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Abstract. We consider linear time temporal logic enriched with semi-
extended regular expressions through various operators that have been
proposed in the literature, in particular in Accelera’s Property Specifi-
cation Language. We obtain results about the expressive power of frag-
ments of this logic when restricted to certain operators only: basically,
all operators alone suffice for expressive completeness w.r.t. ω-regular
expressions, just the closure operator is too weak. We also obtain com-
plexity results. Again, almost all operators alone suffice for EXPSPACE-
completeness, just the closure operator needs some help.

1 Introduction

Pnueli has acquired the linear time temporal logic LTL from philosophy for the
specification of runs of reactive systems [7]. It has since been established as a
milestone in computer science, particularly in automatic program verification
through model checking. Its success and popularity as such is not matched by
its expressive power though which was shown to be rather limited: LTL is equi-
expressive to First-Order Logic on infinite words and, thus, can express exactly
the star-free ω-languages [5,11]. This is not enough for compositional verification
for instance.

Some early attempts have been made at extending LTL with the aim of captur-
ing all ω-regular languages. Wolper’s ETL incorporates non-deterministic Büchi
automata as connectives in the language [14]. QPTL extends LTL with quan-
tifications over atomic propositions in the style of Monadic Second-Order Logic
[10]. The linear time μ-calculus μTL allows arbitrary recursive definitions of
properties via fixpoint quantifiers in the logic [2,13].

None of these logics has seen an impact that would make it replace LTL as the
most popular specification language for linear time properties. This may be be-
cause of non-elementary complexity (QPTL), syntactical inconvenience (ETL),
and difficulty in understanding specifications (μTL), etc.

Nevertheless, the need for a convenient temporal specification formalism for
ω-regular properties is widely recognised. This is for example reflected in the def-
inition of Accelera’s Property Specification Language (PSL), designed to provide
a general-purpose interface to hardware verification problems [1]. At its temporal
layer it contains a logic that is capable of expressing all ω-regular properties. This
is mainly achieved through the introduction of operators in LTL that take semi-
extended regular expressions as arguments. Following common agreement in the
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temporal logic community we also use PSL to refer to this logic. To be more pre-
cise: PSL is often used to describe a temporal logic enhanced with semi-extended
regular expressions through various operators. This is because the original defi-
nition of Accelera’s PSL allows a multitude of operators of which some are just
syntactical sugar. For example, the intersection operator on regular expressions
that does not require the same length of its operands can easily be expressed
using the usual intersection operator: α&β ≡ (α; Σ∗)&&(β; Σ∗), etc.

Much effort has already been taken to design verification algorithms for PSL
properties, for example through automata-theoretic constructions [3]. Neverthe-
less, we are not aware of a rigorous analysis of its computational complexity, and
the expressive power of fragments obtained by restricting the use of temporal
operators in the logic. In order to make up for this, we consider linear time tem-
poral logic enriched with various operators that have occurred in the literature
so far, not only in PSL. For pragmatics and complexity-theoretic upper bounds
it is clearly desirable to consider the richest possible logic – not just in terms
of expressive power but mainly regarding its variety of temporal operators. We
include the commonly known until operator from LTL and fixpoint quantifiers
from μTL. We also allow a stengthened until operator Uα from Dynamic LTL
which – roughly speaking – asserts that the until must be satisfied at the end of
a word in L(α) [6]. We include an and-then operator �� which realises concate-
nation of a semi-extended regular expression with a temporal formula. It occurs
in PSL in a slightly different way where the regular expression and the temporal
formula are required to overlap in one state. This can, however, easily be defined
using an Uα, and in order to cover as many cases as possible we let it denote the
non-overlapping version here. Finally, inspired by the other PSL operator that
links regular expressions with formulas we also include a closure operator Cl(α).
It asserts that at no position does a word look like it is not going to belong to
L(α). In other words, all of its prefixes must be extendable to a finite word in
L(α). This is slightly more general than the original PSL closure operator, see
below for details.

Clearly, not all operators are needed in order to achieve expressive complete-
ness w.r.t. ω-regular properties. For example, it is known that the specialised
strengthened until operator Fα is sufficient [6]. Sect. 3 shows what happens w.r.t.
expressive power when certain operators are excluded from the logic. Because
of lack of space here we only scrape upon the issue of succinctness. Clearly,
since semi-extended regular expressions are only as expressive as ordinary ones
there is no gain in expressive power from using them instead. However, some
properties may be definable using shorter formulas. Note that Dynamic LTL for
example, known to be PSPACE-complete [6], allows ordinary regular expressions
only. Sect. 4 uses the expressiveness results to derive a general upper bound of
det. exponential space for the satisfiability problem of this logic via a reduction
to μTL. We also show that this is optimal obtaining the rule of thumb: regular
expressions leave temporal logic PSPACE-complete, semi-extended ones make it
EXPSPACE-complete.
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2 Preliminaries

We start by recalling semi-extended regular expressions. Let P = {q, p, . . .} be
finite set of atomic propositions. Propositional Logic (PL) is the least set con-
taining P , the constants �, ⊥, and being closed under the operators ∨, ∧, →,
etc., as well as the complementation operator ·̄.

The satisfaction relation between symbols of the alphabet 2P and formulas of
PL is the usual one: a |= q iff q ∈ a; a |= b1 ∧ b2 iff a |= b1 and a |= b2; a |= b iff
a 
|= b; etc.

