 or 1
depending on the least priority in G.

If G = (V, V0, V1, E,Ω) and ω is its compression then Comp(G) = (V, V0, V1,
E, ω ◦ Ω). It is the case that G and Comp(G) have the same winning regions
and strategies.

3.4 Priority Propagation

Suppose a play passes through a node v. Then it ultimately has to pass through
some of its successors as well. If the priority of v is at most as high as that of
all its successors, then one can replace the priority of v with the minimum of its
successors’ priorities without changing the winning regions and strategies. This
is backwards propagation. Equally, in forwards propagation one replaces a node’s
priority with the minimum of the priorities of all its predecessors if that is greater
than the current priority. This is sound because a node can only contribute to
the determination of the winner of a play if it is visited repeatedly, i.e. if the
play passes through one of its predecessors as well.

Technically, priority propagation on G = (V, V0, V1, E,Ω) computes a game
G = (V, V0, V1, E,Ω

′) s.t. for all v ∈ V : Ω′(v) := max{Ω(v),min{Ω(w) | w ∈
Uv}} where Uv = vE in case of backwards propagation and Uv = Ev otherwise.

Note that propagation can be iterated, the forwards and backwards facets can
be intertwined, and this process is guaranteed to terminate because priorities are
at most increased but never beyond the maximal priority in G. Hence, the worst-
case running time is O(|Ω| · |V | · |E|), on average it will be much faster though.

Note that, even though priority propagation increases priorities, it decreases
the range of priorities in a game, and is therefore supposedly beneficial to pre-
ceed compression, because it allows for more compressed priorities. Empirically,
however, the use of priority propagation turns out to be harmful. This is why it
is not considered in the generic solver presented next.

3.5 A Generic Solver

We propose to solve parity games using the following generic algorithm which
takes as parameter a real solver and applies it only where necessary. It relies
heavily on SCC decomposition and attractor computations. Self-cycle elimina-
tion is done first because it can only be applied once and for all. Then the game is
decomposed, and from then on, only final SCCs are being solved. Their priorities
are being compressed – note that compression within an SCC rather than the
entire game generally leads to better results – and are checked for being special
cases. If this does not solve the SCC then the parameter solver is put to work
on it. Finally, attractors of computed winning regions are formed, and the SCC
decomposition is refined accordingly.



190 O. Friedmann and M. Lange

GenericSolver(G= (V, V0, V1, E,Ω),S) =
1 initialise empty winning regions W0,W1 and strategies σ0, σ1

2 eliminate self-cycles from G
3 while G is not empty do
4 decompose G into SCCs
5 for each final SCC C do
6 if C is a one-player-SCC then
7 solve C directly
8 else
9 if C is a one-parity-SCC then
10 solve C directly
11 else
12 compress priorities on C
13 solve C using S
14 compute and remove attractors of the winning regions in C

Here we assume that the procedures in lines 2,7,11 and 13 update the variables
W0,W1, σ0, σ1 with the information about winning regions and strategies that
they have found on parts of the game. Hence, the solution to the entire game is
stored in these variables in the end. Note that this generic algorithm is sound
whenever the backend S is sound, meaning that the answer it computes for
a node is correct. It is complete – an answer is computed for every node – if
the backend is complete. However, this is not necessary. In order to guarantee
completeness one does not need completeness of the backend. Instead it suffices if
the backend solves at least one node of a given game. Then the generic algorithm
will eventually terminate with W0 ∪W1 = V .

4 Empirical Evaluation

The generic solver described above, together with 8 real solvers from the liter-
ature has been implemented in a tool called PGSolver1. The tool is written
in OCaml; and it uses standard array representations for manipulating game
graphs, in particular no symbolic methods.

Here we report on some of PGSolver’s runtime result on benchmarking
families of games. These benchmarks should cover typical applications of par-
ity games, in particular games from the area of model checking and decision
problems for branching-time logics. However, we remark that so far there is no
standard collection of parity game benchmarks. Here we start with the following.

– Decision procedures. We apply to certain (hard) formulas the exponential
reduction of the validity problem for the modal μ-calculus to the parity
game problem using Piterman’s determinisation procedure [9].

