
Exact Incremental Analysis of Timed Automata
with an SMT-Solver

Bahareh Badban and Martin Lange!

School of Elect. Eng. and Computer Science, University of Kassel, Germany

Abstract. Timed automata as acceptors of languages of finite timed
words form a very useful framework for the verification of safety prop-
erties of real-time systems. Many of the classical automata-theoretic de-
cision problems are undecidable for timed automata, for instance the
inclusion or the universality problem. In this paper we consider restric-
tions of these problems: universality for deterministic timed automata
and inclusion of a nondeterministic one by a deterministic one. We then
advocate the use of SMT solvers for the exact incremental analysis of
timed automata via these problems. We stratify these problems by con-
sidering domains of timed words of bounded length only and show that
each bounded instance is in (co-)NP. We present some experimental data
obtained from a prototypical implementation measuring the practical
feasibility of the approach to timed automata via SMT solvers.

1 Introduction

Timed automata as introduced in [3] are one of the most well-established models
for the specification and verification of systems in which events can happen
arbitrarily close in time [14].

The real numbers present an adequate model for continuous time; systems
in which such timing aspects need to be modeled are therefore also called real-
time systems. Execution traces of real-time systems can be modeled by timed
words—sequences of events which are attached to the time at which they occur.
Timed automata then act as acceptors of languages of timed words for instance,
and various verification problems on real-time systems can be phrased as classic
automata-theoretic problems. For instance the classic problem of determining
whether an implementation satisfies a specification can be modeled as a language
inclusion problem on timed automata.

Real-time aspects introduce additional complexity. The state space of a timed
automaton is in fact infinitely large due to the infinitely many moments in time
that the execution along a timed word presents. While emptiness for finite au-
tomata is NLOGSPACE-complete, and universality (is L(A) = Σ∗?) and inclu-
sion (is L(A) ⊆ L(B)?) are PSPACE-complete [3]; emptiness for timed automata
! The European Research Council has provided financial support under the Euro-

pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 259267.

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 177–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

178 B. Badban and M. Lange

is already PSPACE-complete and universality and inclusion even are undecidable
[3]. This has always limited the analysis of such automata to a great extent. To
circumvent this problem extensive research has been done, in which certain limi-
tations are imposed on the structure of the automata, for instance by restricting
the resources that a timed automaton has access to.

In this paper we consider the problems of language universality and inclusion
for timed automata. In order to obtain effective algorithmic solutions we restrict
the universality problem to deterministic timed automata, and in the inclusion
problem L(A) ⊆ L(B) we require that B is deterministic. In Sect. 2 we recall very
simple constructions that embed the former as well as the emptiness problem for
nondeterministic timed automata into the latter. Because of this we can restrict
our attention to this inclusion problem.

In Sect. 3 we then develop an incremental approach to these three problems
using an idea that has been developed for bounded model checking: by limiting
the space of possible witnesses or counterexamples to the emptiness, universality
or inclusion problem one can obtain a computationally easier problem. Formally,
we define bounded variants of these three problems which are obtained by adding
a further input parameter k. The bounded emptiness problem then asks whether
or not there is a word in the language that has length at most k. Bounded vari-
ants of the two other problems are defined accordingly. We first give a lower
complexity bound on the emptiness and inclusion problem showing that they
remain at least NP-hard (for unarily encoded additional input parameter k). A
corresponding co-NP-lower bound for the universality problem cannot be pre-
sented for lack of space but does exist.

In Sect. 4 we first develop a generic propositional logic over integer and real-
valued constraints and show that its satisfiability problem is in NP. We then
present an encoding of the bounded inclusion problem into the satisfiability prob-
lem for this logic. Encodings of the two other bounded problems can easily be
obtained from this one. This shows NP-completeness of the bounded emptiness
and inclusion problems as well as inclusion in co-NP of the bounded universality
problem; compare this to the PSPACE-completeness of the unbounded versions.
Hence, the transition from the unbounded to the bounded problems reduces the
complexity measurably but it also is the case that the bounded problems are
not necessarily solvable in polynomial time (which would make the approach via
satisfiability problems questionable).

This generic propositional logic can easily be embedded into logics that are
supported by many modern SMT solvers. An SMT (“satisfiability modulo the-
ories”) is a satisfiability checker for predicate logics that are obtained by ex-
panding propositional logic with a so-called theory, for example the theory of
arithmetic over the real numbers.

SMT solvers extend SAT solvers which can only check plain propositional
formulas for satisfiability but cannot handle numbers or interpreted function
symbols like addition for instance. This does not mean that SAT solvers cannot
be used for satisfiability problems using natural numbers for example: if their
domain is bounded then they can easily be modeled by propositional variables

Exact Incremental Analysis of Timed Automata with an SMT-Solver 179

based on the bit representation. This is not restricted to natural numbers. Even
timed automata analysis which inherently relies on adding real numbers has
been done with SAT solvers [12]. This requires some sort of abstraction though,
for instance by approximating real numbers up to a feasible precision which
enables representations with a fixed number of bits. In fact, this is nothing more
than the region-based abstraction technique seen in classical algorithms on timed
automata.

Here we argue that SMT solvers over theories incorporating simple real arith-
metic form a promising alternative to the analysis of timed automata using SAT
solvers. In effect, they offer the following advantages.