We fix Σ := 2P as an alphabet for the remainder of the paper. For a word
w ∈ Σ∗ we use |w| to denote its length, ε to denote the empty word, and wi

to denote the i-th symbol of w for i ∈ {0, . . . , |w| − 1}. The set of all infinite
words is Σω. For a finite or infinite word w we write wi..j to denote the subword
wi . . . wj−1 of length j − i, and wi.. to denote its suffix starting with wi. We
write w ≺ v to denote that w is a proper prefix of v.

For two languages L, L′ with L ⊆ Σ∗ and L′ either a language of finite or of
infinite words, their composition LL′ denotes the concatenation of all words in
L and L′ in the usual way. The n-fold iteration (in the finite case) is denoted Ln

with L0 = {ε}. An important mapping from languages of finite words to those
of infinite ones is the closure, defined for all L ⊆ Σ∗ as Cl(L) := {w ∈ Σω | ∀k ∈
N ∃v ∈ Σ∗ s.t. w0..kv ∈ L}.

Semi-extended regular expressions (SERE) are now built upon formulas of PL
in the following way.

α ::= b | α ∪ α | α ∩ α | α; α | α∗

where b ∈ PL. Let |α| := |Sub(α)| measure the size of an SERE with Sub(α)
being the set of all subexpressions occurring in α where propositional formulas
are atomic. Another important measure is the number of intersections occurring
in α: is(α) := |{β ∈ Sub(α) | β is of the form β1 ∩ β2}.

SERE define languages of finite words in the usual way. L(b) := {w ∈ Σ∗ |
|w| = 1, w0 |= b}, L(α1 ∪ α2) := L(α1) ∪ L(α2), L(α1 ∩ α2) := L(α1) ∩ L(α2),
L(α1; α2) := L(α1)L(α2), and L(α∗) :=

⋃
n∈N

(L(α))n.
The intersection operator ∩ allows us to define some usual ingredients of the

syntax of regular expressions as abbreviations: ∅ := (q) ∩ (q) for some q ∈ P ,
and ε := (q)∗ ∩ (q)∗. Equally, the symbolic encoding of symbols in PL enables a
constant representation of the universal regular expression: Σ∗ = (�)∗.

An ordinary regular expressions (RE) is an SERE α with is(α) = 0. We allow
ε and ∅ as primitives in RE though. An ω-regular expression (ω-RE) γ is of the
form

⋃n
i=1 αi; βω

i for some n ∈ N s.t. αi, βi are RE, and ε 
∈ L(βi). Its language
L(γ) is defined in the usual way using union, concatenation and infinite iteration
of finite languages.

Next we consider linear time temporal logic. Take P from above. Let V =
{X, Y, . . .} be a countably infinite set of monadic second-order variables. Formu-
las of full Linear Time Temporal Logic with SERE (TLSERE) are given by the
following grammar.

ϕ ::= q | ϕ ∧ ϕ | ¬ϕ | X | ©ϕ | ϕ U ϕ | ϕ Uα ϕ | μX.ϕ | α �� ϕ | Cl(α)
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where q ∈ P , X ∈ V , and α is an SERE over P . As usual, we require variables X
to only occur under the scope of an even number of negation symbols within ψ if
X is quantified by μX.ψ. If the α are restricted to ordinary regular expressions
we obtain the logic TLRE. We also use the usual abbreviated Boolean operators
like ∨, and the LTL-operators F and G as well as the strengthened version Fα ϕ :=
tt Uα ϕ.

The size of a formula is |ϕ| := |Sub(ϕ)| where Sub(ϕ) is the set of all sub-
formulas of ϕ including Sub(α) for any SERE α occurring in ϕ. The reason for
not counting them as atomic is the expressive power of the temporal operators,
c.f. next section below. It is possible to encode a lot of temporal property in
the SERE rather than the temporal operators themselves. Counting SERE as
atomic would therefore lead to unnaturally small formulas. The measure is(α)
can then be extended to formulas straight-forwardly: is(ϕ) := |{β ∈ Sub(ϕ) | β
is an SERE of the form β1 ∩ β2}.

TLSERE is interpreted over infinite words w ∈ Σω. The semantics assigns to
each formula ϕ a language Lρ(ϕ) ⊆ Σω relative to some environment ρ : V →
2Σω

which interprets free variables by languages of infinite words. We write
ρ[X �→ L] for the function that maps X to L and agrees with ρ on all other
arguments.

Lρ(q) := {w ∈ Σω | q ∈ w0}
Lρ(ϕ ∧ ψ) := Lρ(ϕ) ∩ Lρ(ψ)

Lρ(¬ϕ) := Σω \ Lρ(ϕ)
Lρ(X) := ρ(X)

Lρ(©ϕ) := {w ∈ Σω | w1.. ∈ Lρ(ϕ)}
Lρ(ϕ U ψ) := {w ∈ Σω | ∃k∈N s.t. wk.. ∈Lρ(ψ) and ∀j < k : wj.. ∈ Lρ(ϕ)}

Lρ(ϕ Uα ψ) := {w ∈ Σω | ∃k ∈ N s.t. w0..k+1 ∈ L(α) and wk.. ∈ Lρ(ψ)

and ∀j < k : wj.. ∈ Lρ(ϕ)}

Lρ(μX.ϕ) :=
⋂

{L ⊆ Σω | Lρ[X �→L](ϕ) ⊆ L}

Lρ(α �� ϕ) := L(α)Lρ(ϕ)
Lρ(Cl(α)) := Cl(L(α))

The formula μX.ψ defines the least fixpoint of the monotone function which
maps a language L of infinite words to the set of words that satisfy ψ under the
assumption that X defines L. Due to negation closure and fixpoint duality we can
also define greatest fixpoints of such maps via νX.ψ := ¬μX.¬ψ[¬X/X ], where
the latter denotes the simultaneous substitution of ¬X for every occurrence of
X in ψ.