– Model checking. We encode two verification problems (fairness and reacha-
bility) as parity games.

1 publicly available via http://www.tcs.ifi.lmu.de/pgsolver
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– Random games. Because of the absence of meaningful standardised parity
game benchmarks we also evaluate the generic solver on random games.

The benchmarking games are presented in detail in the following. We only report
on runtime results of the generic solver using the recursive algorithm, strategy
improvement and the small progress measures algorithm as a backend because,
on a separate note, these three algorithms turn out to be best in the sense that
in general, they solve games faster than the other algorithms like the local model
checker for example. This holds regardless of whether they are used directly or
as a backend to the generic solver.

In order to exhibit the benefits of using the generic solver we present runtime
results using various combinations of these optimisations: table columns labeled
all contain running times obtained from the generic solver as presented above,
i.e. using removal of self-cycles, SCC decomposition, priority compression and
detection of special cases. Equally, columns none indicate using none of these,
i.e. the entire game is solved by the backend. Columns labeled scc contain re-
sults from using SCC decomposition only, while cyc indicates the application
of both SCC decomposition and removal of self-cycles. Finally, columns named
pcsg imply the application of SCC decomposition, priority compression as well
as detection of special cases. Note that the series presented in the tables to fol-
low do not start with the smallest instances. We only present instances with
non-negligable running times. On the other hand, the solving of larger instances
not presented in the tables anymore has experienced time-outs after one hour,
marked †, or the games were already to large to be stored in the heap space.

All tests have been carried out on a machine with two 2.4GHz Intel R© XeonTM

processors and 4GB RAM space. The implementation does not (yet) support
parallel computations, hence, each test is run on one processor only.

Decision Procedures. Consider the following μ-calculus formulas ϕn := ψn∨¬ψn,
n ∈ N, where

ψn := μX1.νX2 . . . σnXn.

(
q1 ∨ ♦

(
X1 ∧

(
q2 ∨ ♦(X2 ∧ . . . (qn ∨ ♦Xn))

)))

with σn = μ if n is odd, and σn = ν otherwise. Obviously, ϕn is valid. It has
been chosen because of its high alternation depth which requires a relatively
large NBA An that checks for the unfoldings of ν-formulas. The nodes of the
parity game Gn resulting from ϕn are sets of subformulas of ϕn together with
a state of a deterministic parity automaton Bn which is equivalent to An and
which gives the game node its priority. The number of priorities in Bn depends
on the size of An [9]. Hence, ϕn is chosen in order to yield games of large index.

Another family to be considered is the following μ-calculus formula

ϕ′
n := νX.

(
q ∧ ♦(q ∧ ♦(. . .♦(q︸ ︷︷ ︸

2n times

∧♦(¬q ∧ ♦X)) . . .))
)

→ νZ.μY.(¬q ∧ ♦Z) ∨ (q ∧ ♦(q ∧ ♦Y ))

which describes the language inclusion ((aa)nb)ω ⊆ ((aa)∗b)ω.
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Recursive Algorithm Strategy Improvement Small Progress Measures

n nodes sccs all cyc pcsg scc none all cyc pcsg scc none all cyc pcsg scc none
2 462 84 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.2s 0.0s 0.2s 1.0s 0.0s 0.1s 0.0s 0.1s 0.3s

3 2.5K 219 0.0s 0.0s 0.0s 0.0s 0.5s 0.2s 5.8s 0.2s 6.2s 4.7m 0.2s 1.6s 0.2s 1.7s 4.6s

ϕn 4 14K 966 0.1s 0.1s 0.2s 0.2s 6.4s 7.4s 4.1m 8.1s 4.6m † 0.6s 12s 0.8s 13s 39s

5 58K 3.4K 0.6s 0.7s 1.2s 1.2s 53s 49s 33m 75s 40m † 2.2s 56s 2.9s 60s 2.4m

6 262K 15K 5.0s 5.2s 29s 29s 17m 12m † 14m † † 5.1s 6.7m 32s 7.8m †
7 982K 55K 22s 25s 4.6m 5.2m † † † † † † 35s 42m 5.1m 44m †
10 4.5K 1.1K 0.1s 0.1s 0.1s 0.2s 0.3s 0.1s 22m 0.1s 30m † 0.0s 0.4s 0.0s 0.4s 0.9s

