
Local Model Checking Games for Fixed Point
Logic with Chop

Martin Lange

Institut für Informatik
Ludwigs-Maximilian-Universität München

martin@dcs.ed.ac.uk

Abstract. The logic considered in this paper is FLC, fixed point logic
with chop. It is an extension of modal µ-calculus Lµ that is capable of
defining non-regular properties which makes it interesting for verifica-
tion purposes. Its model checking problem over finite transition systems
is PSPACE-hard. We define games that characterise FLC’s model check-
ing problem over arbitrary transition systems. Over finite transition sys-
tems they can be used as a basis of a local model checker for FLC. I.e.
the games allow the transition system to be constructed on-the-fly. On
formulas with fixed alternation depth and so-called sequential depth de-
ciding the winner of the games is PSPACE-complete. The best upper
bound for the general case is EXPSPACE which can be improved to
EXPTIME at the cost of losing the locality property. On Lµ formulas
the games behave equally well as the model checking games for Lµ, i.e.
deciding the winner is in NP∩co-NP.

1 Introduction

Modal and temporal logics are well established research areas in computer sci-
ence, artificial intelligence, philosophy, etc. [2, 5, 11]. An important temporal
logic is Kozen’s modal µ-calculus Lµ [8] because it contains almost all other
propositional temporal logics. In fact, it is equi-expressive to the bisimulation in-
variant fragment of monadic second-order logic over transition graphs [7]. There-
fore, properties expressed by Lµ formulas are essentially “regular”.

In [10], Müller-Olm introduced FLC, fixed point logic with chop, that extends
Lµ with sequential composition. He showed that the expressive power of FLC is
strictly greater than Lµ because FLC can define non-regular properties. Whereas
the semantics of a modal µ-calculus formula is a subset of states of a transition
system, the semantics of an FLC formula is a predicate transformer, a function
from sets of states to sets of states.

In [9] it is shown that FLC can express certain non-regular properties that
are very interesting for verification of protocols for example. The reason for this
is FLC’s restricted ability to count similar to that of context-free languages.
As Müller-Olm showed, FLC is even able to express certain non-context-free
properties due to the presence of boolean operators.

He also proved that, because of FLC’s expressive power, its satisfiability
problem as well as the model checking problem for BPA processes is undecidable.
However, he notes that model checking finite transition systems is decidable. It
can be done using the Tarski-Knaster Theorem [13] in a function lattice using
fixed point approximants. In [9] it has been proved to be PSPACE-hard and
a model checker for FLC that avoids explicit calculation of functions has been
given. It builds tableaux for formulas of FLC and sets of states of a transition
system. These tableaux admit global model checking, i.e. they require the entire
underlying transition system to be present in the memory. In general, they result
in a model checking procedure that needs time exponential in the size of the
transition system and the size of the formula. The space needed is quadratic in
the size of the transition system and the size of the formula.

Here we show that FLC model checking can be done locally. We define games
similar to the model checking games for Lµ from [12]. They work on single states
instead of sets and allow the transition system to be built up on demand. The sets
of states in the tableaux of [9] are not used explicitly, but are implicitly present
as stacks of FLC formulas in the games of this paper. This results in a better
complexity for fixed formulas, PSPACE for the games as opposed to EXPTIME
for the tableaux. Moreover, if the alternation depth and the sequential depth,
which is to be defined, of the input formula are fixed, then the games like the
tableaux from [9] yield a PSPACE algorithm as well. Therefore, the games behave
better than the tableaux, i.e. they are more suitable for verification purposes.

Furthermore, games are naturally equipped with the ability to show the user
of a verification tool why a formula is not fulfilled. This is simply done by playing
a game according to a winning strategy. It is not obviously clear how to show
the non-existence of a successful tableaux.

It is well known that a game graph for a finite transition system and a
modal µ-calculus formula is nothing else but an alternating tree automaton. No
automata-based model checker for FLC is known so far. The games of this paper
suggest that alternating push-down tree automata might be the right machinery
for this.

For a more thorough discussion of examples of FLC formulas and properties
of the logic see [10] and [9]. The rest of the paper is structured as follows. In
section 2 we recall the syntax and semantics of FLC. The model checking games
are defined and shown to be sound and complete in section 3. Finally, section 4
analyses the complexity of game-based FLC model checking.

2 Preliminaries

Let P = {tt, ff, q, q, . . .} be a set of propositional constants that is closed under
complementation, V = {Z, Y, . . .} a set of propositional variables, and A =
{a, b, . . .} a set of action names. A labelled transition system is a graph T =
(S, { a→ | a ∈ A}, L) where S is a set of states, a→ for each a ∈ A is a binary relation
on states and L : S → 2P labels the states such that, for all s ∈ S : q ∈ L(s)

iff q 6∈ L(s), tt ∈ L(s), and ff 6∈ L(s). We will use infix notation s
a→ t for

transition relations.
Formulas of FLC are given by

ϕ ::= q | Z | τ | 〈a〉 | [a] | ϕ ∨ ϕ | ϕ ∧ ϕ | µZ.ϕ | νZ.ϕ | ϕ;ϕ

where q ∈ P, Z ∈ V, and a ∈ A.1 We will write σ for µ or ν. To save brackets
we introduce the convention that ; binds stronger than ∧ which binds stronger
than ∨. Formulas are assumed to be well named in the sense that each binder
variable is distinct. Our main interest is with closed formulas, that do not have
free variables, in which case there is a function fp : V → FLC that maps each
variable to its defining fixed point formula (that may contain free variables).