As usual, we write ϕ ≡ ψ if for all environments ρ we have Lρ(ϕ) = Lρ(ψ). We
use the notation TL[..], listing certain operators, to denote syntactical fragments
of TLSERE, for instance TLSERE = TL[©, U, Uα, μ, ��, Cl]. We do not list variables
explicitly because variables without quantifiers or vice-versa are meaningless.
Also, we always assume that these fragments contain atomic propositions and the
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Boolean operators. For example, LTL is TL[©, U], and it has genuine fragments
TL[©, F], TL[F], TL[©] [4]. The linear time μ-calculus μTL is TL[©, μ], and
PSL is TL[U, Fα, Cl]: the PSL formula consisting of an SERE α is equivalent to
the TLSERE formula (Fα tt) ∨ Cl(α), where tt := q ∨ ¬q for some q ∈ P . If we
restrict the use of semi-extended regular expressions in a fragment to ordinary
regular expressions only then we denote this by TLRE[..].

Some of the results regarding expressive power are obtained using automata
on finite words, Büchi automata, and translations from SERE into those. We
therefore quickly recall the automata-theoretic foundations. A nondeterministic
finite automaton (NFA) is a tuple A = (Q, P , q0, δ, F ) with Q a finite set of
states, q0 ∈ Q a starting state, and F ⊆ Q a set of final states. Its alphabet
is Σ = 2P , and its transition relation δ is a finite subset of Q × PL × Q. We
define |A| := |δ| as the size of the NFA. Note that these NFA use symbolic
representations of symbols in their transitions in order to avoid unnecessary
exponential blow-ups in their sizes. A run of A on a finite word w ∈ Σ∗ is a
non-empty sequence q0, w

0, q1, w
1, . . . , qn s.t. for all i = 0, . . . , n − 1 there is a b

s.t. wi |= b and (qi, b, qi+1) ∈ δ. It is accepting iff qn ∈ F .
Translating RE into NFA is a standard exercise. It is not hard to see that

the usual uniform translation applies to the case of symbolically represented
transition relations as well. It is also relatively easy to see that it can be extended
to SERE. The translation of the SERE α∩β simply uses the well-known product
construction on NFA. Clearly, the size of the product NFA is quadratic in the
original sizes, and iterating this leads to an exponential translation.

Proposition 1. For every SERE α there is an NFA Aα s.t. L(Aα) = L(α) and
|Aα| = O(2|α|·(is(α)+1)).

To see that an exponential blow-up can occur simply consider the recursively
defined RE αn with α0 := q and αn+1 := αn; ¬q; αn; q.

A nondeterministic Büchi automaton (NBA) is syntactically defined like an
NFA. It runs on infinite words w ∈ Σω via q0, w

0, q1, w
1, q2, . . . s.t. for all i ∈ N

there is a b ∈ PL s.t. wi |= b and (qi, b, qi+1) ∈ δ. It is accepting iff there are
infinitely many i s.t. qi ∈ F . We use NBA to model the closure of languages L
of finite words. This is particularly easy if L is given by an NFA.

Lemma 1. For every NFA A there is an NBA Acl s.t. L(Acl ) = Cl(L(A)), and
|Acl | ≤ |A|.

Proof. Let A = (Q, P , q0, δ, F ) and Q′ ⊆ Q consist of all states which are reach-
able from q0 and productive, i.e. from each of them a final state is reachable.
Then define Acl := (Q′, P , q0, δ, Q

′). We have L(Acl) ⊆ Cl (L(A)) because runs
in Acl only visit states from with final states in A are reachable.

For the converse direction suppose w ∈ Cl(L(A)), i.e. for every k ∈ N there
is a v ∈ Σ∗ and an accepting run of A on w0..kv. Clearly, all these runs stay in
Q′. Furthermore, they can be arranged to form an infinite but finitely branching
tree, and König’s Lemma yields an accepting run of Acl on w. ��
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3 Expressive Power and Succinctness

For two fragments L1 and L2 of TLSERE we write L1 ≤f(n,k) L2 if for every
ϕ ∈ L1 there is a ψ ∈ L2 s.t. ϕ ≡ ψ and |ψ| ≤ f(|ϕ|, is(ϕ)). This measures
relative expressive power and possible succinctness. We write L1 ≡f(n,k) L2 if
L1 ≤f(n,k) L2 and L2 ≤f(n,k) L1. In case the succinctness issue is unimportant
we simply denote expressive subsumption and equivalence using ≤ and ≡.

It is well-known that TL[©, μ], the linear time μ-calculus, has the same ex-
pressive power as Monadic Second-Order Logic on infinite words, or equivalently,
ω-RE. It is also known that TLRE[Fα] and, thus, TL[Fα] is of the same expres-
siveness [6]. We start by showing that the non-overlapping and-then operator
suffices for expressive completeness too.