1) SMT solvers can get rid of the need for abstraction techniques. The abstrac-
tion needed to solve a problem over a continuous domain with a discrete step
algorithm is removed from the timed automata analysis and entirely handled
by the SMT solver. This simplifies correctness proofs on the timed automata
side a lot as the proofs contained in this paper show. We emphasize the lack
of need for such abstractions by calling the SMT-based analysis “exact”.

2) SMT solvers are not restricted to problems of a certain complexity like
SAT solvers are restricted to problems in NP (unless one accepts exponen-
tially large encodings). In this paper we only consider a very weak fragment
of logics that can be handled by modern SMT solvers: quantifier-free logic
over very simple linear integer or real-valued inequalities. This is enough for
the problems on timed automata considered here. However, SMT solvers of-
fer a lot more in terms of available predicate logics. The question of which
other problems on timed automata can be tackled (not necessarily “solved”
because of decidability issues) using SMT solvers needs to be answered in
future investigations.

3) Research in SMT solving is catching up with SAT solving. For example,
incremental solving—the possibility of adding and deleting constraints after
solving—is available for some SMT solvers as well. Incrementality is what
makes the transition from the unbounded emptiness, universality and inclu-
sion problem to the bounded variant a feature rather than a weakness [20].

In Sect. 5 we examine the practical feasibility of using SMT solvers for timed
automata analysis by reporting on some experimental results obtained from a
prototype implementation using the SMT solver Z3 [1]. We conclude the paper
in Sect. 6 with ideas for future work on top of the one presented here.

Related Work. Many works also consider restricted cases in which the universal-
ity or inclusion problem becomes decidable [2, 4, 18, 19]. While we also restrict
these problems (to some deterministic automata), the purpose of doing so is
entirely different. We are not primarily concerned with obtaining a decidable
subcase. It is just that this decidable subcase can be handled with a relatively
simple translation into the SMT framework, and the complexity considerations
in this paper are done in order to classify the obtained subcase accordingly. The
NP-hardness lower bound shows that there is no known way of solving the prob-
lem efficiently. The NP upper bound shows that the analysis problems fit into a

180 B. Badban and M. Lange

relatively simple fragment of quantifier-free predicate logic over the integers and
the reals.

The works that are closely related to the one presented here are probably
[6, 17] where the authors extend some existing SAT-solvers in order to verify
timed automata against reachability properties specified as LTL formula. This
is when, in this paper we compare the (generalized) timed automata with each
other to investigate properties like language inclusion and universality as well.
Our approach is also different from [12, 21] where the authors present some
encoding of the emptiness problem for networks of timed automata into SAT.
The main difference between these and the work presented here does not lie in
the extension to asynchronous networks. It is not hard to see that the encoding
presented here can be extended to networks of timed automata as well. The main
difference is, as argued above, the use of SMT instead of SAT solving technology.
The simplification due to lack of need for explicit discretisation is imminent when
comparing the correctness proofs here with the ones in there.

Timed automata as a subclass of hybrid automata can of course be dealt
with using the approaches introduced in [5, 13]. These methods are designed in
such a way that they can handle the non-linear constraints in hybrid automata
efficiently. However, our intention is to provide a technique that is specifically
designed for timed automata, whose clock constraints in a generalized form only
compare the difference of two variables with a constant value, e.g. x− y ≤ 2.

2 Timed Automata

2.1 Syntax, Semantics, Runs

A timed automaton consists of a finite state automaton together with a finite
set of clocks. Clocks are non-negative real valued variables which keep track of
the time delay since the last reset. A finite state automaton describes the system
control states and its discrete transitions. All clocks are initially set to 0, and
evolve at the same speed. A configuration of the system is given by the current
control location of the automaton and the value of each clock, denoted 〈q, v〉,
where q is the control location and v is the valuation function which assigns
to each clock its current value. Transitions are enabled by guards which are
constraints on clock values. The language Φ(X) of all constraints over a set of
clocks X is given by

g ::= true | x ! c | x− y ! c | ¬g | g ∧ g

where x, y ∈ X , c ∈ N and ! ∈ {≤, <}. We will also use other Boolean and
arithmetic operators that are definable using the ones above like g1 ∨ g2 :=
¬(¬g1 ∧ ¬g2), etc.

The definition above, as called in the literature [8, 10] diagonal constraint,
renders timed automata more expressive than its classical variant [3, 9] where
atomic constraints contain only one clock variable, e.g. x ≤ c.

A valuation for a set X of clocks is a function v : X → R≥0, assigning non-
negative real values to the clocks. The satisfication of a clock constraint over

Exact Incremental Analysis of Timed Automata with an SMT-Solver 181

b

a

a

x≥1

x := 0

y := 0

q0

(a) (b)

q0

a

ba

x≥1

x < 1

y := 0

bb

q1 q2
x − y≥1q1

x − y≥1
q2

Fig. 1. a) a nondeterministic timed automaton. b) a deterministic timed automaton.

X by some valuation over X is defined straight-forwardly by induction on the
structure of the constraint, e.g. v |= x!c iff v(x)!c for ! ∈ {≤, <}. A constraint
g is satisfiable if there is a v s.t. v |= g. Otherwise it is unsatisfiable.

A (nondeterministic) timed automaton (TA in short) is a tuple 〈L, L0, LF ,Σ,
X, E〉 where L is a finite set of locations, L0 ⊆ L is a set of initial locations,
LF ⊆ L is a set of final locations, Σ is a finite alphabet called events, X is a
finite set of clock variables, and E ⊆ L × Φ(X) × Σ × 2X × L is a finite set of
symbolic transitions.