The set Sub(ϕ) of subformulas of ϕ is defined as usual, with Sub(σZ.ψ) =
{σZ.ψ} ∪ Sub(ψ). We say that Z depends on Y in ϕ, written Z ≺ϕ Y , if Y
occurs free in fp(Z). We write Z <ϕ Y iff (Z, Y) is in the transitive closure of
≺ϕ. The alternation depth of ϕ, ad(ϕ), is the maximal k in a chain Z0 <ϕ Z1 <ϕ

. . . <ϕ Zk of variables in ϕ s.t. Zi−1 and Zi are of different fixed point types for
0 < i ≤ k.

The tail of a variable Z in a formula ϕ, tlZ is a set consisting of those
formulas that occur “behind” Z in fp(Z) in ϕ. We assume that ϕ is derivable
from the context and avoid to put it into the subscript of tl . In order to define it
technically we use sequential composition for sets of formulas in a straightforward
way: {ϕ0, . . . , ϕn};ψ := {ϕ0;ψ, . . . , ϕn;ψ}. We also use the eponymous function
tlZ : Sub(ϕ) → 2Sub(ϕ) where

tlZ(q) := {q} tlZ(ϕ ∨ ψ) := tlZ(ϕ) ∪ tlZ(ψ)

tlZ(〈a〉) := {〈a〉} tlZ(ϕ ∧ ψ) := tlZ(ϕ) ∪ tlZ(ψ)

tlZ([a]) := {[a]} tlZ(σY.ψ) := tlZ(ψ)

tlZ(ϕ;ψ) := T1 ∪ T2 tlZ(Y) :=
{{Y } if Y 6= Z
{τ} o.w.

with

T1 :=
{

tlZ(ϕ);ψ if Z ∈ Sub(ϕ)
{τ} o.w. T2 :=

{
tlZ(ψ) if Z ∈ Sub(ψ)
{τ} o.w.

The tail of Z in ϕ is simply calculated as tlZ := tlZ(fp(Z)).
Like the alternation depth of a formula ϕ, its sequential depth sd(ϕ) is an

important factor in the complexity of the model checking problem. Informally
the sequential depth of a formula is the maximal number of times a variable is
sequentially composed with itself. It is defined as sd(ϕ) := max{sdZ(fp(Z)) | Z ∈
Sub(ϕ)} − 1 where

1 In [10], τ is called term.

sdZ(ϕ ∨ ψ) := max{sdZ(ϕ), sdZ(ψ)} sdZ(ϕ ∧ ψ) := max{sdZ(ϕ), sdZ(ψ)}
sdZ(ϕ;ψ) := sdZ(ϕ) + sdZ(ψ) sdZ(σY.ϕ) := sdZ(ϕ)

sdZ(ψ) := 0 if ψ ∈ {q, τ, 〈a〉, [a]} sdZ(Y) :=
{

1 if Y = Z
0 o.w.

Important syntactical fragments of FLC are those with fixed alternation and
sequential depth.

FLCk,n := {ϕ ∈ FLC | ad(ϕ) ≤ k, sd(ϕ) ≤ n}
FLCk,ω :=

⋃
n∈N FLCk,n FLCω,n :=

⋃
k∈N FLCk,n

An environment ρ : V → (2S → 2S) maps variables to monotone functions of
sets to sets. ρ[Z 7→ f] is the function that maps Z to f and agrees with ρ on all
other arguments. The semantics [[·]]Tρ : 2S → 2S of an FLC formula, relative to T

and ρ, is a monotone function on subsets of states with respect to the inclusion
ordering on 2S. These functions together with the partial order given by

f v g iff ∀X ⊆ S : f(X) ⊆ g(X)

form a complete lattice with joins t and meets u. By the Tarski-Knaster The-
orem [13] the least and greatest fixed points of functionals F : (2S → 2S) →
(2S → 2S) exist. They are used to interpret fixed point formulas of FLC.

To simplify the notation we assume a transition system T to be fixed for the
remainder of the paper, and drop it from the semantic brackets.

[[q]]ρ = λX.{s ∈ S | q ∈ L(s)}
[[Z]]ρ = ρ(Z)
[[τ]]ρ = λX.X

[[ϕ ∨ ψ]]ρ = λX.[[ϕ]]ρ(X) ∪ [[ψ]]ρ(X)
[[ϕ ∧ ψ]]ρ = λX.[[ϕ]]ρ(X) ∩ [[ψ]]ρ(X)

[[〈a〉]]ρ = λX.{s ∈ S | ∃t ∈ X, s.t. s a→ t}
[[[a]]]ρ = λX.{s ∈ S | ∀t ∈ S, s

a→ t⇒ t ∈ X}
[[µZ.ϕ]]ρ =

d{f : 2S → 2S | f monotone, [[ϕ]]ρ[Z 7→f] v f}
[[νZ.ϕ]]ρ =

⊔{f : 2S → 2S | f monotone, f v [[ϕ]]ρ[Z 7→f]}
[[ϕ;ψ]]ρ = [[ϕ]]ρ ◦ [[ψ]]ρ

A state s satisfies a formula ϕ under ρ, written s |=ρ ϕ, iff s ∈ [[ϕ]]ρ(S). If ϕ is a
closed formula then ρ can be omitted and we write [[ϕ]](S) as well as s |= ϕ.

