
Model Checking the Higher-Dimensional Modal
µ-calculus

Martin Lange and Etienne Lozes

School of Electrical Engineering and Computer Science, University of Kassel,
Germany?

Abstract. The higher-dimensional modal µ-calculus is an extension of
the µ-calculus that has been introduced by Otto. The fascinating fea-
ture of this extension is that it precisely characterizes the bisimulation-
invariant polynomial-time properties over finite structures. In this paper
we investigate how the model checking problem of the higher-dimensional
modal µ-calculus can be efficiently implemented. We propose two al-
gorithms, based on extensions of local model checking and symbolic
model checking algorithms respectively. We then illustrate the poten-
tial strength of these generic algorithms for deciding specific problems of
various fields, as process equivalences, automata theory, parsing, string
problems, or games.

1 Introduction

The Modal µ-Calculus Lµ [Koz83] is an important modal fixpoint logic for defin-
ing temporal properties of transition systems, i.e. properties of reactive pro-
grams, concurrent programs, etc. [Sti01]. It can be seen as an extension of multi-
modal logic with operators for recursion in the form of least and greatest fixpoint
quantifiers. Alternatively, it can be seen as a fragment of Monadic Second-Order
Logic since such fixpoint quantification can be expressed using second-order
quantification. In fact, it is the largest fragment of Monadic Second-Order Logic
that is bisimulation-invariant [JW96], i.e. that cannot distinguish between two
bisimilar states of a transition system.
Lµ is mostly known as a backbone for temporal logics used in program speci-

fication and verification which provide a more intuitive syntax and are therefore
used more often like CTL [CE81] and CTL∗ [EH86]. The most intriguing logical
problem in this domain is of course the model checking problem which is used to
automatically prove correctness of programs. From a theoretical point of view, it
is not answered entirely yet: it is known that the model checking problem for Lµ
and finite models is in NP∩coNP [EJS93], even in UP∩coUP [Jur98], and that
it is equivalent under linear-time reductions to the problem of solving a parity
game [Sti95].

? The European Research Council has provided financial support under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 259267.

A question of reasonable relevance in this domain is also the expressive power
of such a logic. It is basically answered by the result stated above: since bisim-
ulation is considered to be the notion of program equivalence, bisimulation-
invariance is a feature of a program specification logic, and Lµ is therefore ca-
pable of expressing all regular properties of bisimulation-invariant tree models.

The expressive power of logics is the main concern in descriptive complexity
theory [Imm99]. There, one considers formulas as a computational model which
describes classes of structures rather than accepts them like a Turing machine for
instance. A famous theorem in this field is Fagin’s stating that NP is the class
of all problems which can be described by a sentence in ESO—Second-Order
Logic using existential second-order quantification only [Fag74]. A correspond-
ing characterization of the complexity class P has not been found yet. Such a
characterization by a logic L would of course reduce the famous problem of P
?
= NP to a question of whether L can be separated from ESO using tools like
Ehrenfeucht-Fräıssé-games for instance [Ehr61,Fra54].

Some advancement has been made in this direction. It is known for instance
that P is characterized by the extension of First-Order Logic with Least Fix-
point Quantifiers over the restricted class of all finite and ordered structures
[Var82,Imm82]. This immediately raises the question of the expressive power
of Lµ in the context of descriptive complexity theory because it features least
fixpoint quantification on top of Modal Logic rather than First-Order Logic. Fur-
thermore, it is known that Modal Logic has the same expressive power as the
bisimulation-invariant fragment of First-Order Logic [AvBN98]. It is therefore
reasonable to ask whether Lµ captures the bisimulation-invariant fragment of
P—over finite and ordered structures at least. This is not the case, though. It is
strictly weaker [Ott99]. Otto has defined an extension of the Modal µ-Calculus,
the Higher-Dimensional µ-Calculus Lωµ , and shown that this extension does have
this feature.

Computational complexity theory still features many open questions regard-
ing the separation of different complexity classes. The main purpose of descrip-
tive complexity theory is to provide alternative and machine-independent charac-
terizations of complexity classes which may lead to further separation or collapse
results. In this paper we make use of descriptive complexity theory and the com-
putational content of Lωµ in particular. In general, suppose there is a complexity
class C and a logic L such that for every problem L ∈ C there is a formula
ϕL ∈ L whose models are exactly (encodings of) the positive instances of L, i.e.
w ∈ L iff enc(w) |= ϕL for some encoding of the instances of L as structures over
which L can be interpreted. Suppose furthermore that there is a model checking
algorithm MCL for L. Note that a model checking algorithm takes two inputs:
a structure and a formula. Then this yields algorithms for every problem in C
simply by instantiating it with the corresponding formula and possibly using
partial evaluation.

As stated before, this paper deals with the construction of algorithms for
various problems using such logical characterizations; here we consider Lωµ and,
clearly, problems in P which have bisimulation-invariant encodings via labeled

transition systems. Since—basically by definition—there are efficient algorithms
for all problems known to be in P the merit of this research is the provision
of a uniform treatment of such problems as model checking problems. It makes
a big toolbox of methods and optimizations discovered in the area of program
verification available to a much broader area, namely all problems definable in
Lωµ .

