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Abstract

Least fixpoints of monotone functions are an important concept in computer science which can be
generalised to inflationary fixpoints of arbitrary functions. This raises questions after the expressive
power of these two concepts, in particular whether the latter can be expressed as the former in certain
circumstances. We show that the inflationary fixpoint of an arbitrary function on a lattice of finite
height can be expressed as the least fixpoint of a monotone function on an associated function lattice.

1 Introduction

Possibly the most important type of fixpoints in computer science are least fixpoints of monotone func-
tions, with countless concepts and definitions being based on this principle, e.g. abstract data types,
formal languages, semantics of programming constructs, static analysis algorithms, logical operators
etc.

In mathematical logic, fixpoint inductions over definable functions on arbitrary structures have first
been studied in generalised recursion theory (see [9]), following earlier work in recursion theory on
inductive definitions in arithmetic. If ϕ(X ,x) is a first-order formula with a free first-order variable x and
a free second-order variable X , which we call the fixpoint variable of ϕ , then ϕ defines on any structure A

with universe A a function fϕ on the powerset lattice on A with fϕ(B) := {a∈ A : (A,a) |=[X 7→B] ϕ(X ,x)}.
Of particular interest are formulas defining a monotone function as by Knaster and Tarski’s theorem (see
Section 2) every monotone function has a unique least fixpoint which can also be obtained by an explicit
induction process. As monotonicity of a function is in general undecidable, first-order formulas that are
positive in X (and therefore monotone) are usually considered only.

A similar but seemingly more general concept of fixpoints are provided by inflationary fixpoints,
which exist for any function, even if they are non-monotone (see Section 2 for details). In the context of
logic, inflationary fixpoints of definable functions have first been studied in the 1970s (see e.g. [10, 1])
and it has been realised that not every inflationary fixpoint over an arbitrary first-order formula can also
be described as a least fixpoint over a formula positive in its fixpoint variable. This naturally leads to
the question of which inflationary fixpoints can equivalently be written as least fixpoints of monotone
functions.

Following this early work on fixpoint inductions over definable functions, logics featuring explicit
fixpoint constructs have been studied in finite model theory and in temporal logics as means to describe
classes of structures or the behavior of programs for instance. The main and decisive difference to
the studies in generalised recursion theory was the introduction of explicit operators to form least or
inflationary fixpoint of definable functions, which allows to nest fixpoint operators and use them in the
scope of negations.

Initiated by Gurevich [4], logics involving fixpoint constructs have intensively been studied in finite
model theory and descriptive complexity as an elegant way to describe computational problems in logical
languages (see [3] for an extensive study of fixpoint logics). Again, the most important fixpoint logics
considered in this context are logics extending first-order logic by operators to form the least fixpoint
of formulas positive in their fixpoint variable or operators to form the inflationary fixpoints of arbitrary
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formulas. It turns out that combining first-order logic with the ability to nest and complement fixpoint
operators is powerful enough so that every formula of inflationary fixpoint logic is equivalent to a formula
using least fixpoints of formulas positive in their fixpoint variable. This was first proved in the context of
finite structures by Gurevich and Shelah [5] and then generalised by Kreutzer [7] to arbitrary structures.

In the context of modal logics, fixpoints occur most prominently in the modal µ-calculus Lµ in-
troduced by Kozen [6]. The importance of the µ-calculus stems from its fine balance between ex-
pressive power and complexity, as it is expressive enough to encompass commonly used specification
logics such as LTL, CTL and CTL∗. On the other hand, it model checking problem on finite structures
is in NP∩ coNP and its satisfiability/validity problem is EXPTIME-complete. Besides its expressive
power, the µ-calculus is still a regular logic because it can be embedded into monadic second-order
logic (MSO). In fact, Lµ is the bisimulation-invariant fragment of MSO and hence is the most expressive
regular logic invariant under bisimulation.

Being a regular logic comes with a range of restrictions, in particular the inability to count. Hence,
specifications such as a particular event occurs on all execution traces at the same time or every request
is acknowledged cannot be expressed in Lµ . To overcome the restriction to regular logics, extensions of
the modal µ-calculus have been studied in the literature. Among those one can broadly distinguished
between “first-order” fixpoint logics, i.e. logics where the fixpoint is still taken over definable functions
from sets of vertices to sets of vertices but more general fixpoint constructs are allowed that least fix-
points over monotone functions, and “higher-order” fixpoint logics, where we retain monotone fixpoint
inductions but allow fixpoints of operators over a function space. An example for the first approach
is the modal iteration calculus (MIC), introduced in [2], the extension of modal logic by operators to
form inflationary fixpoints of definable functions. An example of the latter is fixpoint logic with chop
(FLC) introduced in [11], where the semantics of µ-calculus formulas is lifted from the powerset lattice
of all predicates to the lattice of predicate transformers which are first-order functions from the original
powerset lattice into itself. This concept has then been generalised to higher-order fixpoint logic (HFL),
introduced in [13], which incorporates into the µ-calculus a simply typed λ -calculus used to describe
predicate transformers, and functions of predicate transformers, and functions of functions of . . . , etc.

