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Abstract. Model checking is a successful technique for automatic pro-
gram verification. We show that it also has the power to yield competitive
solutions for other problems. We consider three computation problems
on strings and show how the polyadic modal µ-calculus can define their
solutions. We use partial evaluation on a model checking algorithm in
order to obtain an efficient algorithm for the longest common substring
problem. It shows good performance in practice comparable to the well-
known suffix tree algorithm. Moreover, it has the conceptual advantage
that it can be interrupted at any time and still deliver long common
substrings.

1 Introduction

Model checking is the process of automatically evaluating a logical formula on a
given interpretation. This logical decision problem has proved to be extremely
useful in the area of systems verification where dynamic systems are modelled as
transition systems and formulas of temporal logics are being used to formalise
behavioural properties [6, 20]. Model checking is used to answer the question
of whether or not such systems are correct with respect to some specification,
namely whether or not they possess the formalised properties. The logics that
are typically used in program verification have been designed in order to express
typical correctness properties of dynamic systems: LTL [19], CTL [7], CTL* [8],
etc. The name “model checking” is derived from the process of checking whether
some interpretation in the form of a mathematical structure has the property
defined by the formula, i.e. is a model of the formula in logical terms.

The impact that model checking has had for program verification has led to
a common understanding of model checking as a program verification method.
Still, the applicability of model checking is not limited to that area. Model check-
ing can in principle be used to solve all kinds of decision problems, provided that
the used specification language is strong enough to express that problem in the
usual sense of a word problem: given a representation of an instance x of a prob-
lem, decide whether or not x belongs to some set P . For instance, x could be
a directed graph, and P may consist of all graphs having a Hamiltonian path.
Take for example Monadic Second-Order Logic (MSO) interpreted over graphs.
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It is not too difficult to construct a formula ϕham which is satisfied by a graph G
iff it has a Hamiltonian path. In fact, Fagin’s Theorem [10] and the fact that the
Hamiltonian path problem is easily seen to belong to NP give such a formula
straight-away. Thus, ϕham expresses the Hamiltonian path problem, and any
model checking algorithm for MSO on graphs can be used to solve the Hamil-
tonian path problem. Likewise, any problem that is definable in a logic with a
decidable model checking problem can therefore be solved by model checking.

The logics used in program verification mentioned above are not capable
of expressing more complex properties like the Hamiltonian path for instance,
unless NLOGSPACE=NP. This is a simple consequence of the fact that the
complexity of model checking a fixed formula – known as data complexity –
in either of these logics is only NLOGSPACE whereas the Hamiltonian path
problem is NP-hard.

MSO is not necessarily a good logic for model checking. In order to be useful,
such logics must provide a good balance between expressive power on one hand
and efficient decision procedures on the other. Clearly, these two goals may be in
conflict. It is commonly understood that the use of fixpoint quantifiers provide
such a good balance because fixpoints can be computed using iteration methods
for instance, and often they increase expressive power.

Fixpoints are implicitly present in the temporal logics mentioned above. An-
other prominent logic in model checking for program verification is the modal
µ-calculus Lµ [15] which explicitly adds fixpoint quantifiers to a basic modal
logic. Its data complexity is in P, and it is known that it can express more prop-
erties or problems than temporal logics like LTL, CTL, etc. Still, its expressive
power is limited by other facts, for instance it can only express properties of
single nodes in a directed graph. This weakness has been overcome with the in-
troduction of the polyadic or higher-dimensional µ-calculus [1, 18] which behaves
very much like the ordinary modal µ-calculus when it comes to model checking.

In this paper we show how model checking can be used in order to solve
problems in an area that is quite different from program verification: string
problems. We consider three of the most prominent examples of such problems:
given a set of strings over some finite alphabet, find the longest common sub-
string, the longest common subsequence, resp. the shortest common superstring.
Such problems have important applications in bio-informatics as in sequence and
genome analysis [12, 22], in linguistic information retrieval [24]; plagiarism de-
tection, for instance in publications [11] or source code [17, 5]; data compression
[21] and so on.