Theorem 1. TL[Fα] ≤O(nk+1) TL[��].

Proof. We use a function cut : SERE → 2SERE×PL that decomposes an SERE
via cut(α) = {(β1, b1), . . . , (βn, bn)} only if L(α) =

⋃n
i=1 L(βi)L(bi). This can be

recursively defined as

cut(b) := {(ε, b)}
cut(α1 ∪ α2) := cut(α1) ∪ cut(α2)
cut(α1 ∩ α2) := {(β1 ∩ β2, b1 ∧ b2) | (βi, bi) ∈ cut(αi) for i = 1, 2}

cut(α1; α2) := {(α1; β, b) | (β, b) ∈ cut(α2)} ∪
{

cut(α1) , if ε ∈ L(α2)
∅ , o.w.

cut(α∗) := {(α∗; β, b) | (β, b) ∈ cut(α)}

Note that |cut(α)| ≤ O(|α|is(α)+1). We can now use this decomposition to trans-
late a formula of the form Fα ϕ with an overlap between α and ϕ into a non-
overlapping one: Fα ϕ ≡

∨
(β,b)∈cut(α) β �� (b ∧ ϕ). ��

The same reduction can be carried out from TLRE[Fα] to TLRE[��], and it would
be polynomial because we would have k = 0.

The expressive power of the closure operator is a natural concern. It turns
out to be weaker than Uα or �� for instance. We use an invariant technique
on automata structure to show this. An NBA A = (Q, P , q0, δ, F ) is called ∃∀-
accepting if there is no q ∈ F from which a q′ 
∈ F is reachable. Runs of these
automata accept iff they eventually only visit final states. Note that this is not
the same as a co-Büchi automaton since it is a syntactical restriction, but it is a
special case of a weak NBA. An important observation is that the NBA Acl as
constructed in the proof of Lemma 1 are actually ∃∀-accepting.

Lemma 2. Every language definable in TL[Cl] can be recognised by an ∃∀-
accepting NBA.

Proof. Let ψ ∈ TL[Cl]. Clearly, ψ is a Boolean combination of formulas of the
form Cl(α). Using deMorgan laws it is possible to transform ψ into a positive
Boolean combination of formulas of the form Cl(α) and ¬Cl(β).
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Now note that w 
|= Cl(β) iff there is a v ≺ w s.t. for all v′ ∈ Σ∗: vv′ 
∈ L(β).
Let Aβ be the NFA that recognises exactly the models of β, c.f. Prop. 1. It
can be determinised and complemented into a DFA Aβ = (Q, P , q0, δ, F ). Let
Q′ := {q ∈ Q | ∀q′ ∈ Q: if q′ is reachable from q then q′ ∈ F}. Note that Q′ ⊆ F .
Now consider the deterministic NBA A′

β
= (Q, P , q0, δ, Q

′). It accepts a word w

iff the unique run on it exhibits a prefix v which takes the NBA from q0 to a
state q ∈ F . Hence, v 
∈ L(β). Furthermore, vv′ 
∈ L(β) for any v′ because A′

β
is

deterministic and only states in F are reachable from q.
This shows that ψ is equivalent to a positive Boolean combination of languages

recognisable by ∃∀-accepting NBA. Given two ∃∀-accepting NBA recognising L1
and L2 it is easy to construct ∃∀-accepting NBA for the languages L1 ∪ L2 and
L1 ∩ L2 using the standard union and product constructions. Hence, L(ψ) can
be recognised by an ∃∀-accepting NBA. ��
Lemma 3. TL[©, Cl] ≡O(n) TL[Cl].

Proof. The ≥ part is of course trivial. For the ≤ part first note that because of
the equivalences ©¬ψ ≡ ¬©ψ and ©(ψ1 ∧ψ2) ≡ ©ψ1 ∧©ψ2 every TL[©, Cl]
formula ϕ can be transformed into a Boolean combination of atomic formulas
of the form ©kq or ©kCl(α) for some SERE α and some k ∈ N. Using the
equivalences q ≡ Cl(q; �∗) and ©Cl(α) ≡ Cl(�; α) it is then possible to elimi-
nate all occurrences of the © operators. The resulting formula is clearly of linear
size. ��
The following looks like an immediate consequence of this but it needs the ob-
servation that the © operator commutes with an U. The same holds for the F
operator.

Lemma 4. TL[©, U, Cl] ≡O(n) TL[U, Cl].

Proof. As the proof of Lemma 3 but also using the equivalence ©(ϕ U ψ) ≡
(©ϕ)U (©ψ) in order to push the © operators down to atomic propositions and
closure operators where they can be eliminated. ��
Corollary 1. TL[©, F, Cl] ≡O(n) TL[F, Cl].

Theorem 2. TL[Cl] is ≤-incomparable to both TL[©, U] and TL[F].

Proof. Since TL[F] ≤ TL[©, U] it suffices to show that there is a TL[Cl] property
which is not definable in TL[©, U], and a TL[F] property which is not definable
in TL[Cl].