For all these logics examples of non-regular properties definable in the logic have been exhibited,
separating them from the modal µ-calculus. However, very little is known about the relationship between
these logics. A simple complexity-theoretic argument shows that FLC cannot be embedded into MIC [8]:
the expression complexity for FLC is EXPTIME-hard, i.e. there is a fixed formula s.t. model checking
with this formula is already EXPTIME-hard [?]. On the other hand, MIC’s data complexity is in P. Thus,
if this particular FLC-formula was translatable into MIC then we would have EXPTIME = P which
contradicts the time hierarchy theorem. It is open whether or not MIC is translatable into FLC.

This should be seen in the more general context of the question whether monotone fixpoint of higher
order can be used to express non-monotone fixpoints of first order and if this cannot be achieved in
general, then under which circumstances inflationary fixpoints can be expressed as monotone fixpoints
of higher order. (Note that MIC uses inflationary fixpoints of functions of type τ → τ while FLC uses
least fixpoints of functions of type (τ → τ)→ (τ → τ).)

The purpose of this paper is to stipulate a discussion of this problem. To initiate this we present a
general result on fixpoints in complete lattices show that any inflationary fixpoint on a complete lattice
of finite height can be expressed as a least fixpoint of a monotone operator on a function space associated
with the lattice. As a consequence, we obtain some embeddability results for modal fixpoint logics.
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2 Complete Lattices and Fixpoints

2.1 Lattices

A partial order is a pair (M,≤) s.t. M is a set and ≤ is a reflexive, anti-symmetric and transitive binary
relation on M. As usual, we write < for the strict relation obtained from it, i.e. < := ≤ \=.

An upper, resp. lower bound for a N ⊆M is a y∈M s.t. x≤ y, resp. y≤ x, for all x ∈N. A maximum,
resp. minimum, of some N ⊆M is a y∈N s.t. there is no x∈N with y < x, resp. x < y. A supremum, resp.
infimum, of some N ⊆ M is a minimum of all upper bounds, resp. maximum of all lower bounds. As
usual, we write

⊔
N, resp.

d
N, for the supremum, resp. infimum, of N if it exists uniquely. If N = {x,y}

we also use infix relation xt y, resp. xu y.
A lattice is a partial order (M,≤) s.t. for every x,y ∈ M the supremum xt y and the infimum xu y

exists uniquely in M. It is complete if
⊔

N and
d

N exist uniquely in M for every N ⊆ M. We define
⊥=

d
M and >=

⊔
M as the bottom and top element of a complete lattice.

Function lattices Let M = (M,≤M ) and N = (N,≤N ) be lattices. The space of all functions from
M to N is M →N := ({ f | f : M → N},≤), where

f ≤ g iff ∀x ∈M : f (x)≤N g(x)

Clearly, M need not be a lattice, not even a partial order, for the function space to be a lattice. If N is a
lattice then so is M →N with

( f tg)(x) = f (x)tN g(x) ( f ug)(x) = f (x)uN g(x) .

If N is complete, then so is M →N .

2.2 Fixpoints

Let M = (M,≤M ) and N = (N,≤N ) be partial orders. A function f : M → N is called monotone if
for all x,y ∈M: if x≤M y then f (x)≤N f (y).

Let M = (M,≤) be a lattice and f : M →M. A least fixpoint of f is an element x ∈M s.t. f (x) = x
and there is no y < x s.t. f (y) = y. Probably the most famous fixpoint theorem is Knaster-Tarski’s which
states unique existence of least fixpoints in case of monotone functions on complete lattices. We write
µ f or µx. f (x) for the least fixpoint of f if it exists uniquely.

Theorem 1 ([12]). Let M = (M,≤) be a complete lattice and f : M →M monotone. Then µ f =
d{y |

f (y)≤ y}.

Another characterisation of least fixpoints of monotone functions is given by fixpoint iteration stating
that the least fixpoint also equals the supremum of all its approximants µα f for any ordinal α , defined
as follows.