There are two kinds of concrete transitions in a timed automaton, delay and
discrete ones. A delay transition lets time elapse, in which case the value of all
clocks will increase accordingly. For instance, a delay transition of some non-
negative time t ∈ R≥0 transforms state 〈q, v〉 into state 〈q, v + t〉, where v + t

assigns to each clock x the value v(x) + t. It is denoted 〈q, v〉 t−→ 〈q, v + t〉.
A discrete transition can change the control location. There is a discrete tran-

sition with event a from state 〈q, v〉 to state 〈q′, v′〉, denoted by 〈q, v〉 a−→ 〈q′, v′〉,
if there is a symbolic transition (q, g, a, R, q′) ∈ E s.t. the clock valuation v sat-
isfies the guard g, and v′ is obtained from v by setting all clocks in R to 0.

It should be clear that two successive delay transitions with time delays t1
and t2 can be combined into a single delay. Furthermore, a delay transition
followed by a discrete transition can be explained as a single transition based on
a symbolic transition (q, g, a, R, q′) ∈ E by simply requiring that the guard g is
satisfied by the clock valuation obtained from adding the delay to the current
valuation: we have 〈q, v〉 t,a−→ 〈q′, v′〉 if 〈q, v〉 t−→ 〈q, v′′〉 and 〈q, v′′〉 a−→ 〈q′, v′〉
for some (necessarily unique) valuation v′′. In the following we will consider
only this kind of combined delay-discrete transition to explain the operational
semantics.

A timed word of length k over Σ is a finite sequence (a0, t0), (a1, t0 + t1), . . . ,
(ak−1, t0 + · · ·+ tk−1), where for each 0 ≤ i < k : ai ∈ Σ and ti ∈ R≥0. The set
of all timed words is denoted by TΣ∗.

Timed automata have runs on timed words just like finite automata have
runs on ordinary finite words. Each event-delay pair of a timed word causes a
delay-discrete transition in the automaton. As usual, runs start in initial states
and are accepting if they reach a final state at the end of the input word.

182 B. Badban and M. Lange

Given a timed automaton A = 〈L, L0, LF ,Σ, X, E〉 and a timed word w =
(a0, t0), (a1, t0+t1), . . . (ak−1, t0+· · ·+tk−1) overΣ, a run of A on w is a sequence

〈q0, v0〉
t0,a0−→ 〈q1, v1〉

t1,a1−→ . . .
tk−1,ak−1−→ 〈qk, vk〉

where for all 0 ≤ i < k there is a (qi, g, ai, R, qi+1) ∈ E for some g and a such
that: vi + ti |= g, and for each x ∈ X we have vi+1(x) = 0 if x ∈ R, and
vi+1(x) = vi(x) + ti otherwise. The run is accepting if additionally we have
q0 ∈ L0 and qk ∈ LF . The language L(A) of the TA A is the set of all timed
words for which there is an accepting run of A.

Example 1. The timed word w = (a, 1), (a, 2.5), (b, 2.7), (b, 2.8) is accepted by
the TA of Fig. 1 (a) which is witnessed by the run

〈q0, 0, 0〉 1,a−→ 〈q0, 0, 1〉 1.5,a−→ 〈q1, 1.5, 2.5〉 0.2,b−→ 〈q2, 1.7, 0〉 0.1,b−→ 〈q1, 1.8, 0.1〉

where 〈q, t, t′〉 represents the state 〈q, v〉 for which v(x) = t and v(y) = t′. The
language of this automaton can be described as L(A) = {(a, t0), . . . (a, ti), (b, t′1),
. . . , (b, t′j) | ti ≥ 1 and i, j ≥ 0}.
A TA is deterministic, DTA in short, when L0 has only one element and each
two transitions with same source location and same label have disjoint guards.
I.e., if (q, g, a, R, q′) ∈ E and (q, g′, a, R′, q′′) ∈ E then g ∧ g′ is unsatisfiable. A
DTA B is complete if for each timed word w ∈ TΣ∗ there is a run of B over w.

It is not hard to see that every DTA B = (L, q0, LF ,Σ, X, E) can be made
complete by adding a new non-final control location q⊥ and transitions (q⊥, true,
a, ∅, q⊥) for every a ∈ Σ as well as (q,

∧
g∈Gq,a

¬g, a, ∅, q⊥) for every q ∈ L, and
a ∈ Σ where Gq,a = {g | ∃R.∃q′.(q, g, a, R, q′) ∈ E}. We therefore assume that
DTA are always complete.

2.2 Three Decision Problems on TA and DTA

We consider three decision problems for timed automata.
1. Non-emptiness for TA (nEMPTY) is: given a TA A, is L(A) .= ∅?
2. Universality for DTA (dUNIV) is: given a DTA B, is L(B) = TΣ∗?
3. TA-DTA inclusion (ndINCL) is: given a TA A and a DTA B, is L(A) ⊆

L(B)?

Note that more general problems like universality or inclusion between a TA and
a TA are undecidable [3]. It is not difficult to see that ndINCL subsumes the two
other problems: the universal language can easily be recognised by a one-state
TA Auniv , and the empty language can also be recognised by a one-state TA
Aempty which is in fact also a DTA. Then we have L(B) .= ∅ iff L(B) ⊆ L(A) for
any TA B, and we have L(B) = TΣ∗ iff L(Auniv ⊆ L(B) for any DTA B.

