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Abstract

This paper shows that linear time µ-calculus with sequential composition defines
exactly those properties that are expressible with alternating context-free grammars
for ω-words. This helps to understand the expressive power of modal µ-calculus with
a chop operator and provides a logical characterisation of the class of alternating
context-free languages.

1 Introduction

Beginning with the work of Büchi who showed that Monadic Second-Order
Logic (MSO) defines exactly the class of regular languages, several connec-
tions between logics and classes of formal languages have been found. One
important result concerns modal µ-calculus Lµ which was shown to be equi-
expressive to the bisimulation invariant fragment of MSO, [8].

Fixed Point Logic with Chop, FLC, is an extension of Kozen’s modal µ-
calculus Lµ, [9], which was introduced in [12]. It was shown to genuinely
increase Lµ’s expressive power since it is able to express certain properties
that are not even context-free. Some of these properties are interesting for
verification purposes for example the fact that on every path of a transition
system the number of receive actions never exceeds the number of send actions
so far, [10].

However, FLC’s exact expressive power is unknown. Here, we approach
this question by defining its linear time equivalent LFLC, Linear Time Fixed
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Point Logic with Chop, which can also be seen as linear time µ-calculus en-
riched with sequential composition. We show that LFLC defines exactly those
languages which are generated by alternating context-free ω-grammars with
parity conditions (ω-ACFGs).

The nonterminals of a classical context-free grammar (CFG) can be seen
as existential. They generate a word iff there is a rule for them that generates
a word. Alternating grammars feature universal nonterminals as well which
generate a word iff all rules for this nonterminal generate the word. They have
been studied in [11] for example where it is stated incorrectly that alternating
CFGs generate exactly those languages accepted by alternating pushdown
automata. This was corrected in [7] where APDAs are shown to be equi-
expressive to linear-erasing alternating context-free grammars. There, the
size of sentential forms in a derivation is linearly bounded by the size of the
generated word.

Another form of alternation for context-free grammars was introduced in
[13]. There, quantification is over those words that derive a certain word.
I.e. in the derivation relation w ⇒∗ v one quantifies over w in order to de-
fine whether v can be generated. We take the approach of [11] and quantify
over those words v that are derived in one step from w where w contains a
nonterminal. In other words, [13] considers alternation over grammars which
gives them context-sensitivity since certain nonterminals are only replaced if
they occur in a word of a certain form. We consider alternation in a grammar
which keeps them truly context-free.

ω-grammars generalise ordinary grammars by allowing infinite words to
be generated as well. Context-free ω-grammars have been studied in [3] for
example.

There are several possible ways to specify what it means for a grammar
to generate an infinite word. We are interested in LFLC which has extremal
least and greatest fixed points that can be nested in a formula. It is known
from work on automata for the modal µ-calculus that a parity condition cap-
tures nested fixed points of different types best, [4]. There, each state of the
automaton is labelled with a parity index and the acceptance of a word de-
pends on the parity of the least index which is visited infinitely often. We
use parity indices for nonterminals of a grammar. This makes the translations
between grammars and formulas easiest. It remains to see whether this notion
is equivalent to Rabin or Streett or even Büchi conditions for ω-ACFGs.

The result that the class of LFLC definable languages coincides with ω-
ACFL, the class of alternating context-free ω-languages, provides insight into
both formalisms. Since the emptiness problem for alternating context-free
languages is undecidable, LFLC is undecidable, too. LFLC’s model checking
problem is, however, easily seen to be decidable. Decidability of the word
problem for ACFGs is not surprising since ACFL are contained in the class of
context-sensitive languages (CSL). However, this gives a non-optimal upper
PSPACE bound for ACFL’s word problem.
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We sketch a model checker for LFLC that runs in PTIME for finite words.
Since there are context-sensitive languages whose fixed grammar word problem
is PSPACE-complete already we get a separation result between ACFL and
CSL unless PTIME = PSPACE.

It is known that ACFL strictly subsumes CFL. This and the former give a
characterisation of which properties can be formalised in LFLC. These results
carry over to FLC to some degree since it is easy to see that the set of labellings
along paths in a model for an FLC formula is LFLC definable.

Finally, we show how to translate an LFLC formula into an alternating
pushdown automaton. This is a generalisation of the translation from context-
free grammars to Pushdown Automata over finite words, [2]. The translation
from Pushdown Automata to context-free grammars is not easily generalisable
to the framework of infinite words and alternation. [7] hints that the trick of
letting the grammar guess a state that the automaton will be in fails since
alternating automata can be in several states simultaneously. Furthermore,
in the presence of alternation a word does not necessarily have a left-most
derivation. Their result for linear-erasing ACFGs is not easily generalisable to
ω-ACFGs since it depends heavily on the presence of end markers for generated
words and, hence, on their finiteness.

2 Alternating Languages, Grammars and Pushdown
Automata

For a thorough introduction to the theory of grammars and formal languages
see [6] and [14]. Here we will just recall the definitions that will be used later
on.

An alphabet Σ is a finite set of symbols {a, b, . . .}. A word w ∈ Σ∗ is a finite
sequence of symbols from Σ, an ω-word w ∈ Σω an infinite one. The empty
sequence is denoted by ε. |w|a denotes the number of occurrences of a in w.
A language L is a subset of Σ∗, an ω-language a subset of Σω. Σ∞ := Σ∗∪Σω.