It is well-known that TL[©, U], aka LTL, cannot express “q holds in every even
moment”. This, however, can easily be expressed by Cl((q; �)∗). For the converse
direction take the TL[F] formula G F q. According to Lemma 2 its language would
be recognisable by an ∃∀-accepting NBA A = (Q, P , q0, δ, F ) if it was definable
in TL[Cl]. Let n := |Q|. Consider the word w := ({q}∅n+1)ω. Since w ∈ L(G F q)
there is an accepting run q0, w

0, q1, w
1, . . . of A on w. Since A is ∃∀-accepting

there is a k s.t. qi ∈ F for all i ≥ k. Then there will be j > i ≥ k s.t. qi = qj and
wh = ∅ for all h = i, . . . , j − 1. This gives us an accepting run on a word of the
form ({q}∅)∗∅ω which should not be accepted. ��
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Corollary 2. TL[F, Cl] 
≤ TL[©, U].

The converse direction is still open. It remains to be seen whether or not every
LTL-definable property can also be expressed in TL[F, Cl]. Note for example that,
for atomic propositions p and q, we have p U q ≡ F q ∧ Cl(p∗; q; �∗). However,
this does not extend easily to arbitrary formulas of the form ϕ U ψ.

Clearly, adding the operator �� or Fα to the closure operator yields expressive
completeness since these alone are sufficient for that. This poses the question of
what happens when the closure operator is combined with LTL operators which
are not enough to achieve ω-regular expressiveness. One answer is obtained easily
from Thm. 2: TL[©, U] is strictly less expressive than TL[U, Cl]. On the other
hand, we suspect that TL[U, Cl] is also strictly contained in TLSERE. In particular,
we believe that the property “q holds infinitely often in even moments” is not
expressible in TL[U, Cl].

It is known that each operator present in TLSERE does not exceed its expressive
power beyond ω-regularity. Therefore it is fair to assume that TLSERE is only as
expressive as μTL. We present a direct and conceptionally simple translation
from TLSERE to TL[©, μ] which forms the basis for the complexity analysis in
the next section. The following lemmas prepare for the not so straight-forward
cases in that translation.

Lemma 5. For every NBA A there is a closed TL[©, μ] formula ϕA s.t. L(ϕA)
= L(A) and |ϕA| = O(|A|).

Proof. Let A = (Q, P , q0, δ, F ). W.l.o.g. we assume Q = {0, . . . , n} for some
n ∈ N, q0 = 0, and F = {0, . . . , m} for some m ≤ n. Note that the starting state
can always be assumed to be final by adding a copy of the starting state which
is not reachable from any other state.

The construction of ϕA uses n monadic second-order variables Xi, i ∈ Q, each
Xi representing the moments of a run in which A is in state i. To understand
the construction best we introduce an auxiliary device of an NBA Aρ with a
partial function ρ : Q → 2Σω

acting as an oracle.1 Aρ immediately accepts the
language ρ(i) upon entrance of state i when ρ(i) is defined.

For every i ∈ Q in the order i = n, . . . , 0 we construct a formula ψi(X0, . . . ,
Xi−1) s.t. Lρ(ψi) = {w | Aρ′ accepts w starting in state i} where ρ′(j) := ρ(Xj)
for all j < i.

ψi := σiXi.
∨

(i,b,j)∈δ

b ∧ ©
{

ψj , if j > i

Xj , o.w.

where σi := μ if i > m and ν otherwise. The correctness claim above is straight-
forwardly verified by induction on i. Also note that ψi is well-defined, and ψ0 is
a closed formula. Its correctness claim refers to the oracle NBA Aρ′ starting in
the initial state 0 and not using the oracle at all. Hence, we have Lρ(ψ0) = L(A)
for any ρ, and therefore define ϕA := ψ0. Note that its size is linear in the size
of A. ��
1 Since oracles are for automata what environments are for the semantics function –

an interpreter of open parts – we use the same symbol ρ here.



98 M. Lange

Lemma 6. For every NFA A and every TL[©, μ] formula χ there is a TL[©, μ]
formula ϕA,χ s.t. for any environment ρ: Lρ(ϕA,χ) = L(A)Lρ(χ) and |ϕA,χ| =
O(|A| + |χ|).

Proof. Similar to the previous construction. Let A = (Q, P , q0, δ, F ) with Q =
{0, . . . , n}. We construct for every i = n, . . . , 0 a TL[©, μ] formula ψi(X0, . . . ,
Xi−1) s.t. Lρ(ψi) = LiLρ(χ) where Li ⊆ Σ∗ consists of all words that are
accepted by A when starting in state i under the assumption that upon entering
state j < i, it immediately accepts the language ρ(Xj).

ψi := μXi.
∨

(i,b,j)∈δ

χi ∨ (b ∧ ©
{

ψj , if j > i

Xj , o.w.
)

where χi := χ if i ∈ F , and ff otherwise. Note that the language defined by an
NFA is given as the simultaneous least fixpoint of the languages recognised by
each state. Hence, only μ quantifiers are needed here as opposed to the NBA
case above where the language is given as a nested greatest/least fixpoint.

Again, define ϕA,χ as ψ0. The correctness of this construction w.r.t. to the
specification above can straight-forwardly be proved by induction on i. Also, the
claim on its size is easily checked to be true. ��

Lemma 7. For every TL[©, μ] formulas ϕ1, ϕ2 and every NFA A there is a
TL[©, μ] formula ϕA,ϕ1,ϕ2 s.t. |ϕA,ϕ1,ϕ2 | = O(|A + |ϕ1| + |ϕ2|) and for all
environments ρ: Lρ(ϕA,ϕ1,ϕ2) = {w ∈ Σω | ∃k ∈ N s.t. w0..k+1 ∈ L(A) and
wk.. ∈ Lρ(ϕ2) and ∀j < k : wj.. ∈ Lρ(ϕ1)}.