Proposition 1 ([3]). There are linear-time reductions from nEMPTY and
dUNIV to ndINCL.

Consequently, we can concentrate on ndINCL for the remainder of this paper,
and any method for this problem easily induces methods for nEMPTY and
dUNIV as well.

Exact Incremental Analysis of Timed Automata with an SMT-Solver 183

3 Bounded Decision Problems

Bounded versions restrict the length of witnesses or counterexamples to a so-
lution by an additional parameter. The bounded TA-DTA inclusion problem
(ndINCL≤) for instance is the following: given a TA A, a DTA B and a k ∈ N,
is every timed word of length at most k that is accepted by A also accepted by
B? In that case we write L(A) ⊆k L(B). A witness (for non-inclusion) is a timed
word w s.t. |w| ≤ k, w ∈ L(A) and w .∈ L(B).

The following is easy to see. It shows how the bounded TA-DTA inclusion
problem can be used in order to approximate the TA-DTA inclusion problem.

Proposition 2. Let A be a TA, B be a DTA. Then L(A) ⊆ L(B) iff for all
k ∈ N: L(A) ⊆k L(B).

The bounded TA emptiness problem and the bounded DTA universality problem
are defined in the same way by adding an input parameter k and asking for
words of length at most k which are (not) in the language of the given TA, resp.
DTA.

It is not hard to see that the constructions in the proof of Prop. 1 go through
for the bounded versions of the three considered problems there. The bounding
parameter always remains the same. We therefore state the following without
an extra proof.

Theorem 1. There are linear-time reductions from nEMPTY≤ and dUNIV≤

to ndINCL≤.

It is known that the three decision problems nEMPTY, dUNIV and nd-
INCL are all PSPACE-complete [3, 4].1 We will show that bounding these prob-
lems makes them computationally easier: nEMPTY≤ and ndINCL≤ are NP-
complete. For the upper bound we consider a more general satisfiability problem
in the next section which will also be used to obtain implementations. It can
also be used to show that dUNIV≤ is in co-NP. Here we prove the NP-lower
bounds. dUNIV≤ is also co-NP-hard which can be shown by a reduction from
the complement of nEMPTY≤.

Theorem 2. nEMPTY≤ and ndINCL≤ are NP-hard for a singleton alphabet
and two clocks already.

Proof. We prove the claim for nEMPTY≤ by a reduction from the well-known
Hamiltonian path problem. Given a directed graph G = (V, E) and a node
u ∈ V , is there a path starting in u that visits each vertex exactly once? This
problem is known to be NP-complete [15]. The result then follows for ndINCL≤

immediately with Thm. 1.
Let G = (V, E) and u0 ∈ V be given. W.l.o.g. we assume V = {0, . . . , |V |−1}.

We build a TA AG that has (almost) the same transition structure as G and
1 [3] states PSPACE-completeness of dUNIV but only shows the upper bound by a

reduction to ndINCL. dUNIV is also PSPACE-hard though: it is possible (but more
complicated) to reduce ndINCL to dUNIV in polynomial time.

184 B. Badban and M. Lange

uses two clocks: x is used to enforce a certain time delay, namely exactly time
2i in state i; and y is used to measure the overall time used in a run. We only
add a single final state which is reachable whenever time 2n − 1 has passed.

Thus, let AG = (V ∪ {fin}, {u0}, {fin}, {a}, {x, y}, E′) where

E′ := {(i, (x = 2i), a, {x}, j) | (i, j) ∈ E}∪ {(i, (y = 2|V |− 1), a, ∅, fin) | i ∈ V }

Finally, let kG := |V |+1. It should be clear that this construction is polynomial.
Note that the representation of 2i for instance only requires i bits. We now claim
that G has a Hamiltonian path starting in u iff L(AG) contains a word of length
at most kG.

“⇒” Let n = |V | and suppose that u0, . . . , un−1 is a Hamiltonian path. It is
not hard to see that AG has an accepting run on the timed word (u0, 2u0), . . . ,
(un−1, 2un−1), (fin, 0). The delay 2ui in the i-th part of this word is exactly what
is needed in order to enable the guard on a transition leaving location ui. Fur-
thermore, since every state is visited exactly once, we have

∑n−1
i=0 2ui = 2n − 1

which enables the transition to the final state in the end.
“⇐”. Suppose (u0, t0), . . . , (un−1, tn−1), (fin, tn) is an accepting run of some

word in L(AG) and n ≤ kG. Since fin is only reachable by enabling the guard
y = 2|V | − 1, and no transition ever resets the clock y, we must have

∑n−1
i=0 ti =

2|V | − 1. Furthermore, every transition resets the clock x, and every transition
out of some state i is only possible after a delay of exactly 2i in this state. Hence,
all the ti for i = 0, . . . , n− 1 are powers of 2, add up to 2|V | − 1, and there are
at most |V | of them. This is only possible if n − 1 = |V | and each of the 2i

occurs exactly once in this sum. But this is only possible if the accepting run
visits each location exactly once, i.e. forms a Hamiltonian path in the underlying
graph G. 23

4 Incremental Encodings of Some Decision Problems

4.1 A Generic Constraint Logic

We consider a generic propositional logic which can have constraints over integer-
and real-valued variables as literals, and present an encoding of the bounded in-
clusion problems into this logic. Decidability and implementability of the bounded
inclusion problem can then be tackled by translating this logic into some known
and specialised formalism.