Let w, v ∈ Σ∞. The sequential composition of w and v is wv if w ∈ Σ∗

and w if w ∈ Σω. The set of subwords of w is Sub(w) = {v | ∃v1 ∈ Σ∗,∃v2 ∈
Σ∞, s.t. w = v1vv2}.

A morphism between two alphabets is a mapping m : Σ1 → Σ∗
2. Mor-

phism extend to words and languages. If w = a0a1 . . . ∈ Σ∞ then h(w) :=
h(a0)h(a1) . . ., and for a language L ⊆ Σ∞, h(L) := {h(w) | w ∈ L}. A
substitution s : Σ1 → 2Σ2 maps each letter of an alphabet to a language. It is
extended to words and languages in the same way as morphisms are.

A grammar is a quadruple (N, Σ, P, S) where N is a finite set of symbols
{X, Y, . . .} called nonterminals, S ∈ N the starting symbol, and P a finite
set of production rules of the form P ⊂ (N ∪ Σ)∗ × (N ∪ Σ)∗. With a type
of grammar we associate a derivation relation ⇒⊆ (N ∪ Σ)∗ × (N ∪ Σ)∗ that
explains which words can be generated by the nonterminals of a grammar.
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Definition 2.1 A (parity) ω-grammar is a quintuple (N, Σ, P, S, p) where
(N, Σ, P, S) is an ordinary grammar with p : N → N a function that assigns
a natural number to each nonterminal. p determines which nonterminals can
be used infinitely often in the derivation of a word, namely those X for which
there is a nonterminal Y which occurs infinitely often and which has a smaller
or equal even parity index. A formal definition of the derivation relation for a
parity ω-grammar can be found below. Note that an ordinary grammar can
be seen as an ω-grammar with p(X) = 1 for all X ∈ N . W.l.o.g. we assume
X 6= Y implies p(X) 6= p(Y ).

A context-free grammar (CFG) has production rules of the form P ⊂ N ×
(N ∪Σ)∗. A grammar is called context-sensitive (CSG) if for every (w, v) ∈ P :
either |w| ≤ |v| or w = S and v = ε.

A (N, Σ, P, S, p, λ) is an alternating context-free ω-grammar (ω-ACFG) if
(N, Σ, P, S, p) is a context-free ω-grammar in the above sense and λ : N →
{∃,∀} marks each nonterminal as either existential or universal. Again, an
ordinary ω-grammar can be simulated with λ(X) = ∃ for all X ∈ N . We will
write

X → v1 | . . . | vk if λ(X) = ∃ and (X, vi) ∈ P for all i = 1, . . . , k

X → v1& . . . &vk if λ(X) = ∀ and (X, vi) ∈ P for all i = 1, . . . , k

Definition 2.2 The derivation for an ω-ACFG (N, Σ, P, S, p, λ) is a (possibly
infinite tree) T with node set N . Node n ∈ N are labelled with sentential
forms v ∈ (Σ∪N)∗. For n ∈ N let l(n) be its label. The following must hold.

• if n is the root of T then l(n) = S.

• if n is a leaf of T then l(n) = a for some a ∈ Σ ∪ {ε}.
• for each node n of T with l(n) = X for some X ∈ N :
· if λ(X) = ∃ then there is exactly one son n′ of n and l(n′) = v with

(X, v) ∈ P .
· if λ(X) = ∀ and X → v1& . . . &vk are all rules for X then n has sons

n1, . . . , nk and l(ni) = vi for i = 1, . . . , k.

• for each other node n of T : if l(n) = v = x1 . . . xk where xi ∈ Σ ∪ N then
n has sons n1, . . . , nk and l(ni) = xi for i = 1, . . . , k.

• For an infinite path π = n0n1 . . . let

inf (π) := {X | there are infinitely many i ∈ N s.t. l(ni) = X}

For each path π in T we require min{p(X) | X ∈ inf (π)} to be even.

Definition 2.3 A matching θ between a word w ∈ Σ∞ and a derivation tree
T with node set N is a mapping of type θ : N → Sub(w), defined as follows.

• if n is the root of T then θ(n) = w.

• for each node n ∈ N with l(n) = X for some X ∈ N and θ(n) = w′:
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θ(n′) = w′ for each son v of X.

• for each other node n ∈ N with l(n) = v ∈ (Σ ∪ N)∗: if θ(n) = w′ and n
has sons n1, . . . , nk and w′ = w1 . . . wk then θ(ni) = wi for each i = 1, . . . , k.

A matching θ of a word w ∈ Σ∗ and a finite tree T is successful if for every
leaf n ∈ N : θ(n) = l(n).

To denote that θ is a successful matching between w and T we write
θ(T ) = w.

To call a matching between an infinite word and an infinite tree successful we
need another definition.

Definition 2.4 Let T be an infinite tree with node set N and n ∈ N . For
each n′ ∈ N with sons n1, . . . , nk we define

leftn(n′) = {n′} ∪



∅ if n = n′

⋃m
i=1 leftn(ni) if n ∈ leftn(nm)

Then, leftT ,n := leftn(n0) is the set of nodes that occur left of n in T where
n0 is the root of T .

