BMC 2005 Preliminary Version

Bounded Model Checking for All Regular
Properties

Markus Jehle Jan Johannsen Martin Lange
Nicolas Rachinsky

Institut fir Informatik, LMU Minchen, Germany

Abstract

The technique of bounded model checking is extended to the linear time u-calculus,
a temporal logic that can express all monadic second-order properties of w-words,
in other words, all w-regular languages. Experimental evidence is presented show-
ing that the method can be successfully employed for properties that are hard or
impossible to express in the weaker logic LTL that is traditionally used in bounded
model checking.

Key words: model checking, satisfiability solving, expressiveness

1 Introduction

Bounded model checking is a verification technique for linear time properties.
Only paths of a certain length through a transition system are considered. It
is therefore not complete but only an approximation method relying on the
fact that unsatisfied formulas often have short counterexamples.

On the other hand, the boundedness plus the fact that models are linear
structures make the problem suitable for a reduction to SAT - the satisfiability
problem for propositional logic. It is known from a different symbolic tech-
nique, namely BDD-based model checking [5], that transition systems can be
encoded as boolean functions, and that these encodings can be significantly
smaller than explicit representations.

So far, bounded model checking has been employed for LTL [10] and vari-
ants thereof. But the expressive power of LTL is rather limited: it is equi-
expressive to First-Order Logic over w-words,resp. star-free languages [14].

There are various temporal specification languages for w-regular languages:
ETL [18] and QPTL [13] extend the syntax of LTL with Biichi automata, resp.
propositional quantifiers. The are not very usable because of an infinite set
of temporal connectives, resp. complexity issues. Dynamic LTL [7] simply
obtains w-regular expressive power by adding w-regular expressions to LTL;
industrially used logics like FTL [1] and PSL/Sugar [3] are geared towards

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

JEHLE, JOHANNSEN, LANGE, RACHINSKY

usability and, thus, provide a very rich syntax; and the linear time p-calculus
pTL [2] simply achieves w-regular power by replacing the until operator by a
general-purpose least fixpoint quantifier.

Inspired by the success that bounded model checking for LTL has had so
far [4], we show how to do bounded model checking for TL. The choice of
1 TL is motivated in two ways. First, since it is a natural extension of LTL,
there is reason to believe that many optimisations that have been found for
bounded model checking LTL carry over to uTL. Second, just like the modal
p-calculus, it provides a framework which other specification formalisms can
often easily be translated into. Hence, bounded model checking for x4TL has
the potential to implicitly provide bounded model checking procedures for
other languages as well.

Unlike the modal p-calculus, pTL does not have a strict alternation hier-
archy. Therefore, every pTL formula can be transformed into an equivalent
alternation-free formula. This translation is exponential in the alternation
depth of the original formula. However, formulas with a lot of alternation are
hardly seen as specifications because they are not easy to read. The encoding
into SAT presented here makes use of this result.

The rest of the paper is organised as follows. Section 2 recalls pTL. Sec-
tion 3 compares LTL and pTL using some example formulas. Section 4 defines
a bounded semantics for uTL along the same lines as the one for LTL [4]. Sec-
tion 5 contains the reduction from pTL formulas over paths of bounded length
into SAT. Section 6 reports on a prototype implementation of this translation
and presents experimental results.

What remains to do done is to check which known optimisations for LTL
bounded model checking can be transferred to TL, to also find small com-
pleteness thresholds like it was done for LTL [4,6], etc.

2 Preliminaries

2.1 The Linear Time p-Calculus pTL

Let P be a set of propositions which contains tt and ff and is closed under
complementation, i.e., for every ¢ € P there is an ¢ € P with ¢ = ¢q. Let V be
a set of monadic second-order variables. Formulas of xTL in positive normal
form are given by the following grammar.

o = q|X]eVeleAe|Op|pXe|vX.e

where ¢ € P and X € V. The set Sub(p) of subformulas of ¢ is defined as
usual, e.g. Sub(uX.p) = {uX.o} U Sub(p).