Two formulas ϕ and ψ are equivalent, written ϕ ≡ ψ, iff their semantics are
the same, i.e. for every T and every ρ: [[ϕ]]Tρ = [[ψ]]Tρ .

In [10] it is shown how to embed Lµ into FLC by using sequential com-
position: for instance, 〈a〉ϕ becomes 〈a〉;ϕ. Therefore, we will sometimes omit
the semicolon to maintain a strong resemblance to the syntax of Lµ. For exam-
ple, 〈a〉Z〈a〉 abbreviates 〈a〉;Z; 〈a〉. Note that tlZ = ∅ for every Z in a formula
that arises from this translation. We set FLC− := {ϕ ∈ FLC | tlZ = ∅ for all

(∨) :
s, δ ` ϕ0 ∨ ϕ1

s, δ ` ϕi
∃i (∧) :

s, δ ` ϕ0 ∧ ϕ1

s, δ ` ϕi
∀i

FP :
s, δ ` σZ.ϕ
s, δ ` Z VAR :

s, δ ` Z
s, δ ` ϕ if fp(Z) = σZ.ϕ

(;) :
s, δ ` ϕ0;ϕ1

s, ϕ1δ ` ϕ0
TERM :

s, ψδ ` τ
s, δ ` ψ

DIAM :
s, ψδ ` 〈a〉
t, δ ` ψ ∃s a→ t BOX :

s, ψδ ` [a]

t, δ ` ψ ∀s a→ t

Fig. 1. The model checking game rules.

Z ∈ Sub(ϕ)}. The fragment of FLC that is the image of Lµ under the described
translation is a genuine subset of FLC−.

We introduce approximants of fixed point formulas. Let fp(Z) = µZ.ϕ for
some ϕ and let α, λ ∈ Ord, the ordinals, where λ is a limit ordinal. Then Z0 := ff,
Zα+1 = ϕ[Zα/Z], Zλ =

∨
α<λ Z

α. If fp(Z) = νZ.ϕ then Z0 := tt, Zα+1 =
ϕ[Zα/Z], Zλ =

∧
α<λ Z

α. Note that µZ.ϕ ≡ ∨
α∈Ord Z

α and νZ.ϕ ≡ ∧
α∈Ord Z

α.
If only finite transition systems are considered Ord can be replaced by N. If the
size |S| of the underlying transition system is fixed then it serves as an upper
bound for the number of approximants needed. This is expressed in the following
Lemma which was proved in [9].

Lemma 1. (Approximants) Let T = (S, { a→ | a ∈ A}, L) be finite with s ∈
S, S ⊆ S.
a) s ∈ [[µZ.ϕ]]Tρ (S) iff ∃k ≤ |S|, s.t. s ∈ [[Zk]]Tρ (S).

b) s ∈ [[νZ.ϕ]]Tρ (S) iff ∀k ≤ |S|: s ∈ [[Zk]]Tρ (S).

3 Model Checking Games

Model checking games are played by two players, called ∃ and ∀, on a transition
system and an FLC formula ϕ. Note that here we do not restrict ourselves to
finite transition systems only. Player ∃ tries to establish that a given state s of
a transition system T satisfies ϕ, whereas ∀ tries to show that s 6|= ϕ.

A play is a (possibly infinite) sequence C0, C1, . . . of configurations, and a
configuration is an element of Conf = S×Sub(ϕ)∗×Sub(ϕ). It is written s, δ ` ψ
where δ is interpreted as a stack of subformulas with its top on the left. The
empty stack is denoted by ε. With a stack δ = ϕ0 . . . ϕk we associate the formula
δ := ϕ0; . . . ;ϕk while ε is associated with the formula τ .

Each play for s0 of T and ϕ begins with C0 = s0, ε ` ϕ. A play proceeds
according to rules given in figure 1. Some of them require one of the players

to choose a subformula or a state. This is indicated at the right side of a rule.
Rules (∨) and (∧) are straightforward. Rules VAR and FP are justified by the
unfolding characterisations of fixed points: σZ.ϕ ≡ ϕ[σZ.ϕ/Z]. If a formula ϕ;ψ
is encountered ψ is stored on the stack with rule (;) to be dealt with later on
while the players try to prove or refute ϕ. Modalities cause either of the players
to choose a successor state. After that rules DIAM and BOX pop the top formula
from the stack into the right side of the actual configuration. Rule TERM does the
same without a choice of one of the players. In both cases the last formula on
the right-hand side has been proved and those formulas that have been collected
on the stack need to be proved or refuted.

Before we can define the winning conditions we need another definition. A
variable Z is called stack-increasing in a play C0, C1, . . . if there are infinitely
many configurations Ci0 , Ci1 , . . ., s.t.

– ij < ij+1 for all j ∈ N
– Cij = sj , δj ` Z for some sj and δj ,
– for all j ∈ N exists γ ∈ tlZ ∪ {ε} s.t. δj+1 = γδj , and γ = ε iff tlZ = ∅.