Let T |n be the subtree of T with node set leftT ,n and l(n) := ε.

A matching θ between w ∈ Σω and an infinite tree T with node set N is
successful if for every node n ∈ N with leftT ,n < ∞ there is a finite prefix v of
w and θ(T |n) = v. Again, we write θ(T ) = w to express that θ is a successful
matching between the infinite word w and the infinite tree T .

Without this, infinite derivations without leaves would be successfully labelled
by any infinite word. However, the corresponding grammar should generate
the empty language.

Definition 2.5 Let G be an ω-ACFG. G generates the language L(G) if there
is a derivation tree T for G with node set N and

L(G) := {w ∈ Σ∞ | ∃θ : N → Sub(w), s.t. θ(T ) = w}

Given a fixed grammar G one can regard the languages L(X) generated by a
nonterminal X by replacing the start symbol S with X in the definition of G.

Example 2.6 The ω-grammar G = ({S, B}, {a, b}, P, S, p, λ) with

P = { S → aBS, B → b | aBB }
and p(S) = 0, p(B) = 2, and λ(A) = λ(B) = ∃ generates the language

L(G) = {w ∈ Σω | ∀v ∈ Σ∗ : if w = v . . . then |v|b ≤ |v|a }
The labelled derivation tree of the word w = (aabb)ω ∈ L(G) is sketched
in Figure 1. We write the the matching and the labelling of a node n as
θ(n) : l(n).
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w : S

aabbw : aBS

a : a abb : B

abb : aBB

a : a b : B

b : b

b : B

b : b

w : S
...

Fig. 1. The labelled derivation tree for Example 2.6.

CFL, ω-CFL, and ω-ACFL are the classes of all languages generated by
context-free grammars, context-free ω-grammars and alternating context-free
ω-grammars.

An ω-ACFG is in Chomsky Normal Form (CNF) if all productions are of
the form P ⊂ N × (Σ ∪ {ε} ∪ N2). It is easy to see that the construction
which transforms a context-free grammar into CNF is applicable to ω-ACFGs
as well.

Lemma 2.7 For every ω-ACFG G there is an ω-ACFG G′ in CNF with
L(G′) = L(G).

Proof. We appeal to the same construction as it is used for context-free
grammars, [6]. A production of the form X → x1 . . . xk, where xi ∈ N ∪ Σ
is translated into productions X → X1X

′
2, X ′

k−1 → Xk−1Xk, X ′
i−1 → XiX

′
i

for i = 3, . . . , k − 1, and Xi → xi for i = 1, . . . , k. The parity indices for
the new nonterminals Xi and X ′

i, i = 1, . . . , k are the same as the one for
X. Then, visiting an Xi infinitely often is possible iff it is possible to visit X
infinitely often. To obtain a grammar in which parity indices are unique one
can increase them at the end, s.t. p(Xi) = p(X)+2∗n for some n ∈ N. Parity
indices of other nonterminals must be increased by at least 2 ∗ n + 2.

Finally, for each new nonterminal there is exactly one production. There-
fore they can be characterised as either existential or universal. 2

Definition 2.8 An alternating pushdown automaton with a parity condition
(ω-APDA) is a tuple A = (Q, Σ, Γ, q0, S0, δ, p, λ) where

• Q is a finite set of states,

• Σ is the finite input alphabet,

• Γ is a finite alphabet of stack symbols,

• q0 ∈ Q is the initial state,

• S0 ∈ Γ is the stack’s start symbol,

• p : Q → N is a parity function as above,

• λ : Q → {∃,∀} marks states as existential or universal as above, and

• δ : (Q× (Σ ∪ {ε})× Γ) → 2(Q×Γ∗) is the transition relation.
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A configuration is a triple (q, w, γ) ∈ Q×Σ∞ × Γ∗. The computation of A on
a w ∈ Σ∞ is a tree of configurations with the root (q0, w, S0). (q′, w, γ′γ) is
a successor of (q, aw, Sγ) if (q′, γ′) ∈ δ(q, a, S), and (q′, w, γ) is a successor of
(q, w, Sγ) if (q′, γ′) ∈ δ(q, ε, S).

If λ(q) = ∃ then every configuration (q, w, γ) has exactly one son in the
computation which is a successor of (q, w, γ). If λ(q) = ∀ then all successors
of (q, w, γ) are included as sons in the computation.

A accepts w if there is a computation tree s.t.

• every leaf is of the form (q, ε, ε) for some q, and

• the smallest parity index of a state that occurs infinitely often on an infinite
path is even.

L(A) is the set of all words accepted by A. ω-APDA will also be called the
class of all languages accepted by alternating pushdown automata.

3 Linear Time µ-Calculus with Sequential Composition

Let Var a set of propositional variables. Formulas of LFLC are interpreted
over finite or infinite words w ∈ Σ∞. The syntax is close to those of other
µ-calculi like modal µ-calculus or linear time µ-calculus µ-LIN, [15].

ϕ ::= tt | ff | a | Z | ε | ϕ ∨ ϕ | ϕ ∧ ϕ | µZ.ϕ | νZ.ϕ | ϕ; ϕ

where Z ranges over Var , and a over Σ. 2 A formula is closed if it has no free
variables, i.e. every Z occurs in the scope of a quantifier σ ∈ {µ, ν}. It is well-
named if variable names are unique, i.e. no formula can contain a subformula
σZ.ψ at two different positions. Thus, given a formula ϕ there is a function
fpϕ : Var → LFLC that maps every variable to its unique fixed point formula.
If ϕ is clear from the context we simply write fp.