Formulas are assumed to be well-named, i.e., no variable is bound more
than once in a formula. Then for each ¢ € pTL there is a function fp,, :
VN Sub(p) — Sub(p) that maps each variable X occurring in ¢ to its defining
fixpoint formula o X.¢. If fp (X)) is uX 1) for some formula 1, we say that X

2

JEHLE, JOHANNSEN, LANGE, RACHINSKY

is of type u, otherwise X is of type v.

A total, labeled transition system (LTS) is a tuple 7 = (S,—,Z,S))
where S is a set of states. —— is a binary relation on states s.t. for every
s € S thereisat €S with s — t. Z: P — 25 interprets the propositional
constants from P in 7 respecting tt, ff and complementation. Sy C S is the
set of all starting states.

A path through 7 is an infinite sequence ™ = s1ss. .., s.t. s; € Sy and for
allt € N s; — 8441

We write 7% for the k-th state of 7, Pos(m) for the set of states in 7, and
Pos®(r) for {r € Pos(r) | i < k}.

Formulas of uTL are interpreted over a path m = sys5... of an LTS 7.
Free variables are interpreted using an environment p : V — 275" With
p|X — T] we denote the function that maps X to 7" and behaves like p on all
other arguments. Since 7 will always be derivable from the context we avoid
mentioning it explicitly.

ld, = Z(q)

[X], = p(X)
[evadl, = lel, VY],
X%

[O¢], = {=*|**" € [e],}
[uX @], = [T C Pos(x) | [l xxmy S T3

I
I
]
]]p = [[@]]pm[[w]]p
I
I
], = U {T C Pos(m) | T C [l ,xor

We write 7% =, o if 7% € [[go]]p. If o is closed, i.e., it does not contain any free
variables we write 7% |= ¢ instead. Finally, we write 7 |= ¢ if 7 € [¢].

Lemma 2.1 For every closed ¢ € uTL, there is a closed p € pTL s.t. for all
paths m of all LTSs T: w |= ¢ iff m = @.

Proof. The complement @ can inductively be constructed using complemen-
tation closure of atomic propositions, deMorgan’s laws and the rules 1) := 1),

O =0, pXY(X) :=vXY(X), and vX.p(X) = pX.(X). O

We also allow ourselves to write = instead of .

Approximants of a formula 0 X.p w.r.t. a linear time structure 7 and an
environment p : V — 27°5(™ are defined for every i € N as usual:

0 for o = p ,
XO = , XZ+1 _ .
P {POS(W) forc =v p ﬂ@]]p[x._»xp]

The following is a standard results about fixpoint logics. It follows immedi-
ately from the Knaster-Tarski Theorem and the fact that the semantics of a

3

JEHLE, JOHANNSEN, LANGE, RACHINSKY

formula with a free variable is a monotone function on the subset lattice of
states on a path.

Lemma 2.2 For all p € uTL and environment p we have:

X, = Ux)., [vXel, = X

€N ieN

We say that X depends on Y in ¢, written Y <, X, if Y is free in fp (X).
We write <, for the reflexive-transitive closure of <,. The alternation depth
ad(yp) of ¢ is n if there is a maximal chain Xy <, ... <, X,, with consecutive
variables having different fixpoint types. Let uTLF := {¢ | ad(y) < k}.

Proposition 2.3 [17,8] Every closed ¢ € uTL is equivalent to a closed
o € MTLO s.t. || = O(Jy] - 24-ad(<p))'

3 uTL vs. LTL

Formulas of LTL are built from atomic propositions using the boolean oper-
ators A, V and —, as well as the temporal operators () (next) and U (until)
with their usual semantics [10].

Proposition 3.1 For every formula ¢ € LTL there is an equivalent @' €
PTLY s.t. @' = O(lel).

It follows that pTL model checking over labelled transition systems is also
PSPACE-hard [11] where the size of the input is the number of states in
explicit representation. In fact, it is also PSPACE-complete [16].

Proposition 3.2 [2] A language is w-reqular iff it is pTL-definable.

Together with Proposition 2.3 we obtain that #TL? is already capable of defin-
ing all w-regular properties.

In the following, we will give a few examples of properties that are either
1TL- but not LTL-definable, or that can be written down more succinctly in
uTL.