Player ∃ wins a play C0, . . . , Cn, . . . iff

1. Cn = s, δ ` q and q ∈ L(s), or
2. Cn = s, ε ` τ , or
3. Cn = s, ε ` 〈a〉 and there is a t ∈ S, s.t. s a→ t, or
4. Cn = s, δ ` [a], and δ = ε or @t ∈ S, s.t. s a→ t, or
5. the play is infinite, and there is a Z ∈ V s.t. Z is the greatest, w.r.t. <ϕ,

stack-increasing variable and fp(Z) = νZ.ψ for some ψ.

Player ∀ wins such a play iff

6. Cn = s, δ ` q and q 6∈ L(s), or
7. Cn = s, δ ` 〈a〉, and @t ∈ S, s.t. s a→ t, or
8. the play is infinite, and there is a Z ∈ V s.t. Z is the greatest, w.r.t. <ϕ,

stack-increasing variable and fp(Z) = µZ.ψ for some ψ.

Winning conditions 1 and 6 suggest that game rule (;) can be refined. Whenever
the formula to be put on the stack is a q ∈ Prop then the existing stack can be
discarded. This does not effect the worst-case complexities, therefore we merely
mention this optimisation.

A player has a winning strategy, or simply wins the game, for s, δ ` ϕ if she
can enforce a winning play for herself, starting with this configuration.

The full game tree T for C = s, δ ` ϕ is the tree of configurations whose
paths are plays starting with C. If player p has a winning strategy for C then
the game tree for player p arises from T in the following way. If the next move is
deterministic or taken by player p preserve and continue with all successor nodes.
If the next configuration is chosen by p then preserve one successor C ′ s.t. p wins
the game starting with C ′. Obviously, the game tree for p is a representation of
a winning strategy for p on C.

s, ε ` µY.〈b〉 ∨ 〈a〉νZ.Y ;Z;Y

s, ε ` Y
s, ε ` 〈b〉 ∨ 〈a〉νZ.Y ;Z;Y ∃〈a〉νZ.Y ;Z;Y
s, ε ` 〈a〉νZ.Y ;Z;Y

s, νZ.Y ;Z;Y ` 〈a〉
∃s a→ t

t, ε ` νZ.Y ;Z;Y

t, ε ` Z
t, ε ` Y ;Z;Y

t, Z;Y ` Y
t, Z;Y ` 〈b〉 ∨ 〈a〉νZ.Y ;Z;Y ∃〈b〉

t, Z;Y ` 〈b〉
∃t b→ t

t, Y ` Z
t, Y ` Y ;Z;Y

t, Z;Y ;Y ` Y
...

Fig. 2. ∃’s winning play from example 1.

The following example illustrates the importance of being stack-increasing.
Note that in a Lµ model checking game the winner is determined by the outer-
most variable that occurs infinitely often. There, if two variables Y and Z occur
infinitely often then, say, Y <ϕ Z, and fp(Y) occurs infinitely often, too. Thus
two occurrences of Y cannot be related to each other in terms of approximants.
FLC only has this property for stack-increasing variables.

Example 1. Let ϕ = µY.〈b〉 ∨ 〈a〉νZ.Y ;Z;Y . ad(ϕ) = 1 and sd(ϕ) = 2. Let T be
the transition system consisting of states {s, t} and transitions s a→ t and t b→ t.
s |= ϕ. The game tree for player ∃ is shown in figure 2. Since ϕ does not contain
any ∧, [a], or [b] player ∀ does not make any choices and the tree is in fact a
single play.

Y and Z occur infinitely often in the play. However, neither fp(Y) nor fp(Z)
does. Note that Z <ϕ Y . Y gets “fulfilled” each time it is replaced by its defining
fixed point formula, but reproduced by Z. On the other hand, Y does not start
a new computation of fp(Z) each time it is reproduced. But Y is not stack-
increasing whereas Z is. And Z denotes a greatest fixed point, therefore player
∃ wins this play.

Before we can prove soundness and completeness of the games we need a few
technical lemmas. Let T = (S, { a→ | a ∈ A}, L), s ∈ S, ϕ ∈ FLC, and C = s, δ ` ψ
be a configuration in a game for s and ϕ. C is called true if s ∈ [[ϕ]]([[δ]](S)), and
false otherwise.

Lemma 2. Player ∃ preserves falsity and can preserve truth with her choices.
Player ∀ preserves truth and can preserve falsity with his choices.

Proof. First consider those choices involving disjuncts and conjuncts. Take a
configuration C = s, δ ` ϕ0 ∨ ϕ1. Suppose C is false, i.e. s 6∈ [[ϕ0]]([[δ]](S)) and
s 6∈ [[ϕ1]]([[δ]](S)). Regardless of which i player ∃ chooses, the configuration s, δ `
ϕi will be false. On the other hand, suppose C is true. Then s ∈ [[ϕ0]]([[δ]](S)) or
s ∈ [[ϕ1]]([[δ]](S)), and player ∃ can preserve truth by choosing i accordingly.

Now consider a configuration C = s, ψδ ` 〈a〉. If C is true then there is a
t s.t. s a→ t and t ∈ [[ψ; δ]](S). By choosing this t, player ∃ can make the next
configuration t, δ ` ψ true. If C is false then there is no such t and regardless of
which transition ∃ chooses the following configuration will be false, too.