A variable Y depends on Z in ϕ if Z occurs free in fpϕ(Y ). A variable
is called outermost in ϕ if it does not depend on any other variable. ϕ[ψ/Z]
denotes ϕ with every occurrence of Z in it replaced by ψ. We implicitly assume
that the resulting formula is well-named.

The set of subformulas Sub(ϕ) of an LFLC formula ϕ is defined as follows.

Sub(ϕ) = {ϕ} if ϕ ∈ {tt, ff, ε} ∪ Σ ∪ Var

Sub(ϕ0 ∨ ϕ1) = {ϕ0 ∨ ϕ1} ∪ Sub(ϕ0) ∪ Sub(ϕ1)

Sub(ϕ0 ∧ ϕ1) = {ϕ0 ∨ ϕ1} ∪ Sub(ϕ0) ∪ Sub(ϕ1)

Sub(ϕ0; ϕ1) = {ϕ0; ϕ1} ∪ Sub(ϕ0) ∪ Sub(ϕ1)

Sub(µZ.ϕ) = {µZ.ϕ} ∪ Sub(ϕ)

Sub(νZ.ϕ) = {νZ.ϕ} ∪ Sub(ϕ)

2 FLC has a construct term in [12] which is called τ in [10]. Here, we use the symbol ε to
keep in line with formal language theory.
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The semantics of a formula is inductively defined using an environment ρ :
Var → 2Σ∞ . With ρ[Z 7→ V ] we denote the function that maps Z to V and
agrees with ρ on all other arguments.

[[tt]]ρ = Σ∞ [[ff]]ρ = ∅
[[a]]ρ = {a} [[Z]]ρ = ρ(Z)

[[ϕ ∨ ψ]]ρ = [[ϕ]]ρ ∪ [[ψ]]ρ [[ε]]ρ = {ε}
[[ϕ ∧ ψ]]ρ = [[ϕ]]ρ ∩ [[ψ]]ρ

[[ϕ; ψ]]ρ = {v | ∃v1 ∈ [[ϕ]]ρ, ∃v2 ∈ [[ψ]]ρ s.t. v = v1v2}
[[µZ.ϕ]]ρ =

⋂ {V ⊆ Σ∞ | [[ϕ]]ρ[Z 7→V ] ⊆ V }
[[νZ.ϕ]]ρ =

⋃ {V ⊆ Σ∞ | V ⊆ [[ϕ]]ρ[Z 7→V ]}
A formula ϕ(Z) with a free variable Z defines a function [[ϕ(Z)]]ρ : 2Σ∞ →
2Σ∞ if ρ(Z) = undef. It is monotone in the sense that V1 ⊆ V2 implies
[[ϕ(Z)]][Z 7→V1] ⊆ [[ϕ(Z)]][Z 7→V2]. Hence, according to [16] fixed points of these
functions exist.

We write w |=ρ ϕ iff w ∈ [[ϕ]]ρ. If ϕ is closed we can drop ρ and write
w |= ϕ.

Two formulas ϕ and ψ are equivalent in LFLC, written ϕ ≡ ψ, iff ∀ρ:
[[ϕ]]ρ = [[ψ]]ρ. The language of a closed formula for a given alphabet Σ is the
set of all its models, L(ϕ) := [[ϕ]]ρ. Overloading notation we let LFLC also
denote the class of all languages definable by an LFLC formula, i.e. {L(ϕ) |
ϕ ∈ LFLC }. It will be easy to derive from the context whether the set of
formulas or the class of languages is meant.

For correctness proofs we need to introduce approximants of fixed point
formulas. Let α, λ ∈ Ord with λ being a limit ordinal. For a νZ.ϕ we define
Z0 := tt, Zα+1 := ϕ[Zα/Z] and Zλ :=

∧
α<λ Zα. Dually, for a µY.ϕ: Y 0 := ff,

Y α+1 := ϕ[Y α/Y ] and Y λ :=
∨

α<λ Y α. The next lemma is a standard result
about approximants.

Lemma 3.1 w |= µY.ϕ iff ∃α ∈ Ord s.t. w |= Y α. w 6|= νZ.ϕ iff ∃α ∈ Ord
s.t. w 6|= Zα. In both cases α is not a limit ordinal.

Example 3.2 Let Σ = {a, b}. LFLC can define L = {w ∈ Σω | ∀v ∈ Σ∗ :
if w = v . . . then |v|b ≤ |v|a }, compare with Example 2.6. L consists of all
infinite words for which the number of bs never exceeds the number of a’s in
every prefix. The formula for L is

ϕ := νY.a; (νZ.b ∨ a; Z; Z); Y

ϕ is best understood by unfolding fixed points, i.e. following a word w through
ϕ’s syntax tree and moving to the corresponding fixed point formula whenever
a variable is reached. ϕ says that the word must begin with an a. This is
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v ` ϕ0 ∨ ϕ1

v ` ϕi

i ∈ {0, 1} v ` ϕ0 ∧ ϕ1

v ` ϕ0 v ` ϕ1

v ` σZ.ϕ

v ` Z

v ` Z

v ` ϕ
if fp(Z) = σZ.ϕ

v ` ϕ0; ϕ1

v0 ` ϕ0 v1 ` ϕ1

v = v0v1

Fig. 2. The model checking tableau rules.

necessary since Σ = {a, b} and a word beginning with a b would violate the
property described above.