Example 1 “Formula ¢ holds on every even state of a path” is not LTL-
definable, but can be expressed in pTL as v X.9p A OO X.

Example 2 Suppose we have a set Q = {qo, ..., qn_1} of atomic propositions
and require them to occur repeatedly in this order. This can be done in pTL
with the following formula of size linear in n.

p = vX@ANO@AO@A...Ol@GNOX)...))

The property is still star-free, hence, LTL definable. But note that proposi-
tions do not exclude each other. Thus, an equivalent LTL formula would have
to assert the label of the next state in accordance with the labels of the last

4

JEHLE, JOHANNSEN, LANGE, RACHINSKY

n states — for every starting point in the order qo,...,q,_1. Hence, its size
would be quadratic in n.

Example 3 The next formula describes the capacity property of a bounded
message buffer of size n. A word w € {push, pop, nop}* satisfies 3, if for every
prefix v of w, the difference between the numbers of occurrences of push and
pop in v is between 0 and n. This is also a star-free property, but for growing
n it occurs arbitrarily high in the dot-depth hierarchy of star-free languages
[15], and thus it is notoriously hard to formalize in LTL. The formula £, is
o, Where ¢; is inductively defined as follows.

o = vXq.(push — O 1) A —pop A (nop — O Xo)
i i=vXi.(push — O i) A (pop — O Xiza) A(nop — OX;) if1<i<n
©n = vXy.mpush A (pop — O Xno1) A (nop — O X,,)

The size of 3, is obviously linear in n, whereas only exponential size LTL
formulas specifying this property are known [12].

4 A Bounded Semantics for yTL

Assume an LTS 7 = (S,—,Z,S)) to be fixed and of finite size. Every path
through 7 starting with a state in Sy induces a linear time structure 7.

Definition 1 A path 7 of T is called a (k,{)-loop for { < k € N if gk+l+i =
7+ for all i € N.

Note that if ¢ is satisfied by a path of a finite transition system (|S| < 00),
then it is already satisfied by a path which is a (k, ¢)-loop for some ¢, k with
¢ < k. This is a consequence of Proposition 3.2. Small upper bounds on £k —
so-called completeness thresholds — remain to be found.

Definition 2 Given a k € N, a path 7 of 7 and an environment p : V —
Pos(m), we define the k-bounded semantics [[cp]]l; by distinguishing two cases:

Case 1, 7 is a (k,¢)-loop for some ¢ < k: Then the bounded semantics does
not differ from the unbounded semantics of Section 2, i.e. we define

[els = [,

Case 2, 7 is not a (k, £)-loop for any ¢ < k: Then we define

[[q]]]; = ZI(q) N Pos*(x)
[X]) = p(X)N Pos*()
[ovel, = lel, Ul
[e A, = [el, N[V,
[O go]]]; = {n'|i < kand 7" €[]}

p

bt

JEHLE, JOHANNSEN, LANGE, RACHINSKY

[uX ol = () {T C Pos*(x) and [¢]} .y € T}
[[VX.@]]IZ =0

As for the unbounded case, we define bounded approximants for the iterative
evaluation of the bounded semantics of fixpoint formulas.

Definition 3 Bounded approximants for least fizrpoint formulas uX.p, a k €
N, a path © and an environment p are defined for all i € N as

kO . kg+l . k _
X0 =0, XP o= [l i

For greatest fixrpoint formulas, bounded approximants depend on the type of
the underlying path. If w is a (k,{)-loop for some ¢ < k then we define

i k
X;f’o .= Pos*(r) , X/f’ o= [[gp]]p[XHXl/f,i}

Otherwise, we set X/’f’i =0 for all i € N.

The following lemmas form the basis for the correctness of the reduction in the
next section. Lemma 4.1 expresses the monotonicity of the bounded semantics,
and Lemma 4.2 states that the bounded approximants really approximate
the bounded semantics. They are proved by simultaneous induction on the
structure of yTL formulas, in a way similar to the corresponding statements
for the unbounded semantics.