This paper is organized as follows. Section 2 introduces Lωµ . Section 3 contains
expositions of two methods for doing model checking for Lµ which have proven
to be of great value for the area or program verification: on-the-fly [SW91] and
symbolic model checking [BCM+92]. In Section 4 we give examples of problems
from various domains and show how they can be defined in Lωµ thus enabling on-
the-fly as well as BDD-based symbolic algorithms for all such problems. Section 5
contains a theoretical development on the reduction to ordinary modal µ-calculus
that underlies the two model checking algorithms of Section 3, and digressions
concerning the satisfiability problem.

2 The Higher-Dimensional Modal µ-Calculus

2.1 Syntax

We assume infinite sets Var = {x, y, . . . } and Var2 = {X,Y, . . . }, of respectively
first-order and second-order variables, and finite sets P = {p, q, . . . } and Σ =
{a, b, . . . } of respectively atomic propositions and labels. For tuples of first-order
variables x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn), with all xi distinct, x̄←ȳ, denote
the function κ : Var→Var such that κ(xi) = yi, and κ(z) = z otherwise.

The syntax of the higher-dimensional modal µ-calculus Lωµ is reminiscent of
that of the ordinary modal µ-calculus. However, modalities and propositions are
relativized to a first-order variable, and it also features the replacement modality
{κ}. Formulas of Lωµ are defined by the grammar

ϕ,ψ := p(x) | X | ¬ϕ | ϕ ∧ ψ | 〈a〉xϕ | µX.ϕ | {κ}ϕ

where x, y ∈ Var, κ : Var→Var, a ∈ Σ, and X ∈ Var2.
A formula is of dimension n if it contains at most n distinct first-order vari-

ables; we write Lnµ to denote the set of formulas of dimension n. Note that L1
µ

is equivalent to the standard modal µ-calulus: with a single first-order variable
x, we have p(x) ≡ p, {x←x}ψ ≡ ψ and 〈a〉xψ ≡ 〈a〉ψ for any ψ.

We actually restrict the syntax of formulas, like for L1
µ, and require that

every second-order variable gets bound by a fixpoint quantifier µ at most once
in a formula. Then for every formula φ there is a function fpφ which maps each
second-order variable X occurring in φ to its unique binding formula fpφ(X) =
µX.ψ. Finally, we allow occurrences of a second-order variable X only under the
scope of an even number of negation symbols underneath fpφ(X).

As usual, we write ϕ ∨ ψ, [a]xϕ, and νX.φ to denote ¬(¬ϕ ∧ ¬ψ), ¬〈a〉x¬ϕ,
¬µX.¬ϕ′ respectively where ϕ′ is obtained from ϕ by replacing every occurrence
of X with ¬X.

Note that {κ} is an operator in the syntax of the logic; it does not describe
syntactic replacement of variables. Consider for instance the formula

νX.
∧
p∈P

p(x)⇒ p(y) ∧
∧
a∈Σ

[a]x〈a〉yX ∧ {x, y←y, x}X.

As we will later see, this formula characterizes bisimilar states x and y. In this
formula, the operational meaning of {x, y←y, x}X can be thought as “swapping
the player’s sides” in the bisimulation game.

We will sometimes require formulas to be in positive normal form. Such
formulas are built from literals p(x), ¬p(x) and second-order variables X using
the operators ∧, ∨, 〈a〉x, [a]x, µ, ν, and {κ}. A formula is closed if all second-
order variables are bound by some µ.

With Sub(ϕ) we denote that set of all subformulas of ϕ. It also serves as a
good measure for the size of a formula: |ϕ| := |Sub(ϕ)|. Another good measure
of the complexity of the formula φ is its alternation depth adφ, i.e the maximal
alternation of µ and ν quantifiers along any path in the syntactic tree of its
positive normal form.

2.2 Labeled Transition Systems

A labeled transition system (LTS) is a graph whose vertices and edges are labeled
with sets of propositional variables and labels respectively. Formally, a LTS is a
tuple M = (S, s0, ∆, ρ) such that ∆ ⊆ S ×Σ × S and ρ : S→P(P). Elements of
S are called states, and we write s

a−→ s′ when (s, a, s′) ∈ ∆. The state s0 ∈ S
is called the initial state of M.

We will mainly consider finite transition systems, i.e. transition systems
(S, s0, ∆, ρ) such that S is a finite set. Infinite-state transition systems arising
from program verification are also of interest, but their model checking tech-
niques differ from the ones of finite LTS and cannot be handled by our approach
(see more comments on that point in the conclusion).