The following suffix can be a single b or another a in which case it is followed
by two words of the same kind. By unfolding each time an a is visited a Z
gets replaced with two Zs, i.e. the number of Zs still present in the unfolded
formula counts the number of bs that are still possible without exceeding the
number of as so far. Consequently, every time a b is seen a Z has simply been
deleted from the unfolded formula.

Finally, if all Zs are “used”, i.e. the prefix so far contained as many bs as
as then this can only be suffixed by another word of the language. Hence the
Y at the end which leads to the beginning of the formula again.

4 Model checking LFLC

An LFLC model checking tableau for a word w and a closed formula ϕ is a
tree of configurations of Σ∞×Sub(ϕ). A configuration is written v ` ψ and its
intended meaning is simply v |= ψ. The rules are presented in Figure 2. Each
tableau for w and ϕ has the root w ` ϕ. A branch of a tableau is successful
if it ends on a leaf a ` a with a ∈ Σ ∪ {ε} or v ` tt, or if it is infinite and the
outermost variable that occurs infinitely often on this branch is of type ν. A
tableau is successful if all its branches are successful. If there is a successful
tableau for w and ϕ then we simply write w ` ϕ.

Theorem 4.1 w |= ϕ iff w ` ϕ.

Proof. Suppose w ` ϕ but w 6|= ϕ. In this case the root of the tableau is
called false. The rules are backwards sound, i.e. falsity can be pushed through
the tableau along one branch. This cannot be a finite branch since successful
branches end in true leaves only.

Suppose therefore it is an infinite one. This must contain a false node
v ` νZ.ψ. By Lemma 3.1, Z can be interpreted as the least approximant Zα

s.t. v 6|= Zα. Pushing falsity further down this branch creates a contradiction
since, by well-foundedness of the ordinals, it must eventually reach a node
v′ ` Z0 which cannot be false since Z0 ≡ tt.
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w ` ϕ

w ` Y

aabbw ` a; (ψ; Y )

a ` a abbw ` ψ; Y

abb ` ψ

abb ` Z

abb ` b ∨ a; Z; Z

abb ` a; (Z; Z)

a ` a bb ` Z; Z

b ` Z

b ` b ∨ a; Z; Z

b ` b

b ` Z

b ` b ∨ a; Z; Z

b ` b

w ` Y
...

Fig. 3. The tableau for Example 4.2.

For the converse implication suppose w |= ϕ. We build a successful tableau
for w ` ϕ. The root is called true since the intended semantical relation
holds. The tableau rules can always be applied preserving truth. For example,
if v |= ψ0 ∨ ψ1 then v |= ψi for some i ∈ {0, 1} and, thus, the tableau
construction can continue with the true node v ` ψi. In case of a conjunction
or a sequential composition the parameters can be chosen s.t. both successor
are true. Unfolding of fixed points and variables obviously preserves truth.

This way, every finite branch will be successful since they end in true leaves
only. Suppose there is an infinite branch on which the outermost variable Y
that occurs infinitely often is of type µ. Then the first occurrence of Y in a
v ` Y is interpreted with the least α s.t. v |= Y α. But then following the
branch will eventually result in a true configuration which is interpreted as
v′ ` Y 0 which is a contradiction since Y 0 ≡ ff and the configuration cannot
be true. Therefore, every outermost variable occurring infinitely often must
be of type ν. Consequently, the tableau must be successful, i.e. w ` ϕ. 2

Example 4.2 Take the formula ϕ := νY.a; (νZ.b ∨ a; Z; Z); Y from Exam-
ple 3.2. A successful tableau for ϕ and the ω-word w = (aabb)ω is sketched in
Figure 3. Note that w = aabbw. We use the abbreviation ψ := νZ.b∨ a; Z; Z.

5 LFLC and ω-ACFL

Theorem 5.1 ω-ACFL ⊆ LFLC.

Proof. Let L ∈ ω-ACFL. Then there exists an ω-ACFG G = (N, Σ, P, S, p, λ)
in CNF s.t. L = L(G). We will associate with each nonterminal X an epony-
mous propositional variable X. Note that they are linearly ordered by their
parity indices p(X).
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We process the nonterminals in decreasing order of parity index starting
with the greatest. Let X → w1 | . . . | wm be all productions for X with
λ(X) = ∃. This is then translated to ϕX = σX.ψ1 ∨ ψ2 ∨ . . . ∨ ψm, where
σ = µ if p(X) is odd, σ = ν if p(X) is even, and for each i = 1, . . . , m

• ψi = wi if wi = a for any a ∈ Σ or wi = ε.

• ψi = ψ1; ψ2 if wi = Y1Y2, where for j ∈ {1, 2}:
· ψj = ϕYj

if Yj has been processed already,
· ψj = Yj otherwise.