Let VZ and VR be two disjoint sets of natural and real-valued variables. We use
two different fonts in order to distinguish variables and constant values: x, y, . . .
are variables, b, c, . . . are constants. We also assume that it will always be clear
from the context what the type of a given variable is.

An integer constraint is of the form b · x ≤ c where x ∈ VZ, b ∈ {1,−1},
and c ∈ Z. A real constraint is of the form

∑m
i=1 bi · xi ! c where ! ∈ {<,≤},

bi ∈ {0, 1}, xi ∈ VR for all i = 1, . . . , m, and c ∈ R.
Formulas of the generic constraint logic (GCL) are simply propositional for-

mulas over atomic constraints.

ϕ ::= C | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ

Exact Incremental Analysis of Timed Automata with an SMT-Solver 185

where C is one of the constraints above. It should be clear that, with Boolean
operators at hand, many other constraints become definable, for instance x =
c := x ≤ c ∧−x ≤ −c, x < c := x ≤ (c− 1) in case of an integer constraint, etc.

We write |ϕ| to denote the size of ϕ measured in terms of occurrences of
logical, relational and arithmetic symbols as well as size of a representation for
the constants, for instance encoded in binary.

A variable assignment is a ϑ = (ϑZ,ϑR) s.t. ϑX : VX → X for X ∈ {Z, R}.
Hence, it assigns integer, resp. real values to the integer, resp. real variables. The
truth value of a formula ϕ under an assignment ϑ is defined straight-forwardly
by evaluating the constraints and subformulas under the usual rules for <, ≤,
+, −, ∧, ∨, and ¬. We write ϑ |= ϕ to state that ϕ evaluates to true under the
assignment ϑ.

A formula is satisfiable if there is a ϑ s.t. ϑ |= ϕ. Clearly, such a ϑ only needs
to be defined on the variables that actually occur in ϕ which allows us to assume
that these assignments have finite domains. Two formulas are equivalent, written
ϕ ≡ ψ, if for all ϑ we have ϑ |= ϕ iff ϑ |= ψ.

A formula is positive it it does not contain any occurrences of the negation
operator ¬. Note that this is stronger than the well-known concept of positive
normal form which still would allow negation operators. The following is easy to
prove using the duality between ≤ and <.

Lemma 1. For every ϕ there is a positive ψ s.t. ϕ ≡ ψ and |ψ| ≤ 2|ϕ|.

Theorem 3. The satisfiability problem for GCL is NP-complete.

Proof. NP-hardness is a simple consequence of the fact that integer variables can
be restricted to the domain {0, 1} using the available constraints and thus model
Boolean variables. It is therefore possible to embed the NP-hard satisfiability
problem for propositional logic [11] into the satisfiability problem for GCL.

For the upper bound we describe a nondeterministic algorithm. Let ϕ be a
GCL formula. According to Lemma 1 we can assume ϕ to be positive. First guess
a truth value for each atomic constraint in it. Clearly, there are at most |ϕ| many,
and the truth values can be propagated up in the formula in polynomial time to
see whether the result is true. Next we need to decide whether there are variable
assignments that fulfil the atomic constraints which are guessed to be true. Note
that the integer constraints and the real constraints are independent of each
other because they do not share any variables. Hence, they can be dealt with
separately.

Solving a set of integer constraints of the form b · x ≤ c can be done in
polynomial time using interval arithmetic. Note that the solution to each such
constraint is given by an interval (−∞, c] if b = 1, and [c,∞) if b = −1. Com-
puting intersections of such constraints is easy.

In order to deal with real-valued constraints we use the linear programming
optimisation problem. First of all, we add a new variable y and replace every
strict inequality

∑m
i=1 bi ·xi < c by y+

∑m
i=1 bi ·xi ≤ c. This creates a linear pro-

gram with cost function y, i.e. we are looking for a solution to these constraints
that maximises the value of y. In order to ensure that there is a maximal value

186 B. Badban and M. Lange

we also add a constraint like y ≤ 1. It is known that the linear programming
optimisation problem can be solved in deterministic polynomial time when the
coefficients are also taken into account as part of the input [16]. Finally, the
result of the optimisation problem needs to be translated back into a result of
the original system of constraints. If the system is not solvable then so is the
original one. If the maximal feasible value for y is at most 0 then the original
system is also not solvable. If the maximal feasible value for y is strictly positive,
then there is also a solution to the original system. 23

4.2 The Incremental Encoding

We fix a TA A = (LA, LA
0 , LA

F ,Σ, XA, EA), a DTA B = (LB, qB0 , LB
F ,Σ, XB, EB)

and a natural number k for the remainder of this section. We will define a formula
ϕA,B

k that is satisfiable iff L(A) .⊆k L(B). Moreover, its size will be linear in the
sizes of |A|, |B|, and in k. Note that this is the value of k, not the number of
bits needed to represent it.