We use the polyadic µ-calculus in order to express these problems on simple
graphs encoding string inputs and derive algorithms for these problems from a
generic model checking algorithm for this logic. This realises more than a Tur-
ing or Cook reduction in two ways. First of all, model checking is a decision
problem whereas the string problems mentioned above are computation prob-
lems. It is not obvious how model checking could be used to solve them. We do
not implement standard tricks like binary search or others to find a solution.
Instead, we use fixpoint quantifiers and iteration in the polyadic µ-calculus in
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order to compute solutions of these strings problems. Second, we want to show
that model checking can be used in order to derive competitive algorithms in
areas other than program verification. A vital step towards this goal is partial
evaluation. Model checking takes two inputs: a formula and an interpretation.
Algorithms for particular decision problems can be derived from model checking
algorithms by fixing the formula input to the one that expresses the problem.
Partial evaluation is the process of optimising the generic algorithm to one that
operates on a fixed formula and a variable (encoding of) its interpretation.

The fact that highly expressive modal fixpoint logics can be used in order
to solve problems that are more complex than the reachability problems arising
in automatic program verification has been observed before. For instance, [2]
develops a model checking algorithm for an extension of the modal µ-calculus
with first-order predicate transformers. It is shown that this can be used to solve
problems of higher complexity like NFA universality, QBF, or the shortest com-
mon supersequence problem (SCS). The principals are applicable to the other
mentioned string problems as well. However, that work only presents the princi-
pal applicability of model checking for SCS. The work presented here improves
and extends this in the following ways: the use of first-order predicate trans-
formers turned out to be an overkill; here we show that modal fixpoint logics
without higher-order features suffice for these string problems. Moreover, while
[2] only presents the principal definability of these problems, here we take the
work to a further level and show how the generic model checking algorithms can
be optimised in order to arrive at practical algorithms for string problems.

The rest of the paper is organised as follows. Sect. 2 recalls the polyadic µ-
calculus including the question of how model checking can be done for this logic.
Sect. 3 shows how the three aformentioned string problems can be represented
as model checking problems in this logic. It also contains a discussion on how
model checking logics with fixpoint quantifiers can be used to solve computation
problems. In order to evaluate the viability of this approach we concentrate on
one particular problem in Sect. 4 where we show how partial evaluation is being
used to turn the model checking algorithm for the polyadic µ-calculus on a fixed
formula into an algorithm for the longest common substring problem. Sect. 5
compares the obtained algorithm against existing approaches. Sect. 6 finishes
the paper with some concluding remarks.

2 The Polyadic µ-Calculus

Syntax and Semantics. The polyadic µ-calculus is interpreted over transition
systems. Let Σ and P be finite sets of labels. A transition system is a labeled
directed graph T = (S,−→, λ) with S being a set of nodes, −→ ⊆ S ×Σ × S the
edge relation, and λ : S → 2P a function assigning a set of labels from P to
every node. We write s

a−→ t for (s, a, t) ∈ −→.
Formulas of the polyadic µ-calculus Lωµ are given by

ϕ ::= pi | ¬ϕ | ϕ ∧ ϕ | 〈a〉iϕ | X | µX.ϕ
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where p ∈ P, a ∈ Σ, i ∈ N, and X ∈ V for some countably infinite set V of
variables. We additionally assume that any free occurrence of a variable X is
under the scope of an even number of negation symbols in µX.ϕ.

Apart from the usual Boolean operators that can be expressed using ∧ and
¬ we introduce the following abbreviations: [a]iϕ := ¬〈a〉i¬ϕ and νX.ϕ :=
¬µX.¬ϕ[¬X/X].

The dimension of a formula is the number of different indices occurring in
operators of the form pi, 〈a〉i or [a]i in it. The fragment Lkµ consists of all formulas
of dimension at most k.

A formula of dimension k is interpreted in a k-tuple of nodes in a transition
system T = (S,−→, λ). The indices an atomic propositions and modal operators
refer to a particular dimension, i.e. pi is to be read as “the i-th component (of
the k-tuple) under consideration) satisfies p”. Likewise, 〈a〉iϕ formalises that the
tuple can be changed in its i-th component to some successor state such that ϕ
holds.

The semantics assigns to every formula of dimension k the set of all k-tuples
that satisfy it as follows. In order to handle free variables we use a variable

interpretation ρ : V → 2S
k

assigning to each variable a set of k-tuples of nodes.
Then ρ[X 7→ S] denotes the function that maps X to the set S and agrees with
ρ on all other arguments.