50 21.5K 5.5K 0.5s 0.5s 3.3s 4.5s 7.8s 0.6s † 6.5s † † 0.0s 13.6s 0.0s 15s 61s

ϕ′
n 100 42.6K 10.8K 0.6s 0.7s 20s 20s 2.7m 1.1s † 21s † † 0.1s 2.2m 0.2s 2.3m 6.5m

500 211K 54.1K 5.4s 6.7s 13m 13m 29m 6.5s † 11m † † 0.3s † 5.1s † †
1K 423K 108K 6.5s 7.6s 53m 54m † 7.9s † 43m † † 0.6s † 17s † †
2K 846K 216K 24s 27s † † † 18s † † † † 1.4s † 87s † †

Fig. 2. Runtime results on games from the decision procedures domain

The times needed to solve the resulting games as well as their sizes are pre-
sented in Fig. 2.

Model Checking I. We encode a simple fairness verification problem as a parity
game. States of a transition system modelling an elevator for n floors are of
type {1, . . . , n} × {o, c} × (

⋃{Perm(S) | S ⊆ {1, . . . , n}). The first component
describes the current position of the elevator as one of the floors. The second
component indicates whether the door is open or closed. The third component
– a permutation of a subset of all available floors – holds the requests, i.e. those
floors that should be served next. The transitions on these are as follows.

– At any moment, any request or none can be issued. For simplicity reasons,
we assume that at most one floor is added to the requests per transition.
Note that nondeterministically, no request can be issued, and a request for
a certain floor that is already contained in the current requests does not
change them.

– If the door is open then it is closed in the next step, the current floor does
not change.

– If it is closed, the elevator moves one floor (up or down) into the direction of
the first request. If the floor reached that way is among the requested ones,
the door is opened and that floor is removed from the current requests.
Otherwise, the door remains closed.

We consider two different implementations of this elevator model: the first one
stores requests in FIFO style, the second in LIFO style. The games Gn (with
FIFO), resp. G′

n (with LIFO) result from encoding the model checking problem
for this transition system and the CTL∗ formula A(GFisPressed → GFisAt) as a
parity game [14]. Proposition isPressed holds in any state s.t. the request list
contains the number n, and isAt holds in a state where the current floor is
n. Hence, this formula requires all runs of the elevator to satisfy the following
fairness property: if the top floor is requested infinitely often then it is being
served infinitely often. It can easily be formulated in the modal μ-calculus using
a formula of size 11 and alternation depth 2 (of type ν–μ–ν). Hence the resulting
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Recursive Algorithm Strategy Improvement Small Progress Measures

n nodes sccs all cyc pcsg scc none all cyc pcsg scc none all cyc pcsg scc none
3 564 95 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 0.0s 0.1s 0.10s 0.0s 0.0s 0.0s 0.0s 0.1s

4 2.6K 449 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 1.8s 0.1s 2.0s 3.1s 0.1s 0.4s 0.1s 0.4s 0.4s

Gn 5 15.6K 2.6K 0.4s 0.5s 0.6s 0.7s 1.4s 0.5s 2.0s 0.7s 2.2s 2.3s 0.5s 2.9s 0.7s 3.0s 3.9s

6 108K 18K 3.1s 4.7s 4.9s 6.0s 11s 3.1s † 4.5s † † 4.0s 33s 5.8s 33s 37s

7 861K 143K 34s 44s 50s 73s 1.8m 36s † 53s † † 39s 6.7m 59s 6.9m 7.6m

3 588 99 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s

G′
n 4 2.8K 473 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 0.3s 0.7s 0.1s 0.2s 0.1s 0.2s 0.2s

5 16.3K 2.7K 0.6s 0.7s 0.8s 0.9s 1.0s 0.6s 2.4s 0.8s 5.7s 13s 0.5s 1.3s 0.5s 1.5s 1.5s

6 111K 18.5K 3.8s 4.3s 5.6s 6.0s 7.1s 3.8s 21s 8.7s 46s 5.3m 5.2s 20s 7.0s 24s 24s

Fig. 3. Runtime results on games from the elevator verification example

parity games have constant index 3. Note that Gn encodes a positive instance
of the model checking problem whereas G′

n encodes a negative one. The times
needed to solve them as well as their sizes are presented in Fig. 3. Larger instances
caused out-of-memory failures due to the size of the underlying transition system.