2.3 Semantics

A first-order valuation v over a LTS M is a mapping from first-order variables
to states, and a second order valuation is a mapping from second order variables
to sets of first-order valuations:

Val , Var → S

Val2 , Var2 → P(Val)

We write v[x̄ 7→ s̄] to denote the first-order valuation that coincides with
v, except that xi ∈ x̄ is mapped to the corresponding si ∈ s̄. We use the same
notation V [X̄ 7→ P̄] for second-order valuations. The semantics of a formula ϕ of
Lωµ for a LTS M and a second-order valuation V is defined as a set of first-order

valuations by induction on the formula:

Jp(x)KV
M , {v : p ∈ ρ(v(x))}

J¬ϕKV
M , Val− JϕKV

M

Jϕ ∧ ψKV
M , JϕKV

M ∩ JψKV
M

J〈a〉xϕKV
M , {v : ∃s. v(x)

a−→ s and v[x 7→ s] ∈ JϕKV
M}

JXKV
M , V (X)

JµX.ϕKV
M , LFP λP ∈ P(Val). JϕKV [X 7→P]

M

J{x̄←ȳ}ϕKV
M , {v : v[x̄ 7→ v(ȳ)] ∈ JϕKV

M}

We simply write JϕKM to denote the semantics of a closed formula. We write
M, v � ϕ if v ∈ JϕKM, and M � ϕ if M, v0 � ϕ, where v0 is the constant function
to s0. Two formulas are equivalent, written ϕ ≡ ψ, if JϕKM = JψKM for any LTS
M. As with the normal modal µ-calculus, it is a simple exercise to prove that
every formula is equivalent to one in positive normal form.

Proposition 1. For every ϕ ∈ Lωµ there is a ψ in positive normal form such
that ϕ ≡ ψ and |ψ| ≤ 2 · |ϕ|.

3 Model Checking

We describe two different ways of model checking a closed Lωµ formula in an LTS:
a reduction to parity games, and a symbolic method using fixpoint iteration.

3.1 Local Model Checking

A parity game is a tuple G = (Q,Q0, Q1, q0, E,Ω) where (Q,E) is a total,
directed graph, Q0∪Q1 is a partition of Q into nodes owned by player 0, respec-
tively 1, q0 ∈ Q is a designated starting node, and Ω : Q→ N assigns priorities
to the nodes. There are two important complexity measures for parity games:
its size is |G| = |Q|, and its index is the number of different priorities occurring
in it: idx (G) = |{Ω(q) : q ∈ Q}|. As with LTS we write q −→ q′ rather than
(q, q′) ∈ E.

A play starts in q0, and the owner of the current node qi chooses a suc-
cessor qi+1 such that qi −→ qi+1. The winner of an infinite play q0, q1, . . . is
lim
n→∞

max
i≥n

Ω(qi), modulo 2. A (positional) winning strategy for player i is a func-

tion ζ : Qi → Q such that player i wins every play in which he/she makes always
chooses ζ(q) whenever the play reaches a node q ∈ Qi. The problem of solving
a parity game is: given such a G, decide whether or not player 0 has a winning
strategy for G.

Theorem 1 ([Zie98]). A parity game of size n and index k can be solved in
time O(nk).

It is well-known that the model checking problem for the Modal µ-Calculus
can be reduced to solving a parity game [Sti95]. We now extend this construction
to the higher-dimensional modal mu-calculus. Assume an n ∈ N, an Lnµ formula
ϑ in positive normal form and an LTS M = (S, s0, ∆, ρ) to be fixed for this part,
and let V be fv(ϑ). The parity game GnM,ϑ is (Q,Q0, Q1, q0, E,Ω) where

– Q , (V → S)× Sub(ϑ),

– Q0 , {(v, ϕ) | ϕ is of the form ψ1 ∨ ψ2 or 〈a〉xψ},
– Q1 , Q−Q0,

– q0 , (v0, ϑ), with v0 the constant valuation to s0,

– the edge relation in the game is defined by

(v, ϕ) −→



(v, p(x)) , if ϕ = p(x)

(v,¬p(x)) , if ϕ = ¬p(x)

(v, ψi) , if ϕ = ψ1 ⊗ ψ2 and ⊗ ∈ {∧,∨} and i ∈ {1, 2}
(v′, ψ) , if ϕ = 〈a〉xψ or ϕ = [a]xψ, and

∃s ∈ S.v′ = v[x 7→ s] and v(x)
a−→ s

(v, ψ) , if ϕ = ηX.ψ, or ϕ = X and fpϑ(X) = ηX.ψ

for η ∈ {µ, ν}
(v′, ψ) , if ϕ = {κ}ψ and v′(x) = v(κ(x)) for all x ∈ V

– and the priorities solely depend on the formula component of a state:

Ω(v, ϕ) ,


adϑ(X) , if ϕ = X

1 , if ϕ = p(x) and p 6∈ ρ(v(x)),

or ϕ = ¬p(x) and p ∈ ρ(v(x))

0 , in all other cases.

Theorem 2. For every n ∈ N, every Lnµ sentence ϕ in positive normal form,
every LTS M, we have M |= ϕ if and only if player 0 has a winning strategy for
the parity game GnM,ϕ.