[[pi]]
T
ρ := {(s1, . . . , sk) | p ∈ λ(si)}

[[¬ϕ]]Tρ := 2S
k

\ [[ϕ]]Tρ

[[ϕ ∧ ψ]]Tρ := [[ϕ]]Tρ ∩ [[ψ]]Tρ

[[〈a〉iϕ]]Tρ := {(s1, . . . , sk) | ∃t ∈ S s.t. si
a−→ t and

(s1, . . . , si−1, t, si+1, . . . , sk) ∈ [[ϕ]]Tρ }
[[X]]Tρ := ρ(X)

[[µX.ϕ]]Tρ :=
⋂
{S ⊆ Sk | [[ϕ]]Tρ[X 7→S] ⊆ S}

Thus, µX.ϕ defines the least fixpoint of the function that takes a set of k-tuples
of nodes S and returns the set of all k-tuples satisfying ϕ assuming that X is
interpreted as S [14, 23]. We write s |=ρ ϕ if s ∈ [[ϕ]]Tρ for a k-tuple s of nodes
in T , denoting the fact that s satisfies the property formalised by ϕ. If ϕ does
not contain any free variables we may also drop the interpretation ρ.

A prominent example of a L2
µ formula is

ϕbis := νX.(
∧
p∈P

p1 ↔ p2) ∧
∧
a∈Σ

[a]1〈a〉2X ∧ [a]2〈a〉1X .

It expresses bisimilarity in the sense that for all pairs of two nodes (s, t) we have
(s, t) |= ϕbis iff s and t are bisimilar.

Model Checking Lkµ. A simple model checking algorithm for Lωµ is implicitly
given in the semantics of that logic. Given a finite transition system T and a
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closed Lkµ formula ϕ, one can compute the set [[ϕ]]T by induction on the structure
of ϕ. Fixpoint subformulas of the form µX.ψ or νX.ψ can be handled using
Knaster-Tarski fixpoint iteration: for least fixpoint formulas one binds X to the
empty set and computes the value of ψ on T . Then X is bound to this set of
k-tuples and so on until a fixpoint is reached. For greatest fixpoints one starts
the iteration with Sk instead.

The model checking problem for the polyadic µ-calculus has been investigated
before [1, 16]. Essentially, there is no conceptual difference to model checking the
ordinary µ-calculus [9] which consists of all formulas of arity 1. In fact, there
is a simple reduction from model checking formulas of arity k to formulas of
arity 1 on the k-fold product of a transition system. Thus, one of the major
parameters in its complexity – besides the formula’s arity – is its alternation
depth. Intuitively, it measures the nesting depth of fixpoints of different type.
For formulas with no such nestings we set it to 1. Since alternating fixpoint
quantifiers do not play any role in tackling string problems in the next section
we omit a formal definition of alternation depth here and refer to the literature
instead [4].

The next proposition summarises the findings on the complexity of model
checking Lωµ .

Proposition 1 ([1, 16]). Given a transition system T with n nodes and a closed
Lkµ formula ϕ of alternation depth d, the set of all k-tuples of nodes in T satis-

fying ϕ can be computed in time O((|ϕ| · nk)dd/2e).

3 Defining String Problems

The three problems under consideration – longest common substring, resp. se-
quence, and shortest common superstring – all get as input a set W = {w1, . . . ,
wm} of strings over some finite alphabet Σ. For ease of presentation we assume
them all to have length n. The theory and procedures to follow are easily adapted
to handle strings of varying lengths. First we consider straight-forward represen-
tations of such inputs by transition systems. Distinguishing the two cases of
finding longest substructures or shortest superstructures turns out to be benefi-
cial.

Longest Common Substring and -Sequence. For these two problems we
represent the input strings W = {w1, . . . , wm} by a transition system contain-
ing a single path for each such string. We also use the symbols 1, . . . ,m as
propositions on the nodes in order to assess which string a node is in. Let
wi = ai,1 . . . ai,n for i = 1, . . . ,m. Then TW is given as

1 1 1
. . .