In order to make the presentation of ϕA,B
k as intuitive as possible, we divide

it into several parts and present it statically first. At the end we will discuss how
to make it incremental in the sense that the formula ϕA,B

k+1 can be obtained from
ϕA,B

k by deleting and adding single components.
The first part states that the witnessing word is well-formed. It uses natural

number variables a0, . . . , ak−1 to encode the events in a witness, as well as real-
valued variables t0, . . . , tk−1 for the time delays of such a witness. W.l.o.g. we
assume the alphabet to be {1, . . . , |Σ|}. Furthermore, remember that the formula
to be built should state that there is a word of length at most k with some
property. In order to capture words of length < k as well, we take an additional
value, say 0, and represent such a shorter timed word w by w(0, t1) . . . (0, tm)
where m = k − |w| and the ti are arbitrary values. The following formula then
states well-formedness of such a timed word.

wordk :=
(k−1∧

i=0

0 ≤ ti
)
∧

(k−1∧

i=0

0 ≤ ai∧ai < |Σ|
)
∧

(k−2∧

i=0

ai = 0 → ai+1 = 0
)

Next we formalise that the timed word w represented by values for those variables
is accepted by A. We use k + 1 integer variables &0, . . . , &k to represent the
locations in an accepting run of A on w. W.l.o.g. we can assume that LA =
{0, . . . , |LA|−1}. We also use (k +1) · |XA| many real-valued variables vc

i where
c ∈ X and 0 ≤ i ≤ k}, in order to represent the values of the clocks in each state
of this accepting run. We first state that the run is well-formed in the sense that
each pair of adjacent states is connected by a transition that is possible in A
unless the event symbol at that position is 0.

runA
k :=

k−1∧

i=0

∧

q∈LA

&i = q ∧ ¬(ai = 0) →
∨

(q,g,a,R,q′)∈EA

sat i(g) ∧ ai = a ∧

progressi(R) ∧ &i+1 = q′

Exact Incremental Analysis of Timed Automata with an SMT-Solver 187

where sat i(g) states that the guard g is satisfied by the clock valuation after the
i-th delay has passed. It is defined by induction on the structure of g:

sat i(x ≤ c) := vx
i + ti ≤ c sat i(¬g) := ¬sat i(g)

sat i(x < c) := vx
i + ti < c sat i(g1 ∧ g2) := sat i(g1) ∧ sat i(g2)

Furthermore, progressi(R) formalises the progression of time. In particular, the
clock valuation at the next moment results from delaying at the current moment
and resetting clocks afterwards.

progress i(R) :=
(∧

x∈R

vx
i+1 = 0

)
∧

(∧

x∈XA\R

vx
i+1 = vx

i + ti
)

Finally, we need to say that the run is accepting, i.e. starts in an initial location
with all the clocks set to 0 at that moment. A final location needs to be reached
at that point when the next event symbol either does not exist anymore (i.e. the
k-the location in the run) or is 0 (for words of length < k).

accAk :=
(∧

x∈XA

vx
0 = 0

)
∧

(∨

q∈LA
0

&0 = q
)
∧

(k−1∧

i=0

ai = 0 →
∨

q∈LA
F

&i = q
)
∧

(
¬(ak−1 = 0) →

∨

q∈LA
F

&k = q
)

Next we need to state that B does not accept the timed word given by the values
for the ai and ti variables. In general, this is a universal statement over all runs
of the automaton but, since it is assumed to be deterministic and complete, it
can equivalently be rephrased as “there is a run that is not accepting”. Hence,
the constraints runB

k are formed exactly in the same way as for runA
k but using

fresh variables &′0, . . . , &′k for the locations in the run of B. W.l.o.g. we can assume
XA∩XB = ∅, i.e. the two automata use different clocks. We then have variables
vx

i as above for every clock x ∈ XB and every i = 0, . . . , k.
We also define a constraint rejBk similar to accAk now stating that the run of

B given by the valuations of the &′i and vx
i variables is rejecting.

rejBk :=
(∧

x∈XB

vx
0 = 0

)
∧ &0 = qB0 ∧

(k−1∧

i=0

∧

q∈LA
F

ai = 0 → &′i .= q)

Finally, we define ϕA,B
k := wordk ∧ runA

k ∧ accAk ∧ runB
k ∧ rejBk . There are

two important aspects to note about ϕA,B
k : it is small, i.e. linear in its three

parameters, and it characterises the bounded TA-DTA inclusion problem.

Proposition 3. |ϕA,B
k | = O(k · (|A| + |B|)).

Theorem 4. ϕA,B
k is satisfiable iff L(A) .⊆k L(B).

188 B. Badban and M. Lange

Proof. “⇐” Suppose L(A) .⊆k L(B). Then there is a w=(a0, t0), . . . , (an−1, tn−1)
∈ TΣ∗ s.t. n ≤ k and w ∈ L(A) and w .∈ L(B). Then there is an accepting run
〈q0, v0〉, . . . , 〈qn, vn〉 of A on w. Furthermore, the unique run 〈q′0, v′0〉, . . . , 〈q′n, v′n〉
of B on w is not accepting, i.e. it does not end in a final location.