The proof of this is a consequence of the reduction of Lωµ to L1
µ that we

present at the end of the paper (see the Reduction Theorem 4, Section 5): the
parity game GnM,v,ϕ is nothing but the ordinary parity game on a “product” LTS

clonen(M), and for a L1
µ formula ϕ̂ (see Section 5).

Theorem 2 then provides a multitude of model checking algorithms for Lωµ
since there are many parity game solving algorithms. In particular, on-the-
fly model checking for Lωµ is possible using local strategy improvement algo-
rithms [FL11] and the alike [SS98]. There is also a tool that solves parity games
well in practice and has implemented virtually all algorithms that are available
in the literature [FL09].

3.2 Symbolic Model Checking

Symbolic model checking refers to the use of certain data structures for storing
the results of intermediate computations when determining whether a given in-
terpretation models a formula. Possibly the most prominent symbolic technique
uses BDDs [Bry86] to represent sets of states in an LTS as well as the transition
relations in it [BCM+92]. Success is based on the fact that necessary operations
on state sets and these relations can efficiently be computed on such presenta-
tions. Here we describe how to extend BDD-based model checking to L∞µ . We
refer to the literature on symbolic model checking for a thorough introduction
to the use of BDDs in verification. Here we consider a BDD simply as a Boolean
function over some n, linearly ordered variables.

The key to BDD-based model checking for Lmµ is the fact that JϕKV
M can

be represented as a Boolean function in n · m variables for any second-order
valuation V and LTS M with no more than 2n many states. Suppose such an
LTS M = (S, s0, ∆, ρ) is given. W.l.o.g. we assume S = {0, . . . , 2n − 1} for some
n ∈ N. It can be represented using |P|+ |Σ| many Boolean functions in variables
x0, . . . , xn−1 as follows. We identify a vector b̄ of n Boolean values with the
natural number it represents in binary encoding. I.e. say n = 3 for instance, and
consider the vector (0, 1, 1). It represents a mapping of some variables x0, x1, x2
to 0, 1, 1 respectively, and at the same time it denotes the state 6.

– For each p ∈ P there is a function fp(x̄) in n variables, defined by fq(s̄) = 1
iff q ∈ ρ(s̄).

– For each a ∈ Σ there is a function fa(x̄, ȳ) in 2n variables, defined by
fa(s̄, t̄) = 1 iff s̄

a−→ t̄.

Furthermore, a set of first-order valuations V ⊆ Var→ S for the m free variables
x0, . . . , xm−1 of an Lmµ formula can be represented by a Boolean function f in
m ·n variables as follows. fV(s̄0, . . . , s̄m−1) = 1 iff v ∈ V where v(xi) = s̄i for all
i = 0, . . . ,m− 1.

Equally, a symbolic representation of a second-order valuation V is then sim-
ply a map from the second-order variables to such sets of first-order valuations.

We can then present an algorithm that computes for a given ϕ ∈ Lmµ and a
symbolically represented second-order valuation V , a symbolic representation of
JϕKV

M. The algorithm is presented on Figure 1. It manipulates Boolean functions
as introduced above using for instance conjunction and negation. We write f [ȳ/x̄]
for some vectors of variables x̄ and ȳ of the same arity, to denote the simultaneous
replacement of the variables in x̄ by those in ȳ.

Theorem 3. For every m ∈ N, every Lmµ formula ϕ, every second-order valua-

tion V and every LTS M we have JϕKV
M = MC(ϕ,V) over this LTS M.

The proof is by straightforward induction on ϕ, and consists in checking that
the algorithmic operations tightly follow the definition of JϕKV

M.

MC(ϕ,V) =
case ϕ of

p(xi) : return fp[x̄i/x̄]
¬ψ : return ¬MC(ψ,V)
ψ1 ∧ ψ2 : return MC(ψ1,V) ∧ MC(ψ2,V)
〈a〉xiψ : f := MC(ψ,V)[ȳ/x̄i]

return ∃ȳ.fa[x̄i/x̄] ∧ f
X : return V (X)
µX.ψ : f ′ := ff

V ′ = V [X 7→ f ′]
f := MC(ψ,V ′)

while f 6= f ′ do

f ′ := f
V ′ := V [X 7→ f ′]
f := MC(ψ,V ′)

done

return f
{ȳ←z̄}ψ : f := MC(ψ,V)

let (xi1 , . . . , xik) = ȳ
let (xj1 , . . . , xjk) = z̄
return

f [x̄j0/x̄i0 , . . . , x̄jk/x̄ik]

Fig. 1. The symbolic model checking algorithm for Lωµ .

4 Various Problems as Model Checking Problems

The model checking algorithms we presented can be exploited to solve any
polynomial-time problem that can be encoded as a model checking problem
in Lωµ . This is hard to figure out which problems really fall into this category.
By means of examples, we now intend to show that these problems are quite
numerous.

4.1 Process Equivalences

The first examples are process equivalences encountered in process algebras. We
only consider here strong simulation equivalence and bisimilarity, and let the
interested reader think about how to encode other process equivalences, like
weak bisimimilarity for instance.