Lemma 4.1 Forallk € N, all X €V, all p € u'TL, all paths 7, all environ-

ments p and all P C Q C Pos™(nr) we have: [[go]]l;[XHP] C [[go]]I;[X,_)Q}.

Lemma 4.2 For all k € N, all X € V, all environments p, all p € pTL and
all paths ™ we have: [[uX.go]]]; = U X} and [[I/X.go]]l; =N X}

ieN ieN
The following lemma states that the bounded semantics is an under-approx-
imation of the unbounded semantics. This entails that any counterexample
found by bounded model checking is an actual counterexample to the checked
specification.

Lemma 4.3 For all p € puTL, all environments p, all k € N and all paths ™
k
we have: [¢], €[] -

Proof. The only interesting case is the one of ¢ being ©X.1, and the path 7
is not a (k, ¢)-loop for any ¢. For this case, we prove by a side induction on i
that X g’i C X; for all 7 € N, from which the lemma follows by Lemmas 4.2
and 2.2. The induction basis for the claim is trivial. For the induction step,
note that

kitl k _ oyt

X = Whexry & Wlxexty & Wlopxexy = X5
where the first inclusion follows by the main induction hypothesis, and the
second one by the side induction hypothesis and monotonicity. O

6

JEHLE, JOHANNSEN, LANGE, RACHINSKY

The next lemma shows that the bounded semantics is monotone in the bound
k. This entails that by increasing the bound, one does not lose any counterex-
amples that would have been found with a smaller bound.

Lemma 4.4 For all k € N, all ¢ € uTL, all environments p and all paths

we have: [[go]]l; - [(p]]ﬁ“.

Proof. The only non-trivial case is the one of 7 not being a (k + 1, ¢)-loop
for any ¢ < k+ 1. Again, the proof is by induction on ¢. The only interesting
case is ¢ = puX.¢», where we prove by side induction on ¢ that Xg’i C Xﬁ*l’i,
from which the claim follows by Lemma 4.2. For i = 0 this is trivial again,
and the inductive step follows by
kjai+1l k _ k+1 k+1 o k+1,i4+1
Xp - Hw]]p[XHX}f”] C [[1/}]]p[Xi—>X§’i] C [[w]]p[x,_)xg“'lﬂ'} - Xp

where the first inclusion follows by the main induction hypothesis, and the
second one by the side induction hypothesis and Lemma 4.1. O

Lemma 4.5 For any o € {u,v}, any formula ¢, environment p, and k € N
k _ ~ykk
we have [oX.¢]) = X"

Proof. This is a consequence of Lemma 4.2, since the chain of bounded ap-
proximants must become stationary after at most k steps. The reason is that
all bounded approximants are subsets of Pos*(r), and |Pos*(7)| = k. O

By use of this lemma, for a fixpoint formula ¢ containing m nested fixpoint
operators, [[ap]]k can be computed in k™ steps. For alternation-free formulas in
pwTLY one can do better. We present the construction for least fixpoints, for
greatest fixpoints it is completely analogous.

Let ¢ = puX.¢ be a closed fixpoint formula, and let X = X;i,..., X, be
those variables in ¢ that depend on X, ie.,, X <, X for i = 1,...,r. Since
¢ € uTLY, all the variables X; are of type u. Now ¢ is transformed into a
system of equations

X; = (X, X))

: (1)
XT - wr<X17 cee 7Xr>

where the formulas 1); contain no fixpoint subformulas that depend on the
variables X7,...,X,, ie., every fixpoint subformula of ¢;(Xy,...,X,) is a
subformula of some closed fixpoint subformula of ¢;(X3,...,X,). The trans-
lation is obtained as follows: let

fpcp(Xl> = :quwl(Xla s 7Xi7 :uifl‘ela s 7:“3/:998>

containing free variables among Xi,..., X;_;, where the subformulas ©Y;.0;
for Y; among X, 1, ..., X, are those outermost fixpoint subformulas of 9; that

7

JEHLE, JOHANNSEN, LANGE, RACHINSKY

contain any free variables from Xi,...,X;. This formula yields the equation
Xi = wi(Xlw o ,Xi,ifl,. .. ,}/;) in (1)
For the system of equations (1), the bounded simultaneous approximants
Xf U) for 1 <1 <r and j € N are inductively defined as follows:
k,(0) _ k,Gi+1) k
X =10 X; = (X, X)), (2)

where p; is the environment that maps each variable X}, to X ,’f’(j for1<h<
T

Lemma 4.6 For a closed fixpoint formula uX.o as above, [[uX.gp]]k = Xf’(kr).