Model Checking II. Typical verification problems often lead to special parity
games for which there are specialised solvers. For instance, CTL model checking
problems lead to alternation-free parity games, i.e. those in which every SCC
is a single-parity SCC with index 0 or 1. We therefore consider a second set
of benchmarks from the verification domain in the form of very special games.
We model the well-known Towers of Hanoi represented as a transition system
in which states consist of three stacks containing the numbers {1, . . . , n}. The
initial state is ([1, . . . , n], [], []), and each state has up to 6 successors resulting
from shifting the top element of one stack to another for as long as the top of
that is not smaller.

The property to be tested is the CTL formula EFfin, where fin holds in the
state ([], [1, . . . , n], []) only. The resulting game Gn = (V, V0, V1, E,Ω) is special
because V1 = ∅ and only priorities 0 and 1 are being assigned to the states.
The times needed to solve these games and their sizes are shown in Fig. 4.
Note that the interesting part of solving the games of the former example is
the computation of the winning regions which show those states from which the
elevator has fair runs. Here, however, the interesting part is the computation of
the winning strategy for player 0 since it represents a strategy for solving the
Towers-of-Hanoi game.

Random Games. Finally, we evaluate the generic solver on random games. Note
that the standard model of a random game which chooses, for each node, some d
successors and randomly assigns priorities as well as node owners, leads to graphs
which typically consist of one large SCC and several 1-node SCCs which have
successors in the large one. Those do not add significantly to the runtime of the
solving process which is predominantly determined by the large SCC. Hence,
SCC decomposition would not necessarily prove to be useful in this random
model. The truth, however, is that SCC decomposition is indeed useful in general
but this random model creates special games on which it is not. While special
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Recursive Algorithm Strategy Improvement Small Progress Measures

n nodes sccs all cyc pcsg scc none all cyc pcsg scc none all cyc pcsg scc none
5 972 244 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.9s 0.0s 0.0s 0.0s 0.0s 0.3s

6 2.9K 730 0.0s 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 0.0s 15s 0.0s 0.0s 0.0s 0.0s 2.2s

7 8.7K 2.1K 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 5.4m 0.1s 0.1s 0.1s 0.1s 13s

8 26K 6.5K 0.2s 0.2s 0.4s 0.4s 0.7s 0.2s 0.2s 0.4s 0.4s † 0.2s 0.2s 0.4s 0.4s 77s

9 78K 19K 0.7s 0.7s 1.0s 1.0s 2.2s 0.7s 0.7s 1.0s 1.0s † 0.7s 0.7s 1.0s 1.0s 9.9m

10 236K 59K 2.3s 2.3s 3.3s 3.3s 4.1s 2.3s 2.3s 3.3s 3.3s † 2.3s 2.3s 3.3s 3.3s 37m