Let us first remind some standard definitions. Let M = (S, s0, ∆, ρ) be a
fixed LTS. A simulation is a binary relation R ⊆ S × S such that for all (s1, s2)
in R,

– for all p ∈ P, if p ∈ ρ(s1) then p ∈ ρ(s2);

– for all a ∈ Σ and s′1 ∈ S, if s1
a−→ s′1, then there is s′2 ∈ S such that

s2
a−→ s′2 and (s′1, s

′
2) ∈ R.

Two states s, s′ are simulation equivalent, s w s′, if there are simulations R,R′

such that (s, s′) ∈ R and (s′, s) ∈ R′. A simulation R is a bisimulation if R =
R−1; we say that s, s′ are bisimilar, s ∼ s′, if there is a bisimulation that contains
(s, s′). We say that two valuations are bisimilar, v ∼ v′, if for all x ∈ Var,
v(x) ∼ v′(x).

Proposition 2. [Ott99] Lωµ is closed under bisimulation: if v ∈ JφK and v ∼ v′,
then v′ ∈ JφK.

Let us now explain how these process equivalences can be decided by the
model checking algorithms: the following formula captures valuations v such
that v(x) ∼ v(y)

νX.
∧
p∈P

p(x)⇒ p(y) ∧
∧
a∈Σ

[a]x〈a〉yX ∧ {x, y←y, x}X

whereas the following formula captures valuations v such that v(x) w v(y)

νX
(
νY.

∧
p∈P

p(x)⇒ p(y) ∧
∧
a∈Σ

[a]x〈a〉yY
)
∧ {x, y←y, x}X.

4.2 Automata Theory

A second application of Lωµ is in the field of automata theory. To illustrate
this aspect, we pick some language inclusion problems that can be solved in
polynomial-time.

A non-deterministic Büchi automaton can be viewed as a finite LTS A =
(S, s0, ∆, ρ) where ρ interpretes a predicate final. Remember that a run of an
infinite word w ∈ Σω over A is accepting if it visits infinitely many times a final
state. The set of words L(A) ⊆ Σω that have an accepting run is called the
language accepted by A.

The language inclusion problem L(A) ⊆ L(B) is exponential time for arbi-
trary Büchi automata, but in the restricted case of B being deterministic, it
becomes polynomial time - remember that a Büchi automaton is called deter-
ministic if for all a ∈ Σ, for all s, s1, s2 ∈ S, if s

a−→ s1 and s
a−→ s2, then

s1 = s2.
Let us now encode the language inclusion problem L(A) ⊆ L(B) as a Lωµ

model checking problem. To shorten a bit the formula, we assume that B is
moreover complete, i.e. for all s ∈ S, for all a ∈ Σ, there is at least one s′ such
that s

a−→ s′. Consider the formula φincl ,

〈synch〉∗νZ1.
(

final(x) ∧ ¬final(y) ∧ µZ2.〈synch〉
(
Z1 ∨ (¬final(y) ∧ Z2)

))
Let MA,B be the LTS obtained by disjoint union of A and B, creating an ad-
ditional initial state s0 and two transitions inA and inB from s0 to the initial
states of A and B. Then L(A) is included in L(B) if and only if MA,B 6�
〈inA〉x〈inB〉yφincl. Indeed, this formula is satisfiable if there is a run rA of A
and a run rB of B reading the same word w ∈ Σω such that rA visits a final
state of A infinitely often, whereas rB eventually stops visiting the final states of
B. Since B is deterministic, no other run r′B could read w, thus w ∈ L(A)\L(B).

The same ideas can be applied to parity automata. A parity automaton is
a finite automaton where states are assigned priorities; it can be seen as a LTS
(S, s0, ∆, ρ) where ρ interprets priority predicates prtyk in such a way that ρ(s)
is a singleton {prtyk} for all s ∈ S. A word w ∈ Σω is accepted by a parity
automaton if there is a run of w such that the largest priority infinitely often

visited is even. Consider the formulas prty≤m(x) = prty0(x)∨ . . .∨ prtym(x) and
φn,m

〈synch〉∗νZ.〈synch′〉+
(
prtyn(x) ∧ 〈synch′〉+(prtym(y) ∧ Z)

)
where 〈synch′〉+φ is a shorthand for µZ.〈synch〉prty≤n(x)∧prty≤m(y)∧ (φ∨Z).
Then φn,m asserts that there are two runs rA and rB of two parity automata
A and B recognizing the same word w such that the highest priorities visited
infinitely often by rA and rB are respectively n and m; using the same idea as
above, φn,m can be used to encode the inclusion problem L(A) ⊆ L(B) when B
is deterministic complete.