It is now routine to check that the variable assignment ϑ = (ϑZ,ϑR) satisfies
ϕA,B

k , where

ϑZ(ai) =

{
ai , if i < n

0 , if n ≤ i < k
ϑR(ti) =

{
ti , if i < n

0 , if n ≤ i < k

ϑZ(&i) =

{
qi , if i ≤ n

qn−1 , if n < i ≤ k
ϑR(vx

i) =

{
vi(x) , if i ≤ n

0 , otherwise

ϑZ(&′i) =

{
q′i , if i ≤ n

q′n−1 , if n < i ≤ k

“⇒” Suppose ϕA,B
k has a satisfying variable assignment ϑ = (ϑZ,ϑR). The ϑZ-

values of a0, . . . , ak−1 and the ϑR-values of t0, . . . , tk−1 encode a timed word over
the alphabet Σ ∪ {0}. Because of wordk this is in fact a timed word in T (Σ∗0∗).
Hence, there is an n ≤ k, s.t. w′ := (ϑZ(a0),ϑR(t0)), . . . , (ϑZ(an−1),ϑR(tn−1)) ∈
TΣ∗. Furthermore, consider the sequence 〈ϑZ(&0), v0〉, . . . , 〈ϑZ(&n), vn〉 where
vi(x) = ϑR(vx

i) for every i = 0, . . . , n and every x ∈ XA. Because of runA
k

this forms a run of A on w′ which can be extended to a run on w by simply
repeating the last pair in this sequence k− n times. Because of accAk this run is
accepting; it starts with all clocks set to 0 and ends in a final location.

In the same way one can see that runB
k and rejBk enforce the unique run of B

on w to be rejecting. Hence, we have L(A) .⊆k L(B). 23

It should be clear that similar formulas characterising the bounded TA emptiness
or the bounded DTA universality problem can easily be defined as well. In fact,
it is not necessary to carry out the cnstructions sketched for Prop. 1. Instead,
for bounded emptiness it suffices to remove the constraints involving B in ϕA,B

k ;
for bounded universality it suffices to remove those involving A.

Also note that the encoding can easily be made incremental in the sense that
the formula ϕA,B

k+1 can be obtained by certain operations on ϕA,B
k . In detail:

1. Add the conjuncts 0 ≤ tk, 0 ≤ ak, ak ≤ |Σ|, ak−1 = 0→ ak → 0 to wordk.
2. Extend the conjunctions in runA

k and runB
k by one to the range i = 0, . . . , k.

3. Remove the last conjunct from accAk , extend the conjunction before that to
the range i = 0, . . . , k, and add the conjunct ¬(ak = 0)→

∨
q∈LA

F
&k+1 = q;

Finally, the translation gives us an upper complexity bound matching the lower
bound in Thm. 2. It follows immediately from Thm. 4 and Thm. 3.

Corollary 1. nEMPTY≤ and ndINCL≤ are NP-complete for a unarily en-
coded bounding parameter k. The lower bound requires at least two clocks. Also,
dUNIV≤ is in co-NP.

Exact Incremental Analysis of Timed Automata with an SMT-Solver 189

4.3 Translations into Other Formalisms

The extension of the propositional logic proposed above is extensive enough for
our purpose here, which is the encoding of bounded representations of the three
decidability problems under consideration. A natural question that arises is how
this can help to solve these problems in practice.

We refer to the SMT-LIB [7] framework, a standardisation for propositional
and predicate logics over various domains. It contains well-documented input
languages, including theories of difference logic over integers and reals and their
combinations. It is not hard to see that the propositional logic defined above can
esily be embedded into some of these formalisms, for instance the combination
of QF IDL (difference logic over integers) and QF RDL (difference logic over the
reals).

Furthermore, most SMT solvers nowadays comply with the SMT-LIB stan-
dards in the sense that it is clearly stated which theories they handle.

5 Implementation and Experimental Results

The approach described above is realised in a prototypical implementation done
in OCaml. It creates constraints according to some pre-defined families of bench-
marks, and uses the SMT solver Z3 in order to solve the bounded emptiness,
inclusion or universality problem as defined above in an incremental way.

All tests reported here were run on a compute server equipped with 16 Intel
Xeon cores at 1.87GHz and 256GB main memory. Note that neither the reduction
nor the SMT solver support parallelism, thus each test only occupies one core.

Here we report on three benchmarks testing different aspects of this approach,
all phrased as some series of emptiness problems.

Fischer’s Mutex Protocol. The first benchmarking family models Fischer’s pro-
tocol for mutual exclusion between n processes communicating via one shared
variable as one timed-automaton. Note that the state-spaces of the TA are ex-
ponential in n. Their languages consist of all runs of the asynchronous product
of these n processes which end in a state that has at least two processes in
the critical section. Thus, this is a classical safety verification problem. In this

Table 1. Experimental analysis of emptiness for timed automata

Fischer’s Mutex protocol
n size create solve

2 4238 0.01 0.02
3 33750 0.05 0.93
4 230760 0.20 20.86
5 1433948 1.16 6511.16

Diagonal Constraints
s length size

1 1141 197422
5 1040 179096
10 1160 198972
20 1299 224922
50 1499 259522
100 1699 294122

Exponential Witnesses
n size create solve c

2 1136 0.01 0.00 5
3 3230 0.02 0.02 8
4 8415 0.05 0.27 14
6 37121 0.32 42.77 38
8 179827 89.54 7050.78 134

190 B. Badban and M. Lange

model, the delay times are set such that mutual exclusion is not guaranteed for
otherwise the languages would be empty.

Table 1 presents experimental data showing the size of the resulting formula
in number of logical operators in it, the time it takes to create it and the time
it takes to solve it in seconds. This benchmark is created in order to stress the
point that SMT solvers can check relatively large formulas for satisfiability.

Diagonal Constraints. There is an example of an 8-state TA using diagonal con-
straints in [9]. Its language is empty. The example shows that having diagonal
constraints in the timed automaton makes the classical forward analysis ap-
proach, implemented in most timed automata verification tools like KRONOS
and UPPAAL, unsound.