1
. . .

m m m
. . .

m

a1,1 a1,2 a1,3 a1,n am,1 am,2 am,3 am,n

5



Now consider the Lmµ -formula ϕlcst := νX.(
∧m
i=1 ii)∧

∨
a∈Σ〈a〉1 . . . 〈a〉mX in-

terpreted over transition systems of the form TW . In order to explain its meaning
we consider how the näıve fixpoint iteration algorithm computes [[ϕlcst]]

TW . First
we observe that

∧m
i=1 ii satisfies exactly those m-tuples for which each i-th com-

ponent belongs to the i-th input string. Thus, fixpoint iteration only yields tuples
of positions with exactly one for each input string. Let us call these normal.

The greatest fixpoint iteration starts with the set of all tuples, and we can
restrict our attention to all normal tuples only. This set can be seen as a rep-
resentation of all the position at which the string ε occurs. The next fixpoint
iteration forms the union of all sets of normal tuples which represent positions
such that some a-edge is possible from all of them, and the resulting tuple repre-
sents occurrences of the substring a. Thus, it computes all positions of common
substrings of length 1. In general, the j-th fixpoint iteration computes all po-
sitions (as normal m-tuples) of a common substring of length j. Clearly, this
process is monotonically decreasing and there is some j – at most n+ 1 – such
that the j-th iteration returns the empty set.

Indeed we have TW 6|= ϕlcst for any set W of strings. Nevertheless, model
checking via fixpoint iteration computes all common substrings of W before
finding out that the formula is not satisfied. This is the basis for an algorithm
computing the longest common substring using model checking as described in
detail in the next section.

Example 1. Consider the input W = {aabab, abaa, babab}, represented by the
following transition system. For convenience, we have given the nodes names.
We also omit the nodes’ labels since they are just the same as the names’ first
components.

1,0 1,1 1,2 1,3 1,4 1,5 2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4 3,5

a a b a b a b a a

b a b a b

A greatest fixpoint iteration for ϕlcst on TW starts with X0 as the set of all
positions. In order to compute the next iteration, note that [[(

∧3
i=1 ii)]]

TW is the
set of all tuples of the form ((1, j1), (2, j2), (3, j3)) for appropriate j1, j2, j3. Every
further iteration intersects some set obtained by evaluating the modal terms
with this set. We therefore disregard all other tuples. Under this assumption,
[[
∨
c∈{a,b}〈c〉1〈c〉2〈c〉3X]]TW[X 7→X0] then evaluates to

X1 := {(1, 0), (1, 1), (1, 3)} × {(2, 0), (2, 2), (2, 3)} × {(3, 1), (3, 3)}
∪ {(1, 2), (1, 4)} × {(2, 1)} × {(3, 0), (3, 2), (3, 4)}

which is exactly the set of node tuples from which all components can do an
a-edge or all components can do a b-edge.

The next iteration for the evaluation of the greatest fixpoint is obtained by
evaluating the fixpoint body again, this time under the variable interpretation
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[X 7→ X1], and it yields

X2 := {(1, 1), (1, 3)} × {(2, 0)} × {(3, 1), (3, 3)}
∪ {(1, 2)} × {(2, 1)} × {(3, 0), (3, 2)}

which is the set of positions of ab, resp. ba, in the input strings. Note that aa
for instance is no common substring, and this is reflected by the fact that there
is no p such that ((1, 0), (2, 2), p) belongs to X2.

The next iteration yields X3 := {((1, 1), (2, 0), (3, 1))} which denotes the
positions of the common substring aba. Finally, we get X4 = ∅ at which point the
fixpoint is reached, and the solution to this longest common substring instance
is obtained as the value of the last iteration beforehand, namely aba at positions
1, 0, and 1 in the three input strings.

L2
µ is also capable of expressing the longest common subsequence problem in

the same sense. Let 〈∗〉iψ abbreviate µY.ψ ∨
∨
a∈Σ〈a〉iY . Informally, it denotes

the set of all tuples such that the i-th component can make an arbitrary num-
ber of steps along any edge and some resulting tuple satisfies ψ. Now consider
ϕlcsq := νX.(

∧m
i=1 ii)∧

∨
a∈Σ〈a〉1〈∗〉1 . . . 〈a〉m〈∗〉mX. Evaluating this formula on

a transition system of the form TW will compute the longest common subse-
quence of the input strings in W in the same way as above. Note that, again,
we have TW 6|= ϕlcsq for any W but all the solutions to this instance are being
found in the last iteration of the greatest fixpoint evaluation.