Proof. The fixpoint of the simultaneous iteration (2) is the same as [uX.¢]"
by Béki¢’” Theorem. Moreover, (2) reaches its fixpoint after at most k - r
iterations, since there are r subsets of Posk(w) being computed, and in the
worst case, in each iteration only one of the sets increases by one element. O

5 The Reduction to SAT

5.1 Symbolic Representations

Propositional Logic over a set V of propositional variables is the closure of V
under the boolean connectives -, V, and consequently also A, —, etc. Here
we assume a finite LTS 7 = (S,—,Z, Sp) to be given symbolically, i.e., by
propositional formulas

* fuae : B — B with f...(Z) = tt iff T € S,
e f,:B" — B for every ¢ € P with f,(z) = tt iff z € Z(q),
¢ fians : B2 — B with f,...(Z,7) = tt iff T — 7.
where n := [log|S|]. ILe. every state is identified by a unique number in
binary coding.

Most SAT solvers expect that the input formula is given in conjunctive
normal form (CNF). Our translation as defined below produces arbitrary for-

mulas, but it is well-known that such formulas can be translated into CNF
with only a linear blow-up in size and a linear number of additional variables.

5.2 The Translation

For a symbolically represented transition system 7 with 2" states, a formula
¢ € uTLY and a k € N we define a boolean formula {{ 7, ¢))¥ in the following
variables:

e the path variables 5; = s;1,...,8;n for 1 < i < k, coding the i-th state on
a path.

o auxiliary variables v(X); for every second-order variable X and 1 < i < k.
These variables will not occur in the final formula (7', ¢))*, they are only

8

JEHLE, JOHANNSEN, LANGE, RACHINSKY

used during the construction as placeholders for free variables in subformu-
las.

e the approzimant variables a(X,7)¥ and a(X,)" for every second-order
variable X and 1 <14,/ < k and j € N. These variables express that state @
is in the bounded approximant X*).

First, we define a formula (7))* saying that the path variables 5i,..., 5
actually encode a path in 7 by

k—1
<<T>>k = fstart(gl) /\ A ftrans(§i7§i+l) .
i=1

Next, as usual we define formulas to distinguish between the cases where the
path is a (k, ¢)-loop for ¢ < k, and where it is not, by

k
Loop™ = fiune (5, 5¢) —=Loop"® := /\ —Loop™!
i=1
and using these, we define the translation by
k
(T.o0* = (TP A ((~Loop A)V V (Loont n (o))

The formula {(p))* that actually encodes ¢ in the case of a non-loop is defined
as (W A Defs(p)*, where the formulas (4))¥ for subformulas 1) of ¢ and
1 < i < k express that the i*" state satisfies 1. For formulas without fixpoint
operators, these are inductively defined by:

(ahi = Jo(5)

(XN = v(X):
Lovudi = Cohi v v)
Lonydf = Codi ALw)i

(ohry ifi<k

ff otherwise

(Oehi = {

Next, we define the translation for a closed greatest fixpoint formula as the

constant ff,
(VX = £,

and for a closed least fixpoint formula as the approximant variable

(pXW)F = a(X,kr)f

where 7 is the number of second-order variables Y in pX.¢) with X <, Y.
9

JEHLE, JOHANNSEN, LANGE, RACHINSKY

Note that in a fixpoint formula, the bound variable can occur several times.
Therefore a straightforward translation of the approximants by syntactic un-
folding would lead to an exponential blowup. To prevent this, we use the ap-
proximant variables to abbreviate the approximants, and the formula Defs(p)*
takes care of their proper interpretation. It is defined as the conjunction of
the defining formulas Def (1)¥, over all subformulas v of ¢ that are closed
least fixpoint formulas.