We use this benchmark to demonstrate that the approach in this paper can
easily deal with diagonal constraints, but also to examine the effect of varying
the step width s in which larger and larger ranges of lengths of timed words are
considered. Thus, a value of s = 7 for instance means checking for witnesses of
length {0, . . . , 6} first, then of length {7, . . . , 13}, etc.

Table 1 presents the maximal range length that could be examined within a
run time of one hour, as well as the size of the formula at the end. Thus, the
implementation showed for instance within one hour, that the TA under consid-
eration does not accept any word of length at most 1699. The interpretation of
the data is: larger incremental steps can save some time.

Exponential Witnesses. As a last benchmark we consider a family of TA with
n + 1 states s.t. their language is non-empty but the shortest word that they
accept is of length 2n − 1 + n. This can be enforced with a trick that is similar
to the one used in the NP-hardness proof in Thm. 2. However, a näıve approach
would cause a quadratic number of transitions. Here we use a slightly randomised
model of such TA which only needs a linear number of transition.

Table 1 shows size of formula, creation and solving time in seconds as well as
number c of calls to the SMT solver before a witness is being found. The step
width for ranges in the incremental analysis is fixed, thus this number grows
exponentially. Note that the reported solving time is the accumulated time of c
calls. This benchmark shows that the SMT solver can still find relatively long
witnessing words, here for instance of length 263 = 28 − 1 + 8. Note that the
numbers for formula sizes in the table clearly do not grow linearly. This is because
they represent formulas for exponentially differing ranges of word length, namely
those of the shortest words witnessing non-emptiness.

6 Further Work

There is a vast possibility for follow-up work. For starters, the encoding should
be extended to richer models, for instance TA with state invariants which is very
easy. It is also worth considering asynchronous networks of TA. It is easy to see
that the emptiness problem can be encoded in the same way, but the two other

Exact Incremental Analysis of Timed Automata with an SMT-Solver 191

problems may not be capturable as concurrency introduces nondeterminism.
Then there is the question of extending this to TA on infinite timed words.

There are two more extensions which show the vast potential that the use of
SMT solvers has as opposed to using SAT solvers: the latter are restricted to
problems in NP, the former are hardly restricted at all. Thus, far richer clock
constraint languages (for instance with all arithmetic operations) can easily be
handled by SMT solvers. At last, a very promising extension is the considera-
tion of richer logical (rather than just arithmetic) formalisms on the SMT side,
for instance logics with quantification. It remains to be seen which problems on
timed automata can also be encoded this way. Note that this is not restricted
to decidable problems since there are SMT logics which are undecidable in gen-
eral. Still, using SMT solvers for these problems may offer a practically viable
approach which may just not be complete or not always terminating.

References

1. http://research.microsoft.com/en-us/um/redmond/projects/z3/
2. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality Anal-

ysis for One-Clock Timed Automata. Fundamenta Informaticae, 89 (2008)
3. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theo. Comp. Sci. (1994)
4. Alur, R., Madhusudan, P.: Decision Problems for Timed Automata: A Survey. In:

SFM School (2004)
5. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hy-

brid systems with mathsat. ENTCS 119(2) (2005)
6. Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded model check-

ing for timed systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,
vol. 2529, Springer, Heidelberg (2002)

7. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Technical
report (2010), http://www.SMT-LIB.org

8. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundam. Inform. 36(2-3) (1998)

9. Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003)

10. Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed au-
tomata: Forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.)
FORMATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005)

11. Cook, S.A.: The complexity of theorem-proving procedures. In: 3rd Annual ACM
Symposium on Theory of Computing (STOC), pp. 151–158 (1971)

12. de Moura, L.M., Rueß, H., Sorea, M.: Bounded model checking and induction:
From refutation to verification (extended abstract, category a). In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 14–26. Springer, Heidelberg
(2003)

13. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model check-
ing of hybrid systems. Formal Methods in System Design 30(3) (2007)

14. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, Springer, Heidelberg (1992)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103 (1972)

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.SMT-LIB.org

192 B. Badban and M. Lange

16. Khachiyan, L.G.: A polynomial algorithm in linear programming. Doklady
Akademiia Nauk SSSR, 224 (1979)

17. Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.: Verification
of timed automata via satisfiability checking. In: Damm, W., Olderog, E.-R. (eds.)
FTRTFT 2002. LNCS, vol. 2469, pp. 225–243. Springer, Heidelberg (2002)

18. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for
timed automata. In: LICS (2003)

19. Ouaknine, J., Worrell, J.: On the Language Inclusion Problem for Timed Au-
tomata: Closing a Decidability Gap. In: LICS (2004)

20. Strichman, O.: Pruning techniques for the SAT-based bounded model checking
problem. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144,
pp. 58–70. Springer, Heidelberg (2001)

21. Zbrzezny, A.: SAT-based Reachability Checking for Timed Automata with Diago-
nal Constraints. Fundam. Inform. 67(1-3), 303–322 (2005)

	Exact Incremental Analysis of Timed Automata with an SMT-Solver
	Introduction
	Timed Automata
	Syntax, Semantics, Runs
	Three Decision Problems on TA and DTA

	Bounded Decision Problems
	Incremental Encodings of Some Decision Problems
	A Generic Constraint Logic
	The Incremental Encoding
	Translations into Other Formalisms

	Implementation and Experimental Results
	Further Work