The proofs of the other cases are dual. ut
Note that the rules that do not require a player to make a choice preserve both
truth and falsity if variables are interpreted via their approximants.

Lemma 3. Let T = (S, { a→ | a ∈ A}, L), s ∈ S, ϕ ∈ FLC. In a play C0, C1, . . .
for s and ϕ there is a unique greatest, with respect to <ϕ, stack-increasing vari-
able Z, if such one exists.

Proof. Obviously, a finite play cannot have a stack-increasing variable. Let the
infinite play at hand be C0, C1, Suppose first there are two stack-increasing
variables Z and Y . Then there must be two configurations Ci = s, δ ` Z and
Cj = t, δ′ ` Y with i < j. Either Y has been generated from the unfolding of Z
in which case one of them is greater than the other. The reason is that the stack
only contains elements of tlV for some variable V . But Y ∈ tlZ implies either Y
is free in fp(Z) or fp(Y) ∈ Sub(fp(Z)). Therefore they must be comparable.

Suppose δ = δ0Y δ1. But then Z has either been generated from the unfolding
of Y and they are comparable or δ′ = δ′0Zδ

′
1. At every configuration the stack

can only hold a finite number of variables. Therefore, in such an infinite play
it is not possible that neither of the variables generates the other one infinitely
often, and they must be comparable.

It remains to show that at least one variable is stack-increasing. Obviously,
there must be a variable Z that occurs infinitely often. Moreover, this Z must
generate itself infinitely often. Let fp(Z) = σZ.ϕ. This means that for every
occurrence of Z in a Ci = s, δ ` Z, when Z is replaced by ϕ, the play must
follow the syntactical structure of ϕ to one occurrence of Z in ϕ. In order to
pop an element from δ an atomic formula in ϕ must have been reached, and Z
in Ci did no regenerate itself. Suppose it did and the stack has been increased.
Since rule VAR replaces a variable Z with its defining fixed point formula ϕ the
additional part of the stack must consist of subformulas of ϕ only. Moreover,
every subformula that occurs “before” Z in ϕ must have been removed from the
stack before Z can be reached again. Therefore, the extension of the stack must
be an element of tlZ . ut
One important property of a stack-increasing variable is: If its occurrence in a
configuration s, δ ` Z is interpreted as the approximant Zα then in its next

occurrence Z will denote Zα−1. This is because Z is outermost in the play at
hand and thus the computation of fp(Z) does not get restarted.

Theorem 1. (Soundness) Let T = (S, { a→ | a ∈ A}, L) with s ∈ S and ϕ, δ0 ∈
FLC. If s 6∈ [[ϕ; δ0]](S) then ∀ wins s, δ0 ` ϕ.

Proof. Suppose s 6∈ [[ϕ]]([[δ0]](S)). We construct a (possibly infinite) game tree
for ∀ starting with s, δ0 ` ϕ. If ϕ = ϕ0∧ϕ1, ∀ chooses the ϕi that makes s, δ ` ϕi

false. If ϕ = ϕ0∨ϕ1 then the game tree is extended with both false configurations
s, δ ` ϕi. Similar arguments hold for the applications of rules DIAM, BOX, and
TERM. Since falsity is preserved no finite path can be won by player ∃ since a
false leaf implies that ∀ is the winner of that particular play.

We show that the game tree can be constructed such that player ∃ cannot
win an infinite play either. Suppose the construction of the game tree reaches a
configuration t, δ ` νZ.ψ, s.t. Z is the unique stack-increasing variable according
to Lemma 3. In the following configuration t, δ ` Z, Z is interpreted as the
least approximant Zα s.t. t 6∈ [[Zα]]([[δ]](S)) but t ∈ [[Zα−1]]([[δ]](S)). Note that
α cannot be a limit ordinal λ since t 6∈ [[

∧
β<λ Z

β]](S) for any S ⊆ S implies
t 6∈ [[Zβ]](S) for some β < λ. The next time a configuration t′, δ′ ` Z is reached
Z is consequently interpreted as Zα−1. Again, if α− 1 is a limit ordinal λ, then
there must be a β < α such that t′ 6∈ [[Zβ]]([[δ′]](S)).

But ordinals are well-founded, i.e. the play must eventually reach a false
configuration t′′, δ′′ ` Z in which Z is interpreted as Z0. But Z0 ≡ tt and
t′′ 6∈ [[tt]](S) is not possible for any S ⊆ S. We conclude that there is no least
α that makes t, δ ` Zα false and that therefore t, δ ` νZ.ψ could not have been
false either.

Since player ∃ cannot win any play in the game tree that is constructed in
the described way player ∀ must win the game on s, δ0 ` ϕ. ut

Theorem 2. (Completeness) Let T = (S, { a→ | a ∈ A}, L) with s ∈ S and
ϕ, δ0 ∈ FLC. If s ∈ [[ϕ; δ0]](S) then ∃ wins s, δ0 ` ϕ.

Proof. The proof is dual to the proof of the soundness theorem. Here, assuming
s ∈ [[ϕ]]([[δ0]](S)) we build a game tree for player ∃ starting with the true con-
figuration s, δ0 ` ϕ and preserving truth. If the construction of the game tree
reaches a leaf the corresponding play must be won by ∃ since only she wins a
finite play that ends with a true configuration.