Another exponential blowup would occur if nested fixpoints were translated
straightforwardly inside out, since the unfolding of a formula with m nested
fixpoints would produce k™ subformulas. Therefore we use the transformation
of a closed least fixpoint subformula 1) into a system of r equations (1), as
described at the end of Section 4:

Xl = Qz]l(Xla cee 7X7")

X, = ¢T(X17 s 7X1“)

The formula Def (1)) describes the evaluation of this system of equations by

the simultaneous approximants (2) by giving definitions for the corresponding

approximant variables. Le., Def(y)* is the conjunction of the equivalences !

a(X,s)f — F(X;,s) overall 1 <j<r 1<s<krand1<i<k, where

« F(Xj,1); is the translation ((¢;(Xy,...,X,))); with the variables v(X},)"
for 1 <h <rand1<g<kreplaced by ff, and

« F(Xj,s)Ffors > 1is (¢;(Xy,..., X,)))F with the variables v(X},)F replaced
bya(Xh,s—l)’;’, forl<h<randl<g<Ek.

Similarly, the translation (o)** of ¢ in the case of a loop is defined as

(o W& A Defs(o)"!, where the inductive definition of the formulas {{))%
differs only in the clause for (), which becomes:

(ohify ifi<hk
(oW otherwise

(O = {

For both closed least and greatest fixpoint formulas we now define the trans-
lation by
(oX)i = alX, kr)i",

where like above, r is the number of second-order variables Y in o X.¢) with
X <, Y.

The formula Defs(p)** is the conjunction of the formulas Def (1))* over
all closed least and greatest fixpoint subformulas of . For such a subfor-
mula, written as an equation system in the variables Xi,...,X,, the for-

L If the formulas are transformed into CNF, these equivalences need not be written, but are
implicitly produced by the transformation. One only needs to identify the variable a(X, s)¥
with the new variable abbreviating the formula F(X, s)¥.

10

JEHLE, JOHANNSEN, LANGE, RACHINSKY

mula Def ()% is defined exactly as Def (1))* above, only that for a variable
of type v, the defining formulas for the first approximant variables become
a(X;,)P« F(X;,1)5", where in this case F(X;,1)¥" is the translation
(¥ (X1,..., X,))" with the variables v(X;)5¢ for 1 <h <rand 1< g <k
replaced by tt.

The number of variables in and the size of the translation is measured in
the numbers n, k, the size of the input formula s and the number of second-
order variables v. They are easily estimated, and are — in the worst-case — as

follows:

Proposition 5.1 The formula { T, ¢)* contains O(v?*k*+kn) variables, and
is of size O(v*k3sn).

Even though the number of variables produced by our translation is rather
large, in particular regarding the cubic dependence on k, this might not be
too problematic, since the approximant variables occur in k + 1 disjoint parts
of the formulas, each containing only O(k?) of them. Furthermore, note that
it is only cubic for uTL formulas with multiple occurrences of variables under
the scopes of different numbers of ()-operators. Hence, for LTL formulas the
translation produces at most a quadratic number of variables.

Finally, we can easily observe the correctness of our translation, which is
obvious from the definition for all cases except for the fixpoint formulas. But
for those the correctness follows from Lemma 4.6.

Proposition 5.2 The formula { T,)* is satisfiable iff there is a path 7 in
T starting at an initial state, and for which 7° € [[go]]k

6 Experimental Results

The algorithm presented here is part of the verification tool u-SABRE that
is being developed at LMU Munich. The program is implemented in the
lazy functional language HASKELL using the GLASGOW HASKELL COMPILER
6.2.2, with the exception of a small part of the program, dealing with linking
of the SAT solver, that was implemented in C. The SAT solver used is version
2004.5.13 of zChaff [9].

The tests were carried out on a machine with two Intel® Xeon™ 2.4 GHz
processors and 4GB of RAM. The second processor remained unused.

In a first test series we consider the property “there is a path with a b
at an even position and a ¢ at an odd position” on a family {7, | n € N}
of transition systems, s.t. 7,, has got n states. The transitions between these
states and their labels are as follows.