Shortest Common Superstring. In order to model the shortest common super-
string problem we change the representation of words by simple paths in a tran-
sition system. Given a finite set W of words over Σ, the transition system T ′W
consists of one component for each word wi = ai,1 . . . ai,n which has the form

s
. . .

e
Σ

ai,1 ai,2 ai,3 ai,n
Σ

Two additional atomic propositions s, e are being used to mark the start node
and the end node of each component. They, together with the special structure
of these transition systems, can also be used to enforce tuples to contain exactly
one node from each input string. Thus, propositions 1, . . . ,m are not needed
anymore.

Now consider ϕscs := (
∧m
i=1 si) ∧ µX.(

∧m
i=1 ei)∨

∨
a∈Σ〈a〉1 . . . 〈a〉mX. Intu-

itively, it denotes the set of all tuples such that

1. each component is labeled with s, and
2. there is a sequence of edge labels w such that each component has a path

with these labels and the nodes of the tuple at the end of all these paths are
all labeled with e.

It should be clear from this description that we have T ′W |= ϕscs for any W .
However, evaluating ϕscs on T ′W by a least fixpoint iteration will ultimately
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construct a shortest common superstring for all the strings in W . This iteration
starts with X0 := ∅ and – when restricted to tuples with one component in each
string – gradually finds tuples (p1, . . . , pm) of positions in the i-th iteration such
that there is a word w of length i with a path labeled with w from each of their
components. By the structure of T ′W , the iteration grows monotonically “to the
left”, i.e. it only ever adds tuples with positions further left in the input words.
Eventually – after no more than (n + 1)m iterations in the worst case – the
tuple ((1, 0), . . . , (m, 0)) is being found and the least fixpoint is being reached.
The number of iterations done to achieve this equals the length of a shortest
common superstring, and this string can easily be computed by annotating the
found tuples of positions successively.

4 Partial Evaluation and Optimisation

The algorithms sketched above are rather näıve and do not exploit any opti-
misation potential at all. The descriptions above are only meant to show how
model checking with fixpoint logics can in principle be used in order to solve such
computation problems. Here we focus on one particular problem, namely finding
longest common substrings, and show how partial evaluation of model checking
algorithms can be used to obtain an efficient procedure. Also note that a näıve
estimation of the worst-case time complexity of these algorithms according to
Prop. 1 yields a horrendous overapproximation: in general, model checking Lkµ is
exponential in the arity k, here equalling the number of strings m in the input.
This, however, ignores the special structure of the transition systems used here
and that of the fixed formula.

Consider the algorithm that has been described in Example 1. It basically
works on a set X of common substrings, and in each iteration it extends all
elements of X to a longer common substring by considering one more letter to
the left. For m input strings of length n, the set X is represented by a set of
m-tuples, which initially contains nm tuples that represent the positions of the
empty string.

A straightforward optimisation changes the representation of the set X. In-
stead of using a set of m-tuples, we can represent a single substring w with a
set t(w) of pairs such that (i, j) ∈ t(w) iff w occurs in wi at position j. By using
this representation, initially we have nm positions instead of nm positions for
the empty string. Moreover, it is easy to check whether w is a common substring
which is true iff for every i = 1, . . . ,m there is some j with (i, j) ∈ t(w).

Applying these straight-forward optimisations to the procedure described in
Ex. 1 yields Algorithm 1. It collects all non-extendable common substrings in a
set Y , and uses that for a return value.

In the following we describe further optimisations for Algorithm 1, so that it
can find longest common substrings faster and more efficiently.