Again, we show that player ∀ cannot win an infinite play either. Suppose
there is a configuration t, δ ` µY.ψ with Y being stack-increasing according to
Lemma 3. In the next step, Y is interpreted as the least approximant Y α s.t.
t ∈ [[Y α]]([[δ]](S)) but t 6∈ [[Y α−1]]([[δ]](S)). Again, α cannot be a limit ordinal. The
next time a configuration t′, δ′ ` Y is reached it becomes true if Y is interpreted
as Y α−1. If α − 1 is a limit ordinal then there is a smaller one that makes the
configuration true.

Because of well-foundedness of the ordinals every infinite play must reach
a configuration t′′, δ′′ ` Y in which Y is interpreted as Y 0. But Y 0 ≡ ff and

therefore t′′, δ′′ ` Y cannot be true. Thus, t, δ ` µY.ψ could not have been true
either.

Since player ∀ cannot win any play of the game tree that is constructed in
the described way player ∃ must win the game starting with s, δ0 ` ϕ. ut
From Theorem 1 and 2 follows that the model checking problem for FLC can
be rephrased as: s |= ϕ iff player ∃ wins s, ε ` ϕ.

4 Decidability and Complexity

In [10] Müller-Olm has shown that FLC model checking is undecidable for BPA
already. We show that this result can easily be improved a bit.

Theorem 3. FLC model checking is undecidable for normed deterministic BPA.

Proof. Based on an early result from language theory in [4] it is shown in [6] that
the simulation problem for deterministic normed BPA is undecidable. Given a
BPA processQ one can construct an FLC formula φQ, s.t. P |= φQ iff P simulates
Q. The construction for arbitrary BPA processes is shown in [10] and works in
particular for normed deterministic BPA. ut
However, over finite transition systems the model checking problem for FLC is
decidable [10, 9]. We describe how the games of the previous section can be used
to obtain a local model checker.

Theorem 4. Let T = (S, { a→ | a ∈ A}, L) be finite with s ∈ S and ϕ, δ ∈
FLCk,n. Deciding the winner of s, δ ` ϕ is in PSPACE for all k, n ∈ N.

Proof. If the underlying transition system is finite then the least approximants
used in the proofs of Theorem 1 and 2 are bounded by |S| according to Lemma 1.
An algorithm deciding the winner of s, δ ` ϕ can index variables occurring in a
play as the corresponding approximant. This means, rules FP and VAR are used
as

s, δ ` σZ.ϕ
s, δ ` Z |S|

s, δ ` Zk

s, δ ` ϕ[Zk−1/Z]
if fp(Z) = σZ.ϕ

Then, configurations of the form t, δ ` Z0 with fp(Z) = σZ.ψ for some ψ, δ and
t are winning for player ∃ if σ = ν and winning for player ∀ if σ = µ.

Next we analyse the maximum length of a play of s, δ ` ϕ. Suppose ad(ϕ) =
0. At most O(|S|·|ϕ|) steps are possible before a terminal configuration with a Z0

must be reached, if the sequential depth of ϕ is 0. However, if it is greater than 0
then at the beginning a Z |S| can be pushed onto the stack where it remains while
another Zk gets unfolded at most |S| times before it might disappear. Then the
Z |S| from the stack can be popped and create the same situation by unfolding
to more than one Z |S|−1 of which one remains on the stack again. Generally, the
maximum length of a play in this situation is O((|S| · |ϕ|)sd(ϕ)).

Let now ad(ϕ) = k > 0. Take the outermost variable Z that occurs in the
play at hand. With each unfolding it can start a subplay on a formula with
alternation depth k − 1. Therefore the overall maximum length of the play is
O(((|S| · |ϕ|)sd(ϕ))ad(ϕ)) = O((|S| · |ϕ|)sd(ϕ)·ad(ϕ)).

An alternating algorithm can decide the winner of s, δ ` ϕ by simply playing
the game for it. For input formulas δ, ϕ ∈ FLCk,n the alternation depth and
sequential depth are bounded. Thus, the time needed is polynomial in the size
of the formula and the size of the transition system. According to [1] there is a
deterministic procedure that needs space which is polynomial in the size of the
formula and in the size of the transition system. ut
This argument, applied to formulas of arbitrary alternation or sequential depth,
yields an EXPSPACE procedure. This follows from the fact that the alternating
algorithm needs time exponential in the alternation and sequential depth of the
input formula, and AEXPTIME = EXPSPACE. To show that game-based model
checking for FLC can be done in EXPTIME an alternating algorithm must not
use more than polynomial space. Equally, a single play must be playable using
at most polynomial space.

We show why this is not likely to be possible. First we consider a slightly
different way of proving soundness and completeness of the games which only
applies if the underlying transition system is finite. Remember that in the proofs
of Theorem 1 and 2 variables are interpreted as approximants, and contradictions
arise at configurations t, δ′ ` Z0. Suppose fp(Z) = µZ.ψ and the game tree is
constructed preserving truth. Then at its first occurrence Z is interpreted as the
least Zk which makes the configuration, say, t, δ′ ` Zk true. However, if later
another true configuration t, δ′′ ` Zj is seen and [[δ′′]](S) ⊆ [[δ′]](S) then this
contradicts the fact that k was chosen least.