Re aog

The only starting state is the leftmost. The property is written in uTL as
11

JEHLE, JOHANNSEN, LANGE, RACHINSKY

n Var Cls Red SAT n Var Cls Red SAT

22 6k 42k | 0.24 0.09 102 || 143k | 1322k | 91.29 22.05
32 13k 97k | 0.86 1.87 112 || 173k | 1597k | 124.44 | 213.27
42 23k | 191k | 2.88 4.49 122 || 207k | 1915k | 178.86 | 462.75
52 36k | 298k | 6.29 | 26.83 132 || 242k | 2438k | 253.42 | 421.27
62 52k | 435k | 12.13 3.00 142 || 280k | 2831k | 338.51 | 1167.54
72 71k | 647k | 21.10 | 21.01 152 || 320k | 3229k | 469.33 | 630.07
82 92k | 847k | 35.09 | 107.17 162 || 366k | 3699k | 583.69 10.78
92 || 116k | 1059k | 54.94 | 138.97 172 || 409k | 4128k | 805.48 | 865.44

Fig. 1. The even b / odd ¢ example.

(uXbbVOOX)A(Y.-OcvOQY). It may not be an interesting property
but we include it here because it cannot be formalised in LTL, c.f. Example 1.

The running times of our reduction (Red) and the SAT solver (SAT) are
presented in Figure 1. The time unit is seconds. We only present satisfiable
instances, i.e. those of even n. The table also contains the number of proposi-
tional variables (Var) and the number of clauses (Cls) in the resulting formulas
— truncated down to multiples of 1000 in order to save space.

Our other tests use a transition system B, modeling a message buffer of
size n, holding messages that are single bits. Every state in B,, has 2n+ 3 bits:
The first two are the opcode for the next operation. The third bit is the output
of the previous operation; its value is only specified in states following a pop
operation. The remaining 2n bits represent the n buffer cells, each cell being
represented by one bit indicating whether the cell is occupied, and the other
being the value stored in the cell. The value of the second bit is unspecified
for unoccupied cells.

The boolean formulas f... and f... are hand-coded, with f... saying
that the buffer is initially empty, and f,.... specifying the changes in the buffer
depending on the opcode, e.g., one disjunct of f, ...(x,y) is

Al A\) A\ /\ (ZL’Z — yz)
4<i<2n+3

stating that a nop (having opcode 00) does not change the buffer content.

We test the property —3,_1 of Example 3 on B,, in order to have a satisfi-
able example. The minimal counterexample showing that 3,_; is violated is a
sequence of n push operations, thus in our second experiment we test whether
B, =, —0,, for various n. The results are shown in Figure 2. Again, the time
unit is seconds.

In the third experiment, in order to see the dependence of the performance
on the bound k, we test B, = —f,_1 for various values of k > n, for fixed
n = 12. The results are presented in Figure 3.

The example formula (3, was chosen for two reasons: First, as mentioned
above, the property expressed can probably not easily and succinctly be stated

12

JEHLE, JOHANNSEN, LANGE, RACHINSKY

n Var Cls Red | SAT n Var Cls Red SAT

6 15k 55k | 0.35| 0.24 14 || 423k | 1407k 89.46 | 56.11
7 28k 98k | 0.75 | 3.47 15 554k | 1840k | 158.40 | 95.49
8 48k | 163k | 1.68 | 2.67 16 713k | 2364k | 253.85 | 188.07
9 k| 256k | 3.56 | 4.71 17 905k | 2994k | 392.49 | 146.14
10 || 114k | 384k | 7.31 | 11.18 18 || 1133k | 3741k | 608.33 | 157.17
11 || 165k | 554k | 14.36 | 13.34 19 || 1401k | 4620k | 947.79 | 293.46
12] 231k | 775k | 27.20 | 27.16 20 || 1715k | 5646k | 1362.74 | 226.30
13 || 316k | 1056k | 49.56 | 39.64 21 || 2078k | 6833k | 2072.00 | 810.71