4.3 Parsing of Formal Languages

A third application of Lωµ is in the field of parsing for formal, namely context-
free languages. To each finite word w, we may associate its linear LTS Mw

- for instance, for w = aab, Mw is the LTS a a b . Let us

now consider a context-free grammar G, and define a formula that describes the
language of G. To ease the presentation, we assume that G is in Chomsky normal
form, but a linear-size formula would be derivable for an arbitrary grammar as
well. The production rules of G are thus of the form either Xi→XjXk or Xi→a,
for X1, . . . , Xn the non-terminals of G. To every non terminal Xi, we associate
the recursive definition:

φi =µ

∨
Xi→a

〈a〉x x ∼ y ∨
∨

Xi→XjXk

{z←x}〈−〉∗z
(
({y←z}φj) ∧ ({x←z}φk)

)
where x ∼ y is the formula characterizing bisimilarity and 〈−〉∗zφ is µZ.φ ∨∨
a∈Σ〈a〉zZ. If v(x) and v(y) are respectively the initial and final states of Mw,

then Mw, v � φi is equivalent to w being derivable in G starting with the symbol
Xi.

4.4 String Problems

Model Checking for L∞µ can even be useful for computation (as opposed to de-
cision) problems. Consider for example the Longest Common Subword problem:
given words w1, . . . , wm over some alphabet Σ, find a longest v that is a sub-
word of all wi. This problem is NP-complete for an unbounded number of input
words. Thus, we consider the problem restricted to some fixed m, and it is possi-
ble to define a formula ϕmLCSW ∈ Lmµ such that model checking this formula on a
suitable representation of the wi essentially computes such a common subword.

For the LTS take the disjoint union of all Mwi for i = 1, . . . ,m, and assume
that each state in Mwi is labeled with a proposition pi which makes it possible
to define m-tuples of states in which the i-th component belongs to Mwi . Now
consider the formula

ϕmLCSW := νX.

m∧
i=1

pi(xi) ∧
∨
a∈Σ
〈a〉1 . . . 〈a〉mX

Note that ϕmLCSW is unsatisfiable for any m ≥ 1. Thus, the symbolic model
checking algorithm of Section 3.2 for instance would always return the empty
set of tuples when called on this formula and any LTS. However, on an LTS
representing w1, . . . , wm as described above it consecutively computes in the j-
th round of the fixpoint iteration, all tuples of positions h1, . . . , hm such that the
subwords in wi from position hi− j to hi are all the same for every i = 1, . . . ,m.
Thus, it computes, in its penultimate round the positions inside the input words
in which the longest common substrings end. Their starting points can easily be
computed by maintaining a counter for the number of fixpoint iterations done
in the model checking run.

In the same way, it is possible to compute the longest common subsequence
of input words w1, . . . , wm. A subsequence of w is obtained by deleting arbitrary
symbols, whereas a subword is obtained by deleting an arbitrary prefix and suffix
from w. The Longest Common Subsequence problem is equally known to be NP-
complete for unbounded m. For any fixed m, however, the following formula can
be used to compute all longest common subsequences of such input words using
model checking technology in the same way as it is done in the case of the
Longest Common Subword problem.

ϕmLCSS := νX.

m∧
i=1

pi(xi) ∧
∨
a∈Σ
〈a〉1〈−〉∗1 . . . 〈a〉m〈−〉∗mX

where 〈−〉∗iψ stands for µY.ψ ∨
∨
a∈Σ
〈a〉iY .

4.5 Games

The Cat and Mouse Game is played on a directed graph with three distinct
nodes c, m and t as follows. Initially, the cat resides in node c, the mouse in
node m. In each round, the mouse moves first. He can move along an edge to a
successor node of the current one or stay on the current node, then the cat can
do the same. The mouse wins when he reaches the target node t, otherwise the
cat wins. The problem of solving the Cat and Mouse Game is to decide whether
or not the mouse has a winning strategy for such a given graph.

Note that this problem is not bisimulation-invariant under the straight-
forward encoding of the directed graph as an LTS with a single proposition
t to mark the target node. Consider for example the following two, bisimilar
game arenas.

t t

Clearly, if the cat and mouse start on the two separate leftmost nodes then the
mouse can reach the target first. However, these nodes are bisimilar to the left
node of the right graph, and if they both start on this one then the cat has
caught the mouse immediately.

Thus, winning strategies cannot necessarily be defined in L∞µ . However, it is
possible to define them when a new atomic formula eq(x, y) expressing that x
and y evaluate to the same node, is being added to the syntax of L∞µ (the model
checking procedures in Section 3 can straightforwardly be extended to handle
the equality predicate eq as well).

ϕCMG := µX.(t(x) ∧ ¬eq(x, y)) ∨ 〈−〉x(t(x) ∧ ¬eq(x, y)) ∧ [−]yX)

We have v |= ϕCMG if and only if the mouse can win from position v(x) when
the cat is on position v(y) initially.