This occurs trivially after O(|S| · 2|S|) steps since there are only |S| many
different states and 2|S| many different sets of them. In most cases this situation
will occur in a stack of polynomial size already. However, there are cases in which
the stack can grow super-polynomially. That means there are m configurations
si, δi ` Z s.t. [[δi]](S) 6⊆ [[δj]](S) for j < i ≤ m and m is not polynomially bounded
by the input size.

Example 2. Let a, b ∈ A. Take n pairwise different prime numbers p1, . . . , pn.
Let P0 = 0 and Pi = Σi

j=1pj be the sum of the first i prime numbers for
i = 1, . . . , n− 1. We construct a transition system T = (S, { a→ | a ∈ A}, L) with
S = {0, . . . , Pn − 1}. Transitions in T are given by j

a→ j + 1 for all j < Pn,
j 6= Pi−1 for all i ∈ {1, . . . , n}, and Pi−1 a→ Pi−1 for all i ∈ {1, . . . , n}. Finally,
i

b→ j iff j a→ i. T consists of n cycles of length p1, . . . , pn which can be traversed
along a-transitions, say, clockwise and through b-transitions counterclockwise.
Feel free to add as many c-transitions if c 6= a and c 6= b to make T connected.
Finally, we use one proposition q which holds on one state of each cycle only.
q ∈ L(j) iff j = Pi for some i ∈ {0, . . . , n− 1}.

The formula under examination is ϕ := (νZ.τ ∧〈a〉Z〈b〉); q. It says that there
is an a-path s.t. after each n a’s another n b’s can be done to satisfy q. 0 |= ϕ

0, ε ` (νZ.τ ∧ 〈a〉Z〈b〉); q
0, q ` νZ.τ ∧ 〈a〉Z〈b〉

0, q ` Z
0, q ` τ ∧ 〈a〉Z〈b〉

0, q ` τ
0, ε ` q

0, q ` 〈a〉Z〈b〉
0, Z〈b〉q ` 〈a〉

∃0 a→ 1
1, 〈b〉q ` Z

1, 〈b〉q ` τ ∧ 〈a〉Z〈b〉
1, 〈b〉q ` τ
1, q ` 〈b〉

∃1 b→ 0
0, ε ` q

1, 〈b〉q ` 〈a〉Z〈b〉
1, 〈b〉Z〈b〉q ` 〈a〉
2, 〈b〉〈b〉q ` Z

...

3, 〈b〉〈b〉〈b〉q ` Z
...

4, 〈b〉〈b〉〈b〉〈b〉q ` Z
...

Fig. 3. ∃’s game tree from example 2.

which can easily be seen using the games of the previous section. Player ∀ can
never choose τ since 0 |= q and every sequence of m a-transitions away from 0
leads to a state that can do m b-transitions back to 0. But then player ∃ wins
because the play repeats on a ν-variable. Her game tree is shown in figure 3.

If approximants are used explicitly as suggested in the proof of Theorem 4
the stack cannot grow larger than Pn. This is not surprising since ϕ ∈ FLC0,0.
However, let Sq := {Pi | i ∈ {0, . . . , n− 1}} be the set of all states satisfying q.
We write 〈b〉i to abbreviate 〈b〉; . . . ; 〈b〉, where it occurs exactly i times. We claim
that [[〈b〉i]](Sq) 6= [[〈b〉j]](Sq) for i, j < Πn

i=1pi, i 6= j. And, since |[[〈b〉i]](Sq)| = n
for all i < Πn

i=1pi, even [[〈b〉i]](Sq) 6⊆ [[〈b〉j]](Sq) for i, j < Πn
i=1, i 6= j. Take a state

in the k-th cycle. It belongs to [[〈b〉i]](Sq) iff it is the (i mod pk)-th b-predecessor
of Pk−1. In other words, the sets [[〈b〉i]](Sq) can be defined by moving markers
along a-transitions in each cycle starting with Sq. Since the lengths of the cycles
are pairwise different prime numbers the same set is only marked after Πn

i=1pi

steps.
This means that the first (Πn

i=1pi) − 1 sequences 〈b〉i; q define pairwise un-
comparable sets of states. Clearly, Πn

i=1pi 6∈ O(nk) for all k ∈ N.

Corollary 1. Let T = (S, { a→ | a ∈ A}, L) be finite with s ∈ S and ϕ, δ ∈ FLC.

Deciding the winner of s, δ ` ϕ is in EXPSPACE.

It should be mentioned that, if the requirement of locality is dropped, then model
checking can be done in EXPTIME in the general case. For this, a configuration
like s, δ ` ϕ;ψ can be model checked in the following way. Player ∃ chooses a set
T s.t. T = [[ψ; δ]](S). Then, player ∀ either selects to continue with s, ε ` ϕ and
the additional winning requirement that player ∃ can only win if the last state
reached in a subplay is a t ∈ T . Or he chooses a t ∈ T and continues with t, δ ` ψ.
It is easy to see that the stack becomes obsolete and that therefore configurations
are of polynomial size only. However, player ∃’s choice of T prevents the model
checker from being local.

The next theorem analyses the complexity of the games if applied to Lµ

formulas. In this case it is helpful to start the game with an empty stack.

Theorem 5. Let T = (S, { a→ | a ∈ A}, L) be finite with s ∈ S and ϕ ∈ FLC−.
Deciding the winner of s, ε ` ϕ is in NP∩co-NP.