Extension restriction. To extend w ∈ X in each iteration, it is not necessary
to consider all letters from Σ. Suppose w = w′a, where a ∈ Σ and w′ ∈ Σ∗,
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Algorithm 1 Finding the longest common substring

1: X ← Σ, Y ← ∅
2: while X 6= ∅ do . extend some w ∈ X
3: take w ∈ X
4: if Ext(w) 6= ∅ then . Ext(w) := {aw | a ∈ Σ, aw common substring }
5: X ← Ext(w) ∪X\w . replace w with its extension Ext(w)
6: else
7: Y ← {w} ∪ Y . have w as non-extendable common substring
8: end if
9: end while

10: return the longest w ∈ Y

then to extend w it is enough to consider letters that have successfully extended
w′, since for every a′ ∈ Σ if a′w′ is not a common substring, then a′w is not
either. We can get the letters that extend w′ in constant time by always keeping
a pointer from w to w′ for each w ∈ X, and from w to all of its extensions
for each w ∈ X that have been extended. Moreover, we should always take the
shortest w ∈ X in each iteration, to make sure that the extension of w′ is already
computed in the previous iteration.
Multiple substrings extension. Under some conditions, extending a single
w ∈ X may imply extensions of some other substrings u ∈ X. For any w ∈ X
let S(w) = {u ∈ X | u = wv, v ∈ Σ+}. If w is extendable to aw, in general we
cannot conclude that u ∈ S(w) is also extendable to au. However it is the case if
t(aw) is equal to {(i, j−1)|(i, j) ∈ t(w)}, since this means that all occurrences of
w in the input strings are always preceded by a. In this case, we can extend w to
aw, and also every u ∈ S(w) to au. Likewise if w is not extendable to any longer
common substring, then every u ∈ S(w) is also not extendable. In this case we
can move w and all u ∈ S(w) to Y . Extending all u ∈ S(w) (resp. moving all
u ∈ S(w) to Y ) can be done in constant time by exploiting the pointers defined
before, i.e. a pointer from w = w′a to w′ since every u are successively linked by
the pointer to w.
Multiple letters extension. It is also possible to extend w ∈ X with a se-
quence of letters anan−1 . . . a1 ∈ Σn instead of only one single letter. Suppose
w = w′a, and the string w′ was extended to a common substring anan−1 . . . a1w

′

because of the previous extension policy, i.e. because t(a1w
′) = {(i, j−1)|(i, j) ∈

t(w′)}, . . . , t(an . . . a1w
′) = {(i, j − 1)|(i, j) ∈ t(an−1 . . . a1w′)}. Then if we can

extend w to a1w, we can immediately conclude that w can be extended to
anan−1 . . . a1w.

All of these optimisations will not make the extension of a single substring
w ∈ X harder since we store more information on each common substring,
to accommodate the optimisations. The extension policies derived from these
optimisations can cut down the number of iterations needed in Algorithm 1.

Example 2. Let W = {cgtacgag, aacgtag, agcgtacg} be the input strings.
We illustrate the computation of the longest common substring using Algo-
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i X Y

1 g,t,c,a -

2 ag,cg,t,c,a -
3 ag,cg,gt,c,a -
4 ag,cg,gt,ac,a -
5 ag,cg,gt,ac,ta -

6 cg,gt,ac,ta ag

7 acg,gt,ac,ta ag

8 acg,cgt,ac,ta ag
9 acg,cgt,ta ag,ac
...

...
...

(a) without optimisation

i X Y

1 g,t,c,a -

2 ag,cg,t,c,a -
3 ag,cg,gt,c,a -
4 ag,cg,gt,ac,a -
5 ag,cg,gt,ac,gta -

6 cg,gt,ac,gta ag

7 acg,gt,ac,gta ag

8 acg,cgt,ac,cgta ag
9 acg,cgt,cgta ag,ac

10 cgt,cgta ag,ac,acg

11 - ag,ac,acg,cgt,cgta

(b) with optimisation

Fig. 1: Computation for W = {cgtacgag, aacgtag, agcgtacg}

rithm 1 in Fig. 1, both with and without optimisation. In each iteration we
pick the shortest common substring to be extended. Figure (a) shows the first
9 iterations (of 14 altogether) without any optimisation. Figure (b) shows the
computation with optimisation which finds the longest common substring cgta

after 11 iterations.
Note that in Fig.1 (b), we apply the optimisation in the 4th, 7th, and 10th

iteration. In the 4th iteration it is found that a can be extended to ta and we
have t(gt) = {(i, j − 1) | (i, j) ∈ t(t)} from the previous iteration, so a can be
extended directly to gta. In the 7th iteration, by extending gt to cgt we also
extend gta to cgta since gta ∈ S(gt). In the 10th iteration cgt is not extendable
so we conclude that cgta are not either.