5 Reduction to the Ordinary µ-Calculus

The main ingredient for the correctness proofs of the model checking methods
presented in the previous sections is the reduction theorem presented below. It
describes how the model checking problem for Lnµ can be reduced to that of L1

µ,
i.e. the ordinary µ-calculus. Let us assume a fixed non-empty finite subset V
of first-order variables. A formula ϕ of Lωµ with fv(ϕ) ⊆ V can be seen as a
formula ϕ̂ of L1

µ over the set of the atomic propositions P × V and the action
labels Σ × V ∪ (V → V). We write px instead of (p, x) for elements of P × V ,
and equally ax for elements from Σ × V . Then ϕ 7→ ϕ̂ can be defined as the

homomorphism such that p̂(x) , px, 〈̂a〉xϕ , 〈ax〉ϕ, and ̂{x̄←ȳ}ϕ , 〈x̄←ȳ〉ϕ̂.
We call higher-dimensional a LTS that interprets the extended propositions

px and modalities 〈ax〉 and 〈κ〉 introduced by the formulas ϕ̂, and ground when
it interprets the standard propositions and modalities. For a ground LTS M and
a formula ϕ, we thus need to define the higher-dimensional LTS over which ϕ̂
should be interpreted: we call it the V -clone of M, and write it cloneV (M). Let
us now detail the construction of cloneV (M). Assume M = (S, s0, ∆, ρ). Then
cloneV (M) = (S′, s′0, ∆

′, ρ′) is defined as follows.

– The states are valuations of the variables in V by states in S, e.g S′ = V → S,
and s′0 is the constant function λx ∈ V.s0.

– The atomic propositions px is true in those new states, which assign x to an
original state that satisfies p, e.g. ρ′(v) = {px : p ∈ ρ(v(x))}.

– The transitions contain labels of two kinds. First, there is an ax-edge between
two valuations v and v′, if there is an a-edge between v(x) and v′(x) in the
original LTS M:

v
ax−→ v′ iff ∃t.v(x)

a−→ t and v′ = v[x 7→ t].

For the other kind of transitions we need to declare the effect of applying
a replacement to a valuation. Let v : V→S be a valuation of the first-
order variables in V , and κ : V→V be a replacement operator. Let tκ(v)
be the valuation such that tκ(v)(x) = v(κ(x)). Then we add the following
transitions to ∆′.

v
κ−→ v′ ⇐⇒ v′ = tκ(v)

Note that the relation with label κ is functional for any such κ, i.e. every
state in cloneV (M) has exactly one κ-successor. Hence, we have 〈κ〉ψ ≡ [κ]ψ
over cloned LTS.

Theorem 4. Let V be a finite set of first-order variables, let M = (S, s0, ∆, ρ)
be a ground LTS, and let ϕ be a Lωµ formula such that fv(ϕ) ⊆ V . Then

M |= ϕ if and only if cloneV (M) |= ϕ̂.

The proof goes by straightforward induction on ϕ. This result may suggest
that the theory of Lωµ should be “simple”, as it is “nothing more” than the theory
of L1

µ over cloned LTS. The following result may further suggest this impression.

Theorem 5. Let V be a finite set of first-order variables. Then there is a for-
mula ϕcloned in L2

µ such that for all higher-dimensional LTS M, the following
two are equivalent:

1. M � ϕcloned, and
2. there is a ground LTS M′ such that for all formula ϕ with fv(ϕ) ⊆ V ,

M � ϕ if and only if cloneV (M′) � ϕ.

The proof goes by the logical characterization of conditions we will describe
soon. Let us first comment this result. Theorem 5 shows that it is theoretically
possible to reduce the satisfiability problem for the whole Lωµ to the one of L2

µ:
indeed, a Lωµ formula ϕ is satisfiable if and only if the L2

µ formula ϕcloned ∧ ϕ̂ is
satisfiable. It would have been nice to further reduce to L1

µ, since it would entail
the decidability of the satisfiability of Lωµ . But expressing ϕcloned in L1

µ is actually
impossible: Otto showed that the satisfiability problem for L2

µ is undecidable,
and even Σ1

1 -hard [Ott99]. Theorem 5 thus shows that all the complexity of Lωµ
arises at level 2, and that the other levels are not more complicated; in other
words, the complexity results of Otto for L2

µ extend to Lωµ .
Let us now give the main ingredients of the proof of Theorem 5. Let M =

(S, s0, ∆, ρ) be an arbitrary higher-dimensional LTS. We define the ground LTS
uncloneV (M) = (S′, s′0, ∆

′, ρ′) as follows:

– states of uncloneV (M) are of the form 〈s x〉, i.e. S′ = S × V ; such a state
〈s x〉 can be thought as “the x view of s”;

– s′0 is 〈s0 x〉 for one arbitrary x;
– 〈s x〉 satisfies p if s satisfies px in M, i.e. ρ′(〈s x〉) = {p : px ∈ ρ(s)};
– 〈s x〉 evolves to 〈s′ x〉 after a if s evolves to s′ after ax in M, i.e. ∆′ ={(

〈s x〉, a, 〈s′ x〉
)

: (s, ax, s
′) ∈ ∆

}
.