Proof. The stack can never grow larger than ϕ and will be empty each time a
variable is reached. The resulting games are essentially the same as the model
checking games for Lµ from [12]. It is known from [3] for example that the winner
of those games can be decided in NP∩co-NP. The same technique applies here.

Clearly, the game graph for s, ε ` ϕ is finite and of size polynomial in the
input. To decide whether player ∃ wins s, ε ` ϕ a nondeterministic algorithm
can guess annotations (k1, . . . , kn) for each µ-variable Y . The meaning of such
an annotation is: Y has to be unfolded kn times at this moment and there are
outer variables Z1, . . . , Zn−1 which have been unfolded k1, . . . , kn−1 times. The
maximal size of such an annotation is O(ad(ϕ) · log |S|).

Finally, the algorithm has to verify that the order of the annotations is well-
founded, i.e. for every µ-variable Y : if there is a path from s, δ ` Y with anno-
tation K = k1, . . . , kn to t, δ′ ` Y with annotation K ′ = k′1, . . . , k

′
n then K ′ is

lexicographically smaller than K.
This proves that deciding the winner of s, ε ` ϕ is in NP. Inclusion in co-NP

follows from the fact that the same argument applies to player ∀ and ν-variables
to decide whether he wins s, ε ` ϕ. ut
This is not a contradiction to the PSPACE-hardness proved in [9]. There, re-
ductions from the validity problem for QBF and from the universal acceptance
problem for NFAs are presented. In both cases the constructed formulas are not
in FLC−.

Even if the starting stack in the game of Theorem 5 is non-empty the seman-
tics of approximants will always be evaluated on the same set of states. However,
if the stack is δ = ψδ′ and deciding the winner of t, δ′ ` ψ is in the complexity
class C for any t ∈ S, then deciding the winner of s, δ ` ϕ is in (NP∩co-NP)∪C.

Theorem 5 becomes interesting if applied to formulas in FLC− that are not a
translation of a Lµ formula but are equivalent to a formula in Lµ. One example
is νZ.(〈a0〉∧ 〈b0〉); . . . ; (〈a0〉∧ 〈b0〉);Z which is exponentially more succinct than

its equivalent in Lµ, see [9]. Theorem 5 suggests that the model checking games
for FLC behave better than those for Lµ in this case, although equation-based
model checkers for Lµ can do equally well.

5 Conclusion

We have given a game-based account of the model checking problem for FLC.
The main feature of the games is their ability to allow local model checking.
This makes them suitable for verification purposes. We have also shown that
the games are optimal for fixed alternation and sequential depth in terms of
complexity bounds. These parameters can be assumed to be small for formulas
that express properties desired in the verification of finite transition systems.

It is not known whether FLC’s model checking problem for unbounded alter-
nation depth is EXPTIME-hard. Compare this to the Lµ situation: NP∩co-NP
for the general case and P-complete for bounded alternation.

One candidate for establishing EXPTIME-hardness is the model checking
problem for Lµ and BPA or PDA. However, this cannot work since these prob-
lems are EXPTIME-complete for alternation free Lµ formulas already. It remains
to see whether EXPTIME-hardness can be established, and whether local FLC
model checking for unbounded alternation depth is possible to do in EXPTIME.

References

[1] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, January 1981.

[2] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 14, pages 996–1072. Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, New York, N.Y., 1990.

[3] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the µ-calculus
and its fragments. Theoretical Computer Science, 258(1–3):491–522, 2001.

[4] E. P. Friedman. The inclusion problem for simple languages. TCS, 1(4):297–316,
April 1976.

[5] R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino,
D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods.
Kluwer, Dordrecht, 1999.

[6] J. F. Groote and H. Hüttel. Undecidable equivalences for basic process algebra.
Information and Computation, 115(2):354–371, December 1994.

[7] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
µ-calculus with respect to monadic second order logic. In U. Montanari and
V. Sassone, editors, CONCUR ’96: Concurrency Theory, 7th Int. Conf., volume
1119 of LNCS, pages 263–277, Pisa, Italy, 26–29 August 1996. Springer.

[8] D. Kozen. Results on the propositional mu-calculus. TCS, 27:333–354, December
1983.

[9] M. Lange and C. Stirling. Model checking fixed point logic with chop. In
M. Nielsen and U. H. Engberg, editors, Proc. Foundations of Software Science
and Computation Structures, FOSSACS’02, volume 2303 of LNCS, pages 250–
263, Grenoble, France, 2002. Springer.

[10] M. Müller-Olm. A modal fixpoint logic with chop. In C. Meinel and S. Tison,
editors, Proc. 16th Annual Symp. on Theoretical Aspects of Computer Science,
STACS’99, volume 1563 of LNCS, pages 510–520, Trier, Germany, 1999. Springer.

[11] C. Stirling. Modal and temporal logics. In Handbook of Logic in Computer Science,
volume 2 (Background: Computational Structures), pages 477–563. Clarendon
Press, Oxford, 1992.

[12] C. Stirling. Local model checking games. In I. Lee and S. A. Smolka, editors,
Proc. 6th Int. Conf. on Concurrency Theory, CONCUR’95, volume 962 of LNCS,
pages 1–11, Berlin, Germany, August 1995. Springer.

[13] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific
J.Math., 5:285–309, 1955.