In the same way X → w1 & . . . & wk is translated into ϕX = σX.ψ1∧ . . .∧ψk.
This way, an acyclic system of equations for formulas ψX is obtained which
can be made into a single formula ϕS by substituting right sides of defining
equations for their corresponding formulas in other equations. Note that the
resulting formulas can be simplified using σX.ϕ ≡ ϕ if X 6∈ Sub(ϕ).

Define ϕG := ϕS. It might contain free variables in case S did not have
the least parity index. Suppose X is free in ϕS. Then replace the latter
with ϕS[ϕX/X]. Note that ϕX cannot contain S as a free variable since
p(X) < p(S). Variables can be renamed to preserve well-naming of formulas.
Continue this process until the new ϕG does not contain any free variables any-
more. Termination is guaranteed since the parity indices of new free variables
are always decreased. Note that this process does not change the language
accepted by ϕG because of σZ.ϕ ≡ ϕ[σZ.ϕ/Z].

To show that L(ϕG) = L(G) we consider the derivation tree T of G and
a word w ∈ L(G). There is obviously a successful matching between w and
T . This can be made into a tableau for w and ϕG. Let n be a node in the
derivation tree with matching θ(n) and labelling l(n) = x1 . . . xk ∈ (N ∪ Σ)∗.
This corresponds to a node in the tableau of the form

θ(n) ` ϕx1 ; . . . ; ϕxk

where ϕxi
= a if xi = a for some a ∈ Σ and i ∈ {1, . . . , k}. The overall

structure of the tableau is the same as the one of the derivation tree. The
point where a 1-1 correspondence between nodes of the derivation and nodes
of the tableau breaks down is the first occurrence of each nonterminal as a
variable in the tableau. Suppose X ∈ N is matched with θ(n) at some node n
with l(n) = X in T . The translation above introduces a fixed point quantifier
for X. Thus, the tableau will have an additional node θ(n) ` σX. . . . whose
only son is θ(n) ` X.

Remember that for each path π in T the minimal parity index p(X) that
occurs infinitely often for an X ∈ inf (π) is even. By the translation above
the corresponding variable X in the tableau is of type ν. It remains to show
that, if there is an odd parity index p(Y ) for a nonterminal Y ∈ inf (π) then
the variable Y depends on X. Clearly, p(Y ) > p(X). Hence, Y has been
processed before X. If there is a (Y, vXw) ∈ P for some v, w ∈ (N ∪ Σ)∗

then X will occur as a free variable in ϕY . On the other hand, when X gets
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processed, ϕY exists already and if there is a rule (X, vY w) ∈ P for some v, w
then ϕY will be plugged into ϕX . Thus, Y will depend on X in ϕG. If there
are no such rules then the variables are incomparable and it is impossible for
both to occur infinitely often on a tableau branch. Equally, they cannot occur
both infinitely often in the derivation tree.

We conclude that there is a successful tableau for w ` ϕG. By Theorem 4.1,
w ∈ L(ϕG).

Suppose on the other hand that w ∈ L(ϕG). By Theorem 4.1 w ` ϕG.
Again, the tableau can be seen as a representation of a successful matching
between w and a derivation tree T for G. Take an infinite path in the tableau.
The outermost variable will be of type ν. By the construction of ϕG it corre-
sponds to a nonterminal X with p(X) being even. Suppose there is another
variable Y with an odd p(Y ) that occurs infinitely on a tableau branch. Then
X is outermost among X and Y . By the construction of ϕG, Y must have
been processed before X since µY. . . . occurs inside ϕX . But this is only if
p(Y ) > p(X) and thus the corresponding branch in the derivation tree is
successful as well. Hence, w ∈ L(G). 2

Example 5.2 Translating G of Example 2.6 yields the formula

ϕG = νS.a; (νB.b ∨ a; B; B); S

which the same as ϕ of Example 3.2 up to variable renaming. Note that in
the proof of Theorem 5.1 the grammar G is assumed to be in CNF. Therefore,
the derivation tree is binary as well as every tableau is. This is not the case
for the derivation tree in Figure 1 and the corresponding tableau of Figure 3.
But G of Example 2.6 is not in CNF.

Theorem 5.3 LFLC ⊆ ω-ACFL.

Proof. Let ϕ0 ∈ LFLC. We construct an ω-ACFG G = (N, Σ, P, S, p, λ) s.t.
L(G) = L(ϕ0). For each subformula of ϕ0 we use a nonterminal, N := {Xψ |
ψ ∈ Sub(ϕ0)}. ϕ0 itself serves as the starting symbol, S := Xϕ0 . Productions
are given by the following rules. For every ψ ∈ Sub(ϕ0):

ψ = a ; Xa → a

ψ = ε ; Xε → ε

ψ = tt ; Xtt → ε | a1Xtt | . . . | akXtt if Σ = {a1, . . . , ak}
ψ = ff ; Xff → a & b for some a 6= b

ψ = Z ; XZ → Xϕ if fp(Z) = σZ.ϕ

ψ = ψ0 ∨ ψ1 ; Xψ0∨ψ1 → Xψ0 | Xψ1

ψ = ψ0 ∧ ψ1 ; Xψ0∧ψ1 → Xψ0 & Xψ1

12
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ψ = σZ.ϕ ; XσZ.ϕ → XZ

ψ = ψ0; ψ1 ; Xψ0;ψ1 → Xψ0Xψ1

The categorisation of nonterminals is given by λ(Xψ) = ∀ iff ψ = ψ0 ∧ ψ1 for
some ψi or ψ = ff. What remains is the definition of the parity indices p.
This is simply done by enumerating all subformulas in a depth-first search of
the syntax tree of ϕ0. Formally, each subformula ψ will receive a number n(ψ)
s.t. for all ϕ, ψ ∈ Sub(ϕ0):

• ϕ ∈ Sub(ψ) implies n(ϕ) > n(ψ)

• ϕ = νZ.ψ implies n(ϕ) is even.