To provide a better readability, we write ∼g for the bisimilarity in a ground
LTS and ∼hd for the one in a higher-dimensional one. We say that a higher-
dimensional LTS M = (S, s0, ∆, ρ) is cloned if all of the following conditions
hold:

– for all x, y ∈ V , 〈s0 x〉 ∼g 〈s0 y〉;

– for all s ∈ S, for all κ : V→V , there is at least one state s′ such that s
κ−→ s′,

and if s1, s2 are two such κ successors of s, then s1 ∼hd s2; we write tκ(s)
to denote one (arbitrary) such successor;

– for all s ∈ S, for all x ∈ V , for all κ : V→V , 〈s κ(x)〉 ∼g 〈tκ(s) x〉
– for all s, s′ ∈ S, for all a ∈ Σ, for all x, y ∈ V , x 6= y, if s

ax−→ s′, then
〈s y〉 ∼g 〈s′ y〉.

Lemma 1. For all ground LTS M, cloneV (M) is cloned. Conversely, for all
cloned higher-dimensional LTS M = (S, s0, ∆, ρ), the higher-dimensional LTS
cloneV (uncloneV (M)) is bisimilar to M in the following sense:

for all s ∈ S s ∼hd λx ∈ V.〈s x〉

Conclusion

We showed a reduction of the model checking problem of Lωµ to L1
µ, and another

reduction of the satisfiability problem of Lωµ to L2
µ. The LTS transformations

cloneV (.) and uncloneV (.) that support these reductions are obviously valid for
infinite-state transition systems. It is thus worth discussing the model checking
problem of Lωµ over infinite-state transition systems. The prominent result in
the area is probably the decidability of this problem for L1

µ over pushdown
LTS [Wal96]. However, the clone of a pushdown LTS is not a pushdown LTS
in general, hence the model checking problem of Lωµ over pushdown LTS is not
shown decidable by Theorem 4 — we actually conjecture that this problem is
undecidable. The second author conjecture that reversal-bounded LTS could be
a good example of infinite LTS for which model checking Lωµ would be decidable,
due to the encouraging results of Bersani and Demri [?].

References

[AvBN98] H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274,
1998,.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, 1992.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on Logics
of Programs, pages 52–71, Yorktown Heights, New York, 1981.

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revis-
ited: On branching versus linear time temporal logic. Journal of the ACM,
33(1):151–178, 1986.

[Ehr61] A. Ehrenfeucht. An application of games to the completeness problem for
formalized theories. Fund. Math., 49:129–141, 1961.

[EJS93] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for frag-
ments of µ-calculus. In CAV’93, pages 385–396, 1993.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recognizable
sets. Complexity and Computation, 7:43–73, 1974.

[FL09] O. Friedmann and M. Lange. Solving parity games in practice. In Proc.
7th Int. Symp. on Automated Technology for Verification and Analysis,
ATVA’09, volume 5799 of LNCS, pages 182–196, 2009.

[FL11] O. Friedmann and M. Lange. Two local strategy improvement schemes for
parity game solving. Journal of Foundations of Computer Science, 2011.
To appear.

[Fra54] R. Fräıssé. Sur quelques classifications des systèmes de relations. Publ. Sci.
Univ. Alger. Sér. A, 1:35–182, 1954.

[Imm82] N. Immerman. Relational queries computable in polynomial time. In Proc.
14th Symp. on Theory of Computing, STOC’82, pages 147–152, Baltimore,
USA, 1982. ACM.

[Imm99] N. Immerman. Descriptive Complexity. Springer-Verlag, New York, 1999.
[Jur98] M. Jurdziński. Deciding the winner in parity games is in UP∩co-UP .

Inf. Process. Lett., 68(3):119–124, 1998.
[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the proposi-

tional µ-calculus with respect to monadic second order logic. In CONCUR,
pages 263–277, 1996.

[Koz83] D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, De-
cember 1983.

[Ott99] M. Otto. Bisimulation-invariant PTIME and higher-dimensional µ-calculus.
Theor. Comput. Sci., 224(1-2):237–265, 1999.

[SS98] P. Stevens and C. Stirling. Practical model-checking using games. In B. Stef-
fen, editor, Proc. 4th Int. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS’98, volume 1384 of LNCS, pages
85–101. Springer, 1998.

[Sti95] C. Stirling. Local model checking games. In Proc. 6th Conf. on Concurrency
Theory, CONCUR’95, volume 962 of LNCS, pages 1–11. Springer, 1995.

[Sti01] C. Stirling. Modal and Temporal Properties of Processes. Texts in Computer
Science. Springer, 2001.

[SW91] C. Stirling and D. Walker. Local model checking in the modal µ–calculus.
TCS, 89(1):161–177, 1991.

[Var82] M. Y. Vardi. The complexity of relational query languages (extended ab-
stract). In Proc. 14th Symp. on Theory of Computing, STOC’82, pages
137–146, San Francisco, CA, USA, 1982. ACM.

[Wal96] Igor Walukiewicz. Pushdown processes: Games and model checking. In
CAV, pages 62–74, 1996.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. TCS, 200(1–2):135–183, 1998.

