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Abstract

We show by a simple reduction to reachability games, inspired by the
translation of the modal µ-calculus into MSO, that the model checking
problem for every bounded-variable fragment of the modal µ-calculus on
a fixed transition system is in deterministic quadratic time.

1 The Modal µ-Calculus

Let P be a set of atomic propositions, A a finite set of action names, and V be a
set of second-order variables. Formulas of the modal µ-calculus Lµ are defined
by the following grammar.

ϕ ::= q | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | νX.ϕ

where q ∈ P, a ∈ A, and X ∈ V. We furthermore assume that every variable
X occurs under an even number of negation symbols in its defining fixpoint
formula σX.ϕ.

The Fischer-Ladner closure of ϕ is the least set FL(ϕ) that contains ϕ and
satisfies the following.

• If ψ1 ∨ ψ2 ∈ FL(ϕ) then {ψ1, ψ2} ⊆ FL(ϕ).

• If ¬(ψ1 ∨ ψ2) ∈ FL(ϕ) then {¬ψ1,¬ψ2} ⊆ FL(ϕ).

• If 〈a〉ψ ∈ FL(ϕ) then ψ ∈ FL(ϕ).

• If ¬〈a〉ψ ∈ FL(ϕ) then ¬ψ ∈ FL(ϕ).

• If ¬¬ψ ∈ FL(ϕ) then ψ ∈ FL(ϕ).

• If νX.ψ ∈ FL(ϕ) then ψ ∈ FL(ϕ).

• If ¬νX.ψ ∈ FL(ϕ) then ¬ψ ∈ FL(ϕ).
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The size of the Fischer-Ladner closure of a formula ϕ is at most twice its length.
Hence, we simply define |ϕ| := |FL(ϕ)|.

We also consider var(ϕ) := |V∩FL(ϕ)|, the number of variables in a formula,
as a structural measure for its complexity. Let Lk

µ := {ϕ | var(ϕ) ≤ k} for each
k ∈ N be the fragment of the modal µ-calculus that is obtained by restricting
the number of different variables in each formula to at most k.

The modal µ-calculus is interpreted over labeled transition systems T =
(S, { a−→ | a ∈ A}, L) where S is a set of state, a−→ ⊆ S × S is a binary modal
accessibility relation on states for each a ∈ A, and L : P → 2S assigns to each
atomic proposition the states that are satisfied by it.

Let ϕ0 be fixed. In order to interpret subformulas ψ ∈ FL(ϕ0) we use
environments ρ : V ∩ FL(ϕ0) → 2S .

[[q]]Tρ := L(q)
[[X]]Tρ := ρ(X)
[[ψ1 ∨ ψ2]]

T
ρ := [[ψ1]]

T
ρ ∪ [[ψ2]]

T
ρ

[[¬ψ]]Tρ := S \ [[ψ]]Tρ
[[〈a〉ψ]]Tρ := { s ∈ S | ∃t ∈ S : s a−→ t and t ∈ [[ψ]]Tρ }
[[νX.ψ]]Tρ :=

⋃ {T ⊆ S | T ⊆ [[ψ]]Tρ[X 7→T ] }
where ρ[X 7→ T ] denotes the environment that maps X to T and agrees with ρ
an all other arguments.

Lemma 1 For all ϕ, all transition systems T with state set S, all t ∈ S, and
all environments ρ we have: t ∈ [[νX.ϕ]]Tρ iff there is a T ⊆ S s.t. t ∈ T and
T ⊆ [[ϕ]]Tρ[X 7→T ].

Proof Directly from the definition of the semantics. ¥

Lemma 2 For all ϕ, all transition systems T with state set S, all t ∈ S, and
all environments ρ we have: t ∈ [[¬νX.ϕ]]Tρ iff for all T ⊆ S: if t ∈ T then there
is a u ∈ T s.t. u ∈ [[¬ϕ]]Tρ[X 7→T ].

Proof This is a consequence of Lemma 1.

t ∈ [[¬νX.ϕ]]Tρ iff t 6∈ [[νX.ϕ]]Tρ
iff @T ⊆ S s.t. t ∈ T and T ⊆ [[ϕ]]Tρ[X 7→T ]

iff ∀T ⊆ S : t ∈ T ⇒ T 6⊆ [[ϕ]]Tρ[X 7→T ]

iff ∀T ⊆ S : t ∈ T ⇒ ∃u ∈ T s.t. u 6∈ [[ϕ]]Tρ[X 7→T ]

iff ∀T ⊆ S : t ∈ T ⇒ ∃u ∈ T s.t. u ∈ [[¬ϕ]]Tρ[X 7→T ]
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2 Model Checking as a Reachability Game

Let ϕ be closed and T be a transition system with state set S. Configurations of
the game GT (s, ϕ) for some T ⊆ S are of the form S×(V∩FL(ϕ) → 2S)×FL(ϕ).