µ0 f :=⊥ , µα+1 f = f (µα f ) , µκ f =
⊔

α<κ
µα f

where κ is a limit ordinal. Then µ f =
⊔

α µα f .
It is well-known and easy to show by induction that the sequence of approximants is monotonically

increasing, i.e. for all ordinals α,β : if α ≤ β then µα f ≤M µβ f . This, however, requires monotony
and is not true in general for non-monotonic functions. On the other hand, the monotonous increase
of the sequence is appealing for it is bound to become stable – possibly at some transfinite ordinal.
Stability of course means reaching a fixpoint. If f is not monotone then one can enforce a monotonically
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increasing and eventually stable sequence by making it inflationary. The inflationary fixpoint of an
arbitrary function f : M →M is written ifp f or ifpx. f (x) and is defined as

⊔
α ifpα f where

ifp0 f :=⊥ , ifpα+1 f = ifpα f tM f (ifpα f ) , ifpκ f =
⊔

α<κ
ifpα f

It is not difficult to see that inflationary fixpoints are at least as expressive as least fixpoints. If f is
monotone then ifp f = µ f . In fact, the correspondence is even stronger: ifpα f = µα f for every ordinal
α . Hence, for monotone functions inflationary and least fixpoints not only coincide, they inherently are
the same. This raises the question after the converse: can inflationary fixpoints be expressed in terms
of least fixpoints? The next section shows that this is sometimes the case. Note that, for an arbitrary
function f : M → M, the function f ′ : M → M, defined as f ′(x) = xt f (x) is in general not monotone
and may therefore not have a (unique) least fixpoint.

In order to prove a correspondence between inflationary fixpoints and least fixpoints of higher-order
in the following section we generalise the context of inflationary fixpoint iteration. Let M = (M,≤) be
a complete lattice, x ∈M and f : M →M. Define ifpx f =

⊔
α ifpα

x f where

ifp0
x f := x , ifpα+1

x f = ifpα
x f tM f (ifpα

x f ) , ifpκ
x f =

⊔

α<κ
ifpα

x f

with κ being a limit ordinal. Hence, ifpx f is simply the inflationary fixpoint of f when the iteration is
started in x and therefore ifp f = ifp⊥ f .

The closure ordinal of a function f and an element x ∈M is the least ordinal α s.t. ifpα+1
x f = ifpα

x f .
It is denote clx( f ). Note that ifpx f = ifp

clx( f )
x f . We will also write cl( f ) instead of cl⊥( f ) where ⊥ is the

infimum of the underlying complete lattice.

3 Expressing Inflationary Fixpoints as Least Fixpoints of Higher-Order

Before we can show expressibility of inflationary fixpoints through higher-order least ones we need to
prove two facts about generalised inflationary fixpoints.

Lemma 2. Let M = (M,≤) be a complete lattice, x ∈ M, and f : M → M. For all ordinals α < ω we
have ifpα+1

x f = ifpα
xt f (x) f .

Proof. By induction on α . The base case is ifp1
x = ifp0

x f t f (ifp0
x f ) = xt f (x) = ifp0

xt f (x) f . The step
case is ifpα+2

x f = ifpα+1
x f t f (ifpα+1

x f ) = ifpα
xt f (x) f t f (ifpα

xt f (x) f ) = ifpα+1
xt f (x) f .

Lemma 3. Let M = (M,≤) be a complete lattice, x∈M, and f : M→M. Then we have xt ifpxt f (x) f ≤
ifpx f .

Proof. Note that x ≤ ifpx f . Thus, it suffices to show ifpxt f (x) f ≤ ifpx f . We will separate this into two
parts. First, we will show that for every ordinal α < ω we have ifpα

xt f (x) f = ifpα+1
x f . This is done by

induction on α . The base case is simple: ifp0
xt f (x) f = xt f (x) = ifp1

x f . In the step case we have

ifpα+1
xt f (x) f = ifpα

xt f (x)t f (ifpα
xt f (x) f ) = ifpα+1

x f t f (ifpα+1
x f ) = ifpα+2

x f

Thus, we have

ifpω
xt f (x) f =

⊔

α<ω
ifpα

xt f (x) f =
⊔

α<ω
ifpα+1

x f =
⊔

1≤α<ω
ifpα

x f =
⊔

α<ω
ifpα

x f = ifpω
x f (1)
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because ifp0
x f = x≤ ifp1

x f .
In the second part we show that for all ordinals α ≥ ω we have ifpα

xt f (x) f = ifpα
x f . Again, this is

done by induction on α , and the base case of α = ω is done in Eq. (??). The case for successor odinals
is similar to the first part of the proof.