Proof. This is done in very much the same way as in the proof of Lemma 6.
There are only two minor differences. (1) Because of the overlap between the
part accepted by A and the part satisfying ϕ2 we need to assert ϕ2 not after
having been in a final state but before entering one. (2) In every step that A
does without entering a final state we need to require ϕ1 to hold.

Again, let A = (Q, P , q0, δ, F ) with Q = {0, . . . , n}. Define for each i ∈ Q:

ψi := μXi.
∨

(i,b,j)∈δ

b ∧
(
χi ∨ (ϕ1 ∧ ©

{
ψj , if j > i
Xj , o.w.

}

)
)

where χi := ϕ2 if j ∈ F , and χi := ff otherwise. Note that the ability to prove ϕ2
is linked to the fact whether or not j belongs to F because of the aforementioned
overlap. Again, define ϕA,ϕ1,ϕ2 := ψ0 to finish the claim. ��

Theorem 3. TLSERE ≤O(2n·(k+1)) TL[©, μ].

Proof. By induction on the structure of the formula. The claim is trivially true
for atomic propositions and variables. Boolean operators, the temporal ©, and
fixpoint quantifiers μ are translated uniformly. An U operator can be replaced
by a least fixpoint formula. The remaining cases are the interesting ones.

Suppose ϕ = α �� ψ. By hypothesis, there is a ψ′ ∈ TL[©, μ] s.t. ψ′ ≡ ψ
and |ψ′| ≤ O(2|ψ|·(is(ψ)+1)). According to Prop. 1 there is an NFA Aα s.t.
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L(Aα) = L(α) and |Aα| ≤ O(2|α|·(is(α)+1)). According to Lemma 6 there is
a TL[©, μ] formula ϕ′ s.t. Lρ(ϕ′) = L(Aα)Lρ(ψ′) under any ρ. Thus, Lρ(ϕ′) =
Lρ(ϕ). Furthermore, |ϕ′| ≤ O(2|ψ|·(is(ψ)+1) + 2|α|·(is(α)+1)) ≤ O(2|ϕ|·(is(ϕ)+1)).

The cases of ϕ = ψ1 Uα ψ2 and ϕ = Cl(α) are done in the same way but using
Lemmas 7, 1, and 5 instead. ��

4 The Complexity of TLSERE and Its Fragments

We can now easily obtain an upper bound on the complexity of the satisfiability
problem for TLSERE from Thm. 3. It composes the exponential reduction with
the known PSPACE upper bound for μTL, found many times in different ways.

Proposition 2. [9,13] Satisfiability in TL[©, μ] is PSPACE-complete.

Corollary 3. Satisfiability in (a) TLSERE is in EXPSPACE, and (b) TLRE is in
PSPACE.

Part (b) is not necessarily surprising. The satisfiability problem of all the logics
considered in the literature with some of the operators of TLRE can be decided
in PSPACE, c.f. Prop. 2 and [9,6,3]. There is no need to assume that the com-
bination of these operators should exceed the PSPACE bound.

Part (a) entails that PSL can be decided in deterministic exponential space.
There is a translation of PSL into NBA of doubly exponential size – but mea-
suring the size of regular expressions as their syntactical length – which goes via
weak alternating Büchi automata [3]. It does not mention SERE, however, this
can easily be incorporated, see above. Since the emptiness problem for NBA is
known to be in NLOGSPACE, part (a) follows for PSL also from that translation
and Savitch’s Theorem [8].

A surprising fact is part (a) in conjunction with the emptiness problem for
SERE. An immediate consequence of Prop. 1 is a PSPACE upper bound on
the emptiness problem (i.e. satisfiability) of semi-extended regular expressions.
However, combining that with the PSPACE decidable operators from temporal
logic raises the space complexity by one exponential. This is also optimal. We
will prove a lower complexity bound of deterministic exponential space by a
reduction from the following 2n-tiling problem, known to be EXPSPACE-hard
[12]. Given an n ∈ N and a finite set T = {1, . . . , m} called tiles, and two binary
relations Mh, Mv ⊆ T ×T (for horizontal and vertical matching), decide whether
or not there is a function τ : {0, . . . , 2n − 1} × N → T s.t.

– ∀i ∈ {0, . . . , 2n − 2}, ∀j ∈ N : (τ(i, j), τ(i + 1, j)) ∈ Mh

– ∀i ∈ {0, . . . , 2n − 1}, ∀j ∈ N : (τ(i, j), τ(i, j + 1)) ∈ Mv

Note that such a function tiles the infinite corridor of width 2n s.t. adjacent tiles
match in the horizontal and vertical relations. In the following we will write iMx

for {j | (i, j) ∈ Mx} where x ∈ {h, v}.

Theorem 4. Satisfiability in TL[©, F, Fα] is EXPSPACE-hard.
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Proof. By a reduction from the 2n-tiling problem. Suppose n and a set T of tiles
are given. We can easily regard {0, . . . , 2n − 1} × N as an infinite word in which
the cell (i, j) is represented by the (j ·2n + i)-th symbol in that word. We will use
atomic propositions t1, . . . , tm to model the tiles and c0, . . . , cn−1 to enumerate
the positions in the word modulo 2n.