A configuration is written t, ρ ` ψ and its intended meaning is t ∈ [[ψ]]Tρ . Let
ρ0 be some environment, for instance ρ0(X) = ∅ for all X ∈ V ∩ FL(ϕ). Every
play of the game GT (s, ϕ) begins in the configuration s, ρ0 ` ϕ. It is played
between players ∃ and ∀ according to the following rules.

t, ρ ` ψ1 ∨ ψ2

t, ρ ` ψi
∃i ∈ {1, 2} t, ρ ` ¬(ψ1 ∨ ψ2)

t, ρ ` ¬ψi
∀i ∈ {1, 2} t, ρ ` ¬¬ψ

t, ρ ` ψ

t, ρ ` 〈a〉ψ
t′, ρ ` ψ ∃t a−→ t′

t, ρ ` ¬〈a〉ψ
t, ρ ` ¬ψ ∀t a−→ t′

t, ρ ` νX.ψ
u, ρ[X 7→ T ] ` ψ ∃T ⊇ {t}, ∀u ∈ T t, ρ ` ¬νX.ψ

u, ρ[X 7→ T ] ` ¬ψ ∀T ⊇ {t}, ∃u ∈ T

Player ∃ wins a play C0, . . . , Cn if

• Cn = t, ρ ` q, and t ∈ L(q),

• Cn = t, ρ ` X, and t ∈ ρ(X),

• Cn = t, ρ ` [a]ψ, and there is no t′ ∈ S with t a−→ t′.

Player ∀ wins a play C0, . . . , Cn if

• Cn = t, ρ ` q, and t 6∈ L(q),

• Cn = t, ρ ` X, and t 6∈ ρ(X),

• Cn = t, ρ ` 〈a〉ψ, and there is no t′ ∈ S with t a−→ t′.

Lemma 3 Every play has a unique winner.

Proof There are no infinite plays since every rule decreases the formula com-
ponent of the current configuration. Hence, every play must eventually reach
a configuration with an atomic formula, or one of the players must get stuck
beforehand. It is not hard to see that all cases are covered byt he 6 winning
conditions, and that they are mutually exclusive. Note that the players cannot
get stuck in the rules for fixpoint formulas. ¥

Lemma 4 For every transition system T with n states, every state s, and every
closed formula ϕ: GT (s, ϕ) is a reachability game with at most 2n · 2n·var(ϕ) · |ϕ|
many nodes.
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Proof It should be clear from the definition of the winning conditions that
GT (s, ϕ) is in fact a reachability game. Now consider the number of configura-
tions of the form t, ρ ` ψ. Clearly, there are n different t and |ϕ| many different
ψ. The environment ρ is of type V ∩ FL(ϕ) → 2S , i.e. it is a function of var(ϕ)
many arguments and 2n many different values for each argument. Hence, there
are only 2n·var(ϕ) many functions of that kind.

Finally, the additional factor 2 results from the transformation of GT (s, ϕ)
into a directed graph in which every node represents the choice of one of the
players. Note that consecutive choices in the rules for fixpoint formulas need
to be transformed into several nodes in this graph. This, however, can at most
double the number of nodes. ¥

Theorem 5 Let ϕ be closed. Player ∃ wins the reachability game GT (s, ϕ) iff
s ∈ [[ϕ]]T .

Proof “⇒” By induction on the depth of the positional winning strategy as a
tree. According to Lemma 3 this is finite and well-defined. We need to generalise
the statement though. If player ∃ has a winning strategy for the game starting
in position t, ρ ` ψ then t ∈ [[ψ]]Tρ . For depth 0 the game starts in a configuration
that is won by player ∃ according to one of his winning conditions. It is easy to
see that here the claim holds.

For a depth greater than 0 the claim follows immediately from the inductive
hypothesis and the semantics of Lµ. The only cases that are not straight-forward
are those of the rules for the fixpoint formulas. However, they are proved in
Lemmas 1 and 2.

“⇐” Again, we generalise the statement: if t ∈ [[ψ]]Tρ then player ∃ has a
winning strategy starting in the game position t, ρ ` ψ. Her strategy simply
consists of preserving truth of a configuration along each play. It is not hard to
see that she can do so and that player ∀ always preserves truth in whatever he
chooses. The difficult cases are, again, the fixpoint formulas which are proved
in Lemmas 1 and 2. According to Lemma 3, every play eventually reaches a
position s.t. one of the winning conditions applies. If player ∃ has preserved this
invariant then this is going to be a true configuration and it is easy to see that
player ∀ cannot win a play ending in a true configuration. Hence, player ∃ wins
it and her strategy is therefore a winning strategy. ¥

Theorem 6 For all k ∈ N, the model checking problem for each Lk
µ on a fixed

transition system can be solved in deterministic time O(|ϕ|2).

Proof Let T be a transition system with n states. Thm. 5 and Lemma 4
yield a reduction from the model checking problem for Lk

µ to the problem of
solving a reachability game of at most 2n · 2nk · |ϕ| nodes and, thus, of at most
4n2 · 22nk · |ϕ|2 many edges. It is well-known that reachability games can be
solved in deterministic time linear in the number of their edges. If k and n are
fixed then this is possible in time O(|ϕ|2). ¥
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Remark The rules of the reachability games, in particular the ones for fixpoint
formulas, are based on the translation of the modal µ-calculus into Monadic
Second Order Logic (MSO) via

trans(νX.ϕ)x := ∃X.x ∈ X ∧ ∀y.y ∈ X → trans(ϕ)y

It is thus not surprising that the games can be generalised to reachability games
for MSO showing that the expression complexity of MSO is also in P when the
number of variables is fixed.
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