• ϕ = µZ.ψ implies n(ϕ) is odd.

Then, the parity index of a nonterminal is easily given by p(Xψ) := n(ψ).

To show that L(G) = L(ϕ0) we use the observation from the proof of
Theorem 5.1 that a successful tableau for w and ϕ0 is nothing else than a
successfully labelled derivation of G with w. Again, the important point is the
correspondence between infinite branches of the tableau and the derivation.

Suppose the tableau has an infinite branch. Then the outermost variable Z
that occurs infinitely often is of type ν, i.e. in the derivation it corresponds to a
nonterminal XZ whose parity index p(XZ) is even. Suppose on the path where
XZ occurs infinitely often, another X occurs infinitely often as well. Then
X = Xψ for some ψ ∈ Sub(fp(Z)) for otherwise Z would not be outermost on
this particular branch. But then the enumeration of subformulas assigned a
greater value to ψ, i.e. n(ψ) > n(Z). Thus, the corresponding branch in the
derivation is successful as well. The other implication holds because of the
same argument, too. 2

6 Some Properties of LFLC and ω-ACFL

Theorem 6.1 µ-LIN ( LFLC.

Proof. The syntax of µ-LIN is usually given as

ϕ ::= tt | ff | a | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | , ϕ | µZ.ϕ | νZ.ϕ

where a ranges over Σ. The semantics is almost the same as it is for LFLC.
The next operator ,ϕ can be defined in LFLC as (

∨
a∈Σ a); ϕ. Note that the

semantics of a proposition a in µ-LIN is usually defined as

[[a]]: = {w ∈ Σ∞ | ∃v ∈ Σ∞, w = av}

while the semantics of a proposition a in LFLC is the word a only. But the
above can be modelled in LFLC by a; tt.

The translation is similar to the one from Lµ into FLC given in [12].
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It is well-known that µ-LIN can only describe regular languages. Therefore,
LFLC can express strictly more than µ-LIN. 2

Theorem 6.2 LFLC and LFLCk are undecidable for every k ∈ N.

Proof. This follows from the translation of context-free grammars into LFLC
formulas given in Theorem 5.1. Let L1 and L2 be two context-free languages.
L1 ∩ L2 6= ∅ iff ϕL1 ∧ ϕL2 is satisfiable. But the intersection problem for
context-free languages is known to be undecidable, [6]. The translation even
yields a non-alternating formula. Note that only µ variables are needed for
finite words. Therefore, LFLC0 is already undecidable.

Note that in the same way undecidability of FLC is proved in [12] with a
translation from context-free processes. 2

Theorem 6.3 ω-CFL ( LFLC.

Proof. This is based on an observation from [12] that L0 = { anbncn | n ∈ N }
is LFLC-definable. The corresponding formula is

ϕ0 := ψa,b; χc ∧ χa; ψb,c

where ψa,b := µX.ε ∨ a; X; b and χc := µX.ε ∨ c; X. On the other hand, it is
well-known that L0 is not context-free, [6].

Now, let Σ = {a, b, c, d}, L = {anbncndω | n ∈ N}. Clearly, L = L0{dω}
and therefore L = L(ϕ0; (νZ.d; Z)). Suppose now that L is ω-context-free. By
[3], L =

⋃k
i=1 UiV

ω
i for some k ∈ N and some Ui, Vi ∈ CFL with i ∈ {1, . . . , k}.

All Vi = {dki} for some ki ∈ N because no a, b or c occurs infinitely often in
a word of L. Therefore Ui = {anbncndmi,n | n ∈ N} for every i and some mi,n.

Consider the mapping s : a 7→ {a}, b 7→ {b}, c 7→ {c}, d 7→ {ε}. Clearly,
s is a substitution with s(x) ∈ CFL for every x ∈ Σ. Also, s(Ui) 6∈ CFL for
every Ui. Since CFL is closed under substitutions with context-free languages,
[5], the Ui cannot be context-free. Thus, L cannot be ω-context-free. 2

Theorem 6.4 LFLC is not effectively closed under morphisms. There is no
algorithm that, given a morphism h : Σ1 → Σ∗

2 and a ϕ ∈ LFLC computes a
ϕh ∈ LFLC s.t. L(ϕh) = h(L(ϕ)).