First of all we need a counter formula that axiomatises the enumeration of the
symbols. It asserts that the cell at (i, j) is labeled with those propositions which
represent set bits in the binary encoding of i. We use the fact that in binary
increment a bit becomes set iff its current value correctly indicates whether the
bit below does not decrease its value.

ϕcount := χ0 ∧ G
(

(c0 ↔ ©¬c0) ∧
n−1∧

i=1

©ci ↔
(

ci ↔ (ci−1 → ©ci−1)
) )

where χ0 :=
∧n−1

i=0 ¬ci marks the beginning of each row. We also need to say
that each cell contains exactly one tile.

ϕtile := G
( m∨

i=1

ti ∧
∧

j �=i

¬tj
)

In order to compare vertically adjacent tiles we create an SERE αn s.t. L(αn) =
{w | |w| = 2n +1}. This is particularly easy on models which also satisfy ϕcount .
It suffices to require all counter bits to have the same value in the first and last
symbol of each word, and to contain at most one symbol which satisfies χ0 unless
this is what it starts with.2

αn := �; (¬χ0)∗; χ0; (¬χ0)∗ ∩
n−1⋂

i=0

(ci; �∗; ci) ∪ (¬ci; �∗; ¬ci)

At last we need to axiomatise the two relations modelling the matching of tiles.

ϕh := G
( m∧

i=1

ti → ©(χ0 ∨
∨

j∈iMh

tj)
)

ϕv := G
( m∧

i=1

ti → Fαn(
∨

j∈iMv

tj)
)

Then the given tiling problem has a positive instance iff ϕ := ϕcount ∧ ϕtile ∧
ϕh ∧ ϕv is satisfiable. Note that ϕ can be constructed in logarithmic space from
the tiling problem and n. ��

This is not optimal in terms of the operators that are being used. They are
just chosen to make the presentation easiest. Now note that the only temporal
2 Given our definition of size of an SERE we could also recursively define αn :=

αn−1; αn−1, etc. However, the definition we use here also shows EXPSPACE-
hardness when the size is measured as the syntactical length.
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operators occurring in that formula are ©, G, and Fα. Hence, in order to reduce
the number of operators used, and to strengthen the hardness result we simply
need to express these operators in terms of others.

Corollary 4. Satisfiability in TL[Fα] is EXPSPACE-hard.

Proof. Because of ©ϕ ≡ F	;	 ϕ and Gϕ ≡ ¬(F	
∗ ¬ϕ). ��

Unfortunately, Thm. 1 does not immediately yield a lower bound for the fragment
built upon the non-overlapping and-then operator as well. Remember that the
translation from TL[Fα] to TL[��] is exponential in the number of intersection
operators. Nevertheless, the result can be restored.

Theorem 5. Satisfiability in TL[��] is EXPSPACE-hard.

Proof. Consider the SERE

α′
n :=

(
c∗n−1; (¬cn−1)∗; c∗n−1 ∪ (¬cn−1)∗; c∗n−1; (¬cn−1)∗

)

∩
(

χ0; �∗;
( n∧

i=0

ci

)
∪

n−1⋃

i=0

ci; �∗; ¬ci ∩
( ⋂

j>i

(cj ; �∗; cj) ∪ (¬cj ; �∗; ¬cj)
)

∩
( ⋂

j<i

¬cj ; �∗; cj

) )

It asserts that there is a bit which is now 1 and 0 in the end, all higher bits have
the same value now and then, and all lower bits change from 0 to 1. There is the
special case of the counter being at value 0 now and at value 2n − 1 at the end.
Also, we make sure that the SERE is only fulfilled by minimal words. Here this
simply means that the highest bit changes its value at most twice. Then α′

n is
fulfilled exactly by subwords of length 2n in the context of ϕcount from the proof
of Thm. 4. Hence, we can prove this claim in exactly the same way but using
α′

n ��ψ instead of Fαn ψ. Furthermore, ©ϕ ≡ ���ϕ and Gϕ ≡ ¬(�∗��¬ϕ). ��

One question arises naturally: does the closure operator alone suffice to gain
EXPSPACE-hardness? The proof of the following theorem reformulates the re-
duction in the proof of Thm. 4 using the closure operator. However, the vertical
matching relation in the tiling requires a single occurrence of a G. Without this
G operator we can only establish PSPACE-hardness. This does not follow from
PSPACE-hardness of LTL, c.f. Thm. 2 above.

Theorem 6. Satisfiability in TL[F, Cl] is EXPSPACE-hard.

Proof. We simply replace the definitions of the four conjuncts in the constructed
formula ϕ from the proof of Thm. 4. The first two are relatively easy to transform.

ϕcount := χ0 ∧ Cl((α′
n)∗) ϕtile := Cl( (

m∨

i=1

ti ∧
∧

j �=i

¬tj)∗ )

where α′
n is taken from the proof of Thm. 5 above.
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Now consider the RE βh :=
⋃m

i=1 ti; (χ0 ∪
⋃

j∈iMh
tj). It describes all 2-symbol

words that match horizontally including the case of the right one belonging to
the next row already. Then β∗

h describes all words s.t. between each even position
and its right neighbour there is a correct matching. Hence, we can specify the
correct horizontal tiling as follows.