Theorem 1. For input strings w1, . . . , wm each of length n, the number of it-
erations needed by the optimised algorithm is at most n+ n+m(n− 1).

Proof. In each iteration i, we pick the shortest common substring w ∈ Xi to be
extended, which satisfies one of these properties, either:

1. w cannot be extended to the left anymore, or
2. w can be extended to aw and t(aw) = {(i, j − 1)|(i, j) ∈ t(w)}, i.e. w allows

multiple substring extension as described previously, or
3. none of these two conditions apply to w.

Let L1, L2, L3 be the set of common substring of w1, . . . , wn, such that w ∈ Li
iff w satisfies the i-th property.
|L1| ≤ n, since we have a one-to-one mapping from L1 to the set of prefixes

of w1. Note that each v ∈ L1 is a substring of w1 (resp. w2, . . . , wn), and it can
be mapped to a prefix uv of w1. Every two different v1, v2 ∈ L1 are mapped to
two different prefixes of w1, for otherwise one of them would be a suffix of the
other, and thus could be extended to the left which would contradict v1, v2 ∈ L1.
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|L3| ≤ m(n− 1), since if v ∈ L3 then v occurs on all input strings, and there
exists an input string wi such that v occurs more than once on wi. If |L3| = k,
then |w1|+ . . .+ |wm| is at least m+ k. However, the added lengths of all input
strings is bounded by mn, so |L3| ≤ mn−m.

In general, |L2| ≤ n2. But consider L′2 ⊆ L2 where v ∈ L′2 iff its longest
proper prefix v′ does not belong to L2. Suppose on the i-th iteration, we pick
v ∈ L2 to be extended. If v /∈ L′2 then the longest proper prefix v′ of v is not yet
extended on any j-th iteration, j < i. Otherwise either the optimisation rule:
multiple substring extension or multiple letters extension have been applied to
obtain the extension av of v, and implies v /∈ Xi for every i > j. So v /∈ L′2
contradicts to v being the current shortest common substring found.

|L′2| ≤ n, because we have a one-to-one mapping from L′2 to the set of suffixes
of w1. Each v ∈ L′2 can be mapped to a suffix vu of w1. Every two different
v1, v2 ∈ L′2 are mapped into two different suffixes of w1, for otherwise one of
them would be a prefix of the other. Suppose w.l.o.g. that v1 was a prefix of
v2. Then v1 is also a prefix of the longest proper prefix v′2 of v2. Hence v′2 ∈ L2

which contradicts that v2 ∈ L′2. ut

5 A Comparison Against the Suffix-Tree Approach

The literature describes two algorithms for solving the longest common substring
problem: dynamic programming [13] and the suffix tree algorithm [12]. However,
it is known that the speed and versatility of the suffix tree algorithm is better
than dynamic programming. It is therefore the state-of-the-art and standard
algorithm used for the longest common substring problem.

A suffix tree of W is a tree storing all suffixes of strings in W . It has many
applications in biological sequence data analysis [3], especially for searching pat-
terns in DNA or protein sequences. For a more detailed explanation of suffix trees
see [12]. We compare the optimised Algorithm 1 with the suffix tree algorithm
empirically on a biological data set, and also conceptually.

Empirical Comparison. An interesting application for the longest common
string problem comes from bioinformatics area for identification of common fea-
tures in genome analysis [12]. We compare the performance of the optimised
Algorithm 1 and the suffix tree algorithm on a data set of complete genomes.
We consider the 11 species that are named in Fig. 2. All of these complete
genomes can be obtained on a public GenBank database of NCBI1.