Proof. The word problem for type-0 grammars is known to be undecidable.
Take w ∈ Σ∗ and a type-0 grammar G. Then there exist effectively computable
deterministic context-free grammars G1 and G2 and a morphism h s.t. w ∈
L(G) iff w ∈ h(L(G1)∩L(G2)), [5]. According to Theorem 5.1 there is a ϕ s.t.
L(ϕ) = L(G1) ∩ L(G2). An effectively computable ψ with L(ψ) = h(L(ϕ))
could be used to solve the word problem for G. 2

Example 6.5 The formula ϕ0 from the proof of Theorem 6.3 can also be
used to hint the failure of closure under morphisms. Morphisms do not cor-
respond to substitution on formulas, i.e. in general h(L(ϕ)) 6= L(ϕ[h]) where
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ϕ[h] is used to denote the formula that arises from ϕ by carrying out all the
substitutions of h in ϕ simultaneously.

Take the morphism h with h(a) = h(b) = h(c) = c. Then

L(ϕ0[h]) = L((ψa,b; χc ∧ χa; ψb,c)[h])

= L((ψa,b; χc)[h] ∧ (χa; ψb,c)[h])

= L(ψc,c; χc ∧ χc; ψc,c)

= { cm | m ≥ 2n, n ∈ N } ∩ { cm | m ≥ 2n, n ∈ N }
= { cm | m ≥ 2n, n ∈ N }

but h(L(ϕ0)) = { c3n | n ∈ N }.

Theorem 6.6 For finite words, model checking LFLC and the word problem
for APDA are PTIME-complete.

Proof. Note that the translations in the proofs of Theorem 5.1 and 5.3 are
polynomial if resulting formulas are represented by sharing common subfor-
mulas.

An alternating algorithm can decide whether there is a successful tableau
for a finite w and ϕ. The space needed for this is logarithmic in |w| and |ϕ|. A
configuration consists of a subword and a subformula of the input. A subword
v of w can be represented as a pair (i, j) of natural numbers denoting the start
and end of v in w. It is also possible to enumerate all subformulas of the input
formula s.t. each of them can be given a natural number. Then, the size of a
configuration v ` ψ is at most 2 · log |w|+log |ϕ| for an input w, ϕ. According
to [1], the model checking problem can be decided in PTIME.

Note that tableaux for finite words cannot have infinite paths. Therefore,
the condition regarding parity indices need not be checked.

PTIME-hardness follows from the fact that the word problem for CFGs is
PTIME-complete. 2

Corollary 6.7 ∃L ∈ CSL, s.t. L 6∈ ω-ACFL, if PTIME 6= PSPACE.

Proof. The model checking problem for CSL is PSPACE-complete, and there
are context-sensitive grammars for which the problem is PSPACE-complete
even if the grammar is fixed. 2

7 LFLC and ω-APDA

Theorem 7.1 LFLC ⊆ ω-APDA.

Proof. Let ϕ0 ∈ LFLC. We construct an ω-APDA A s.t. L(A) = L(ϕ0). Let
A = (Q, Σ, Γ, q0, S0, δ, p, λ) where Q = Γ := Sub(ϕ0) ∪ {tt}, qa = S0 = tt,
q0 := ϕ0. The transition relation is defined by case distinction on the state.
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δ(Y, ε, ψ) 3 (ϕ, ψ) if fp(Y ) = µY.ϕ

δ(tt, a, ψ) 3 (tt, ψ) δ(ff, a, ψ) 3 (ff, ψ)

δ(a, a, ψ) 3 (ψ, ε) δ(ψ0 ∨ ψ1, ε, ψ) 3 (ψi, ψ) i ∈ {0, 1}
δ(ε, ε, ψ) 3 (ψ, ε) δ(ψ0 ∧ ψ1, ε, ψ) 3 (ψi, ψ) i ∈ {0, 1}
δ(σY.ϕ, ε, ψ) 3 (Y, ψ) δ(ψ0; ψ1, ε, ψ) 3 (ψ0, ψ1; ψ)

Note that the content of the stack is only changed in states a, ε or ψ0; ψ1.

Set λ(ψ) = ∀ iff ψ = ψ0∧ψ1 for some ψ0, ψ1 ∈ Sub(ϕ0). The parity indices
are found just as in the proof of Theorem 5.3 by enumerating subformulas.
Additionally, we set p(tt) = 0 and p(ff) = 1.

Again, to show that L(A) = L(ϕ0) we appeal to the fact that an accepting
computation of A for a word w is nothing else than a tableau for w ` ϕ0. There
are a few minor technical differences. For example the last configuration on a
finite tableau path is a ` a which corresponds to a configuration (a, a, tt) in
the computation. From then on A is going into an infinite but accepting loop
on (tt, ε, ε). The definition of the parity indices ensures that successful infinite
branches in the tableau correspond exactly to accepting infinite branches in
the computation other than those trivial ones. 2

8 Further work

It is not clear whether LFLC is closed under complementation because ϕ; ψ
quantifies existentially over a position inside a word. Its complement is univer-
sal which cannot simply be modelled using sequential composition on arbitrary
words with finite formulas. It remains to see whether the complement on Σ∗

only is expressible. Note that a negative answer would separate LFLC from
the class of context-sensitive languages.

It is known that the alternation hierarchy inside linear time µ-calculus col-
lapses to the first level where alternation of fixed point quantifiers is consid-
ered. This is seen using a translation between formulas and Büchi automata
forth and back. The translation between LFLC and ω-ACFL does not ob-
viously lead to a collapse. The complexity analysis of the model checking
tableaux suggest that fixed point alternation is removable.
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