ϕh := Cl( β∗
h; � ∩ �; β∗

h )

The same trick cannot be used to axiomatise the tiling in vertical direction
because we would have to list conjuncts for each position in the first row, i.e.
exponentially many. This can easily be overcome using the G operator.

ϕv := G
(
Cl( β∗

v )
)

where βv := αn ∩ (
m⋃

i=1

ti; �∗; (
⋃

j∈iMv

tj))

with αn from the proof of Thm. 4. This includes some redundancy since the
formula Cl(β∗

v ) – when interpreted in the cell (i, j) – checks for correct matchings
between (i, j) and (i, j+1), between (i+1 mod 2n, j+1) and (i+1 mod 2n, j+
2), etc. The latter matchings are also imposed by the G operator. ��

Theorem 7. Satisfiability in TLRE[Cl] is PSPACE-hard.

Proof. By reduction from the tiling problem for {0, . . . , n − 1} × N, otherwise
defined in the same way as the 2n-tiling problem above. First note that for the
corridor of width n no counter bits are needed because the vertical matching
relation only requires statements of the form “in n steps” rather than 2n. Here
we assume a single proposition 0 marking the left edge of the corridor.

ϕedge := Cl( (0; ¬0; . . . ; ¬0
︸ ︷︷ ︸

n−1 times

)∗ )

Requiring every cell to carry a unique tile is done using ϕtile from the proof of
Thm. 6. The horizontal matching relation can be axiomatised using formula ϕh

from the proof of Thm. 6 with the proposition 0 instead of the formula χ0. The
vertical relation can be axiomatised as follows.

ϕv :=
n∧

i=0

©iCl(
( m⋃

i=1

ti; �n; (
⋃

j∈iMv

tj)
)∗ )

Note, again, that the first conjunct ensures matchings between (0, 0) and (0, 1),
between (1, 1) and (1, 2), etc. The second conjunct ensures matchings between
(1, 0) and (1, 1), between (2, 1) and (2, 2), etc. Therefore, we need n+1 conjuncts
altogether to cover the entire corridor.

Let ϕ := ϕedge ∧ϕtile ∧ϕh ∧ϕv. Finally, Lemma 3 shows that the ©-operators
can be eliminated from ϕ at no blow-up which finishes the proof. ��
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TL[F] TL[©]

TL[©, F]TL[U]

TL[©, U]

TLSERE ≡ TL[��] ≡ TL[Fα] ≡ TL[©, μ]

TL[©, Cl] ≡ TL[Cl]

TL[©, F, Cl] ≡ TL[F, Cl]

TL[©, U, Cl] ≡ TL[U, Cl]

∈ EXPSPACE

PSPACE-hardNP-complete

PSPACE-complete

EXPSPACE-complete

Fig. 1. Expressive power and complexity of fragments of TLSERE

5 Summary and Conclusion

Fig. 1 shows the relationship between fragments of TLSERE w.r.t. relative ex-
pressive power. Note that TLSERE and the alike are equi-expressive to Monadic
Second-Order Logic, resp. NBA or ω-regular expressions. LTL, i.e. TL[©, U], is
equi-expressive to First-Order Logic or ω-star-free expressions.

Strict inclusions are marked using dashed lines. The strictness of these has
been shown in [4] for the part below TL[©, U], and in Thm. 2 and Cor. 2 for the
others. Strictness of the two remaining inclusions is still open.

Fig. 1 also gives an overview of the complexity of these fragments’ satisfiability
problems. Again, for the part below TL[©, U] this has been shown in [9] already.
The other results summarise the findings of the theorems and corollaries in the
previous section. The exact complexity of TL[Cl] is still open. However, if the
size of a (semi-extended) regular expression is measured as its syntactical length,
then the problem becomes PSPACE-complete. Note that then the translation
from TL[Cl] formulas to ∃∀-accepting NBA as shown in Lemma 2 produces NBA
of at most exponential size whose emptiness can be checked in PSPACE again.

As for all linear time temporal logics, the satisfiability complexity results im-
mediately carry over to the model checking problem for finite transition systems
and the implicit “for all paths” semantics. The complexities are the same for
all the fragments since the complexity classes mentioned there are determinis-
tic – apart from the fragments TL[F] and TL[©]. It is known that their model
checking problems are co-NP-complete [9].

Apart from the open questions concerning the strictness of two inclusions, the
work presented herein gives rise to some other questions regarding the expres-
sive power and complexity of temporal logics with extended regular expressions,
i.e. with a complementation operator included. It is known that its emptiness
problem is non-elementary but it remains to be seen whether the presence of the
temporal operators also lifts the satisfiability problem up the exponential space
hierarchy by one level.
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Note that in this setting the syntax of formulas contains a clear hierarchi-
cal structure: regular expressions can occur within temporal formulas but not
vice-versa. It remains to be seen what the corresponding complexity and expres-
siveness results are when both kinds are allowed to be mixed in a straight-forward
way: a temporal formula ϕ can be seen as an atomic proposition that holds in
finite words of length exactly 1. Let TL∗[..] denote the resulting fragments. With
this mixture, it is easy to answer one of the open questions regarding expressive
power: we have TL[©, U] ≤ TL∗[F, Cl] because of ϕUψ ≡ Fψ∧Cl((ϕ)∗; (ψ); �∗).

Finally, a more thorough treatment of succinctness issues between these logics
may be desirable.
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