We choose mostly virus and bacteria genomes since they usually have only
one or two chromosomes, and the size of their complete genome is approxi-
mately 3 megabytes, which is still suitable for the experiment. For more complex
species such as humans the size of their complete genome is approximately 800
megabytes1. The bacteria Vibrio cholerae and Agrobacterium tumefaciens have

1 see http://www.ncbi.nlm.nih.gov/genbank
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Species Size Suffix Tree Alg. Opt. Alg. 1

E. coli, M. tuberculosis 9.8 mb 70 min 33 sec 54 min 26 sec
A. tumefaciens (I), V. cholerae (I) 7.1 mb 42 min 46 sec 38 min 17 sec

S. enterica, B. subtilis (I) 9.2 mb 64 min 2 sec 52 min 13 sec
A. fugildus, N. gonorrhoeae, 7.1 mb 35 min 10 sec 33 min 50 sec

A. tumefaciens (II)
C. trachomatis, A. aeolicus, 5.7 mb 21 min 33 sec 24 min 34 sec

H. influenzae, V. cholerae (II)
E. coli, V. cholerae (I) 8.2 mb 60 min 53 sec 46 min 21 sec

M. tuberculosis, V. cholerae (I) 7.5 mb 43 min 36 sec 40 min 4 sec

Fig. 2: Comparison with suffix tree algorithm

two chromosomes, and we treat each chromosome separately. We take two to
four species for each experiment and try to find their longest common substring.

Fig. 2 compares the running time of the optimised Algorithm 1 and the
suffix tree algorithm on some benchmarks. Both algorithms were implemented
in OCaml. The suffix tree algorithm uses Sébastien Ferré’s implementation of
the suffix tree data structure2. The experiments have been run on a machine
with 16 Intel Xeon cores running at 1.87GHz and 256GB of memory.

The result suggests that the optimised Algorithm 1 is comparable to the suffix
tree algorithm. The time needed is often even less than the suffix tree algorithm,
except on the data set with 5.7 mb, where the optimised Algorithm 1 was 3min
slower than the suffix tree algorithm. However, in general we can conclude that
the optimised Algorithm 1 performed well compared to thesuffix tree algorithm.

Conceptual Comparison. The suffix tree algorithm builds the tree first and
then searches for the deepest node that represents the longest common substring
of all input strings. The usual approaches to building the tree are incremental
with respect to the number of the input strings [12]. For example, to build
a suffix tree of W = {w1, . . . , wn}, one starts with a suffix tree of w1, then
gradually modifies the tree to include the suffixes of w2, and so on. This has the
disadvantage of not being able to see the common substrings of all w1, . . . , wm
during the tree construction. The whole tree has to be constructed first before
searching for any common substring of w1, . . . , wm. What can be recorded during
the tree construction is only the common substring for the first m-input strings.

Now suppose that the input data is large such that despite the linear time
complexity an entire run of the algorithm would still take, say, days to termi-
nate. In such a case it would be great if the algorithm was able to report the
finding of long common substrings on-the-fly, i.e. incrementally produce longer
and longer common substrings. The suffix tree algorithm is not able to do this,
because it needs to process all input strings before finding even the shortest
common substring. However it is not the case for Algorithm 1. We have seen
that the algorithm always maintains the currently longest common substring

2 see http://www.irisa.fr/LIS/ferre/software.en.html
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found in each iteration, and it is able to incrementally report longer and longer
common substrings rather than finding them only at the very end of the entire
computation.

6 Conclusion and Further Work

We have shown that certain string problems can be expressed as model checking
problems for modal fixpoint logics. Fixpoint computation can be used to find op-
timal solutions for these problems. We have assumed straight-forward encoding
of input strings as transition systems of disjoint paths. However, the formulas of
the poyadic µ-calculus that were used to define these string problems also work
on more compact graph encodings when common parts of input strings are being
shared.

We have focused on the longest common substring problem and shown that
it is possible to derive a new competitive algorithm by partial evaluation of a
generic model checking algorithm for the polyadic µ-calculus. It turned out to
have the conceptual advantage of being interruptable: roughly speaking, at half
of the running time it has computed the half-longest common substrings of all
inputs. The suffix tree algorithm, as a standard for this problem, on the other
hand has computed, at half of the running time, the longest common substrings
of half of the input strings.

Further work on the longest common substring algorithms includes a broader
practical evaluation and a thorough study of possibilities to combine features
from the suffix tree algorithm and the model checking approach. It also remains
to execute the partial evaluation work for the two other string problems consid-
ered here, and possibly others as well in order to create hopefully competitive
and usable algorithms for these problems, too.

Finally, we believe that model checking technology can contribute to algo-
rithmic solutions for all sorts of other problems as well. This, of course, has to be
studied for every possible decision or computation problem of interest separately.
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