11 708K 177K 7.2s 7.2s 13s 13s 21s 7.2s 7.2s 13s 13s † 7.2s 7.2s 13s 13s †

Fig. 4. Runtime results on games from the Towers-of-Hanoi example

Recursive Algorithm Strategy Improvement Small Progress Measures

nodes avg.sccs all cyc pcsg scc none all cyc pcsg scc none all cyc pcsg scc none
1K 31 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.3s 0.3s 1.2s 0.0s 0.0s † † †
2K 71 0.0s 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.3s 0.3s 6.7s 0.0s 0.0s † † †
5K 130 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 0.1s 0.7s 0.7s 61s 0.1s 0.1s † † †
10K 244 0.2s 0.2s 0.2s 0.2s 0.5s 0.2s 0.2s 0.8s 0.9s 5.9m 0.4s 0.4s † † †
20K 458 0.3s 0.4s 0.3s 0.4s 1.1s 0.4s 0.4s 2.7s 2.7s 32m 0.7s 0.7s † † †
50K 1K 0.8s 1.1s 0.8s 1.1s 2.9s 1.1s 1.1s 3.7s 3.7s † 1.7s 1.8s † † †
100K 1.5K 2.7s 4.1s 2.9s 4.1s 6.3s 3.9s 4.0s 6.0s 11s † 6.2s 6.5s † † †
200K 2.3K 5.9s 8.4s 5.5s 8.4s 14s 8.4s 8.4s 16s 22s † 13s 14s † † †
500K 3.4K 16s 20s 18s 19s 60s 19s 20s 34s 34s † 30s 31s † † †
1M 12K 99s 2.1m 1.7m 2.3m 14m 1.7m 1.7m 13m 26m † 2.8m 3.0m † † †

Fig. 5. Runtime results on random games

games are important to consider, random games should be more general ones
since a random model is typically employed in order to capture all sorts of other
games. Thus, we enhance this simple random model in order to obtain more
interesting games of size n: first, create clusters of sizes < n according to this
model, then combine these whilst adding random edges between the clusters.
Fig. 5 presents the average number of SCCs that these random games posses,
as well as the corresponding average runtime results. Each row represents 100
random games of corresponding size.

5 Conclusions

The previous section shows that it is possible to solve large parity games effi-
ciently in practice. Contrary to common believe, even a large number of priorities
does not necessarily pose a great difficulty in practice. All in all, there are five
notable, maybe even surprising observations that can generally be made here.

(1) The recursive algorithm is much better than the other two algorithms
if applied without any optimisation and preprocessing techniques. We believe
that this is due to the nature of the recursive algorithm being itself based on a
continuous decomposition of the game.

(2) SCC decomposition alone is highly profitable already, and in general even
moreso when combined with any of the other optimisations, particularly the
elimination of self-cycles.
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(3) Not every optimisation speeds up all algorithms likewise. The recursive
algorithm seems to profit more from self-cycle elimination than from priority
compression and solving of special cases. This could be due to the fact that
without eliminating self-cycles it expectedly requires a deep recursive descend
in order to detect them by the recursion mechanism. On the other hand, the
considered special cases can be solved quite fast by the recursive algorithm. Re-
garding strategy iteration and small progress measures iteration, it is the other
way round: the detection of special cases as well as priority compression speed up
the algorithms much more than treating self-cycles beforehand. The former is not
surprising because both algorithms summarize nodes with the same priority and
it is clear that the direct solution of special cases is faster than applying the iter-
ation techniques to them. Finally it is also clear why the strategy iteration does
not profit as much from elimination of self-cycles as the recursive algorithm since
strategy iteration basically detects cycles and computes attractor-like strategies
seeking cycles which is similar to the preprocessing technique that removes self-
cycles. Similarly, the small progress measures algorithm easily detects self-cycles
and back-propagates them through the graph which also corresponds to the
computation of attractor-like strategies.

(4) There are even complex instances like the Towers-of-Hanoi example that
are completely solved by the generic algorithm, i.e. without calling the backend
even once. Obviously, generic optimisations as discussed in this paper have not at
all the potential to give rise to a polynomial time algorithm that solves arbitrary
parity games. But solving real-world parity game problems in practice can be
heavily sped up by generic optimisation techniques.

(5) In general, it is advisable to enable all optimisations. Thus even an in-
experienced user is on the safe side by activitating all of them. Also, using can
cause tremendous speed-ups, which is witnessed for example in the drop of the
average runtime from 14 to 1.5 minutes on random games with 1 million nodes
using the recursive algorithm.

Despite developing additional universal optimisation techniques and paralleliz-
ing existing backend algorithms, there is another approach that should turn out to
be of high value for practical solving: since it is very unlikely that one would ever
find a real-world family of games on which all of the known backend algorithms
show bad performance, there is an immediate improvement for the generic solver:
it could take an arbitrary number of complete solvers as arguments and run them
in parallel on those parts that cannot be solved by simpler methods. As soon as
any of them provides a solution, the other computations can be killed.
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