ifpα+1
xt f (x) f = ifpα

xt f (x)t f (ifpα
xt f (x) f ) = ifpα

x f t f (ifpα
x f ) = ifpα+1

x f

using the hypothesis twice. Finally, the case of limit ordinals is easy, too.

ifpκ
xt f (x) f =

⊔

α<κ
ifpα

xt f (x) f =
⊔

ω≤α<κ
ifpα

xt f (x) f =
⊔

ω≤α<κ
ifpα

x f = ifpκ
x f

using the hypothesis on each approximant and the fact that ifpα
y f ≤ ifpω

y f for every α < ω and any y.
Thus, we have ifpxt f (x) f = ifpx f and therefore in particular xt ifpxt f (x) f ≤ ifpx f which was to be

shown.

Let M = (M,≤M ) be a complete lattice and f : M → M be an arbitrary function, not necessarily
monotone. Let M →M = (M → M,≤) be the complete lattice of functions from M to M with the
pointwise order defined above. Define a function Ff : (M →M)→ (M →M) as follows.

Ff (g) = λx.
(

xtg
(
xt f (x)

))

Lemma 4. Let M = (M,≤) be a partial order, and f : M →M arbitrary. Then Ff is monotone w.r.t. to
the partial order of the function space M →M .

Proof. Suppose g,g′ are functions of type M →M with g≤ g′, i.e. g(x)≤M g′(x) for every x ∈M. Then
xt (g(xt f (x)))≤M xt (g′(xt f (x))) for every such x and therefore Ff (g)≤ Ff (g′).

Hence, according to the Knaster-Tarski-Theorem (Thm. 1), Ff always possesses a least fixpoint. Next
we will show that this can be used to define the inflationary fixpoint of f .

Theorem 5. Let M = (M,≤) be a complete lattice with bottom element ⊥ and f : M →M arbitrary. If
cl( f )≤ ω then ifp f = (µFf )(⊥).

Proof. (“≤”) We will prove a stronger statement: for all x∈M and all α ≤ω we have ifpα
x f ≤ (µFf )(x).

In the base case of α = 0 we have

ifp0
x f = x ≤ xt

(
µ0Ff

(
xt f (x)

))
=

(
λy.yt

(
µ0Ff

(
yt f (y)

)))
(x) = (µ1Ff )(x)

≤ (µFf )(x)

In the step case we have

ifpα+1
x f = ifpα

xt f (x) f ≤ xt ifpα
xt f (x) f ≤ xt (µFf )

(
xt f (x)

)
=

(
λy.yt (µFf )

(
yt f (y)

))
(x)

= (µFf )(x)

according to Lemma 2 and the fact that µFf is a fixpoint of the function Ff . Finally,

ifpω
x f =

⊔

α<ω
ifpα

x f ≤
⊔

α<ω
(µFf )(x) = (µFf )(x)

using the hypothesis for every finite ordinal α .
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(“≥”) According to Lemma. ?? we have xt ifpxt f (x) f ≤ ifpx f for all x∈M. Hence, by αβ -expansion
we have (

λy.yt (λx.ifpx f )(yt f (y))
)

= (λx.xt ifpxt f (x) f ) ≤M→M (λx.ifpx f )

which shows that λx.ifpx f is a pre-fixpoint of Ff . According to the Knaster-Tarski-Theorem (Thm. 1)
we then have

µFf ≤M→M λx.ifpx f

which immediately yields (µFf )(x)≤ ifpx f for any x ∈M, in particular (µFf )(⊥)≤ ifp f .

4 Conclusion and Further Work

An almost immediate consequence of Thm. 5 concerns the expressive power of temporal logics extend-
ing the modal µ-calculus: the modal iteration calculus can be embedded into the first-order fragment of
higher-order fixpoint logic when interpreted over finite models only. Formulas of the former can induc-
tively be transformed into formulas of the latter. The only difficult case is that of inflationary fixpoint
quantifiers which are then handled by Thm. 5. The rest is easy because both logics extend modal logic. It
remains to be seen in detail whether Thm. 5 can also explain the equi-expressiveness of first-order logic
with inflationary fixpoints to first-order logic with least fixpoints on finite structures.

Clearly, the result presented here does not answer all questions about the relationship between least
and inflationary fixpoints. Most importantly, it remains to be seen whether Thm. 5 can be extended to
lattices of arbitrary height.
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