Fig. 2. The buffer example with kK =n

k Var Cls Red SAT k Var Cls Red SAT

12 | 231k | 775k | 27.09 | 27.02 26 || 1010k | 3312k | 590.76 | 34.09
14 | 309k | 1030k | 49.92 | 41.57 28 || 1166k | 3818k | 780.84 | 182.86
16 || 398k | 1321k | 86.66 | 42.10 30 || 1333k | 4359k | 1036.56 | 233.37
18 || 498k | 1648k | 145.22 | 73.22 32 || 1611k | 4935k | 1317.30 | 216.08
20 || 610k | 2011k | 218.77 | 66.15 34 || 1701k | 5548k | 1659.06 | 161.38
22 || 732k | 2409k | 308.51 | 178.23 36 || 1901k | 6196k | 2171.02 | 718.25
24 || 866k | 2843k | 425.32 | 380.42 38 || 2113k | 6880k | 2929.20 | 409.74

Fig. 3. The buffer example with n = 12.

in LTL. Second, it fully utilizes the syntactic possibilities of alternation-free
wTL, since (3, has n nested fixpoints, and, due to the presence of the nop
operation, each bound variable (except for X,,) occurs twice.

References

[1] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The
ForSpec temporal logic: A new temporal property specification language. In J.-
P. Katoen and P. Stevens, editors, Proc. 8th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’02, volume 2280 of
LNCS, pages 296-311, Grenoble, France, 2002. Springer.

[2] H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model
and its temporal logic. In Conf. Record of the 13th Annual ACM Symp. on
Principles of Programming Languages, POPL’86, pages 173-183. ACM, 1986.

[3] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic sugar. In Proc. 13th Int. Conf. on Computer Aided Verification,
CAV’01, volume 2102 of LNCS, pages 363-367, 2001.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In R. Cleaveland, editor, Proc. 5th Int. Conf. on Tools and
Algorithms for the Analysis and Construction of Systems, TACAS’99, volume
1579 of LNCS, Amsterdam, NL, Mar. 1999.

13

JEHLE, JOHANNSEN, LANGE, RACHINSKY

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 10%° states and beyond. Information and
Computation, 98(2):142-170, June 1992.

[6] E. Clarke, D. Kroening, O. Strichman, and J. Ouaknine. Completeness and
complexity of bounded model checking. In Proc. 5th Int. Conf. on Verification,
Model Checking, and Abstract Interpretation, VMCAI’04, volume 2937 of
LNCS, pages 85-96. Springer, 2004.

[7] J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic.
Annals of Pure and Applied Logic, 96(1-3):187-207, 1999.

[8] M. Lange. Weak automata for the linear time p-calculus. In R. Cousot,
editor, Proc. 6th Int. Conf. on Verification, Model Checking and Abstract
Interpretation, VMCAI’05, volume 3385 of LNCS, pages 267-281, 2005.

9] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient sat solver. In Proceedings of the 38th Design
Automation Conference, DAC 2001, pages 530535, 2001.

[10] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations
of Computer Science, FOCS’77, pages 4657, Providence, RI, USA, Oct. 1977.
IEEE.

[11] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the Association for Computing Machinery, 32(3):733-749,
July 1985.

[12] A. P. Sistla, E. M. Clarke, N. Francez, and A. R. Meyer. Can message buffers be
axiomatized in linear temporal logic? Information and Control, 63(1-2):88-112,
1984.

[13] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for
Biichi automata with applications to temporal logic. Theoretical Computer
Science, 49(2-3):217-237, 1987.

[14] W. Thomas. Star-free regular sets of w-sequences. Information and Control,
42(2):148-156, Aug. 1979.

[15] W. Thomas. A concatenation game and the dot-depth hierarchy. In E. Borger,
editor, Computation Theory and Logic, volume 270 of Lecture Notes in
Computer Science, pages 415-426. Springer, 1987.

[16]) M. Y. Vardi. A temporal fixpoint calculus. In ACM, editor, Proc. Conf. on
Principles of Programming Languages, POPL’88, pages 250-259, NY, USA,
1988. ACM Press.

[17] M. Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1-37, Nov. 1994.

[18] P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72-99, 1983.

14

