Size-Change Termination and Satisfiability for
Linear-Time Temporal Logics

Martin Lange

School of Electr. Eng. and Computer Science, University of Kassel, Germany

Abstract. In the automata-theoretic framework, finite-state automata
are used as a machine model to capture the operational content of tempo-
ral logics. Decision problems like satisfiability, subsumption, equivalence,
etc. then translate into questions on automata like emptiness, inclusion,
language equivalence, etc. Linear-time temporal logics like LTL, PSL
and the linear-time p-calculus have relatively simple translations into
alternating parity automata, and this automaton model is closed under
all Boolean operations with very simple constructions. Thus, the typical
decision problems for such linear-time temporal logics reduce relatively
simply to the emptiness problem for alternating parity automata. In this
paper we present a method for decision this emptiness problem with-
out going through intermediate automaton models like nondeterministic
ones. The method is a direct adaptation of the size-change termination
principle which was orgininally used to decide termination of abstract
functional programs.

1 Introduction

Temporal logics are some of the most well-known and established tools for the
specification of systems evolving in time. In computer science, they are mainly
interesting as formal languages used to describe, reason about, analyse and verify
program behaviour [7].

Temporal logics come in two different kinds depending on the nature of
time underlying the models that they get interpreted about: linear-time and
branching-time [20, 21, 25]. The viewpoint of linear time is that every moment in
time has a unique successor, i.e. the future is determined. In branching time, a
moment may have several successors. Here we only deal with linear time, namely
we consider the well-known simple linear-time temporal logic LTL [16], as well
as two of its extensions: a core of the industry standard property specification
language PSL [2] which extends LTL with semi-regular expressions in order to
remedy LTL’s weakness of not being able to define all w-regular properties; as
well as the linear-time p-calculus [22, 3] which uses second-order quantification
in the form of least and greatest fixpoints in order to obtain higher expressivity.

A prominent methodology for obtaining decision procedures is the automata-
theoretic framework. It is particularly suitable for linear-time logics since their
models can be seen as infinite words which immediately links logics and automata
as two different specification formalisms for languages of such words. Logics are

often more natural to use as specification languages but automata are often
closer to a decision procedure. Hence, translations from formulas to automata
preserving their set of models are desirable, and they exist for the aforementioned
logics.

It is known that every LTL formula can be translated into a nondeterministic
Biichi automaton [26] with an expontial blow-up. The same holds for PSL [4]
although the blow-up is in general doubly exponential. LT, can also be translated
into such automata at a singly exponential blow-up only [26].

Translations into nondeterministic automata are particularly useful in order
to decide satisfiability problems because satisfiability on the logical side corre-
sponds to non-emptiness on the automata side, and non-emptiness problems for
nondeterministic automata are usually solved via simple reachability problems
on graphs. Other problems, however, in particular the universality and inclu-
sion problem are as difficult for nondeterministic automata as the satisfiability
problem for the corresponding temporal logics is. Note that on the logical side,
problems like validity, subsumption and equivalence easily reduce to the satisfia-
bility problem. This has led to the use of a richer automaton model: alternating
automata. They typically enable a simple translation from formulas and on top
of that a more difficult decision procedure as opposed to nondeterministic ones
which usually come with a difficult translation and then simpler decision proce-
dures. If “simple” means “polynomial” and “difficult” means “exponential” then
the route via alternating automata may even be better in terms of complexity.

Translations from the linear-time temporal logics mentioned above into alter-
nating automata are known [23, 24, 14, 10]. In order to obtain decision procedures
for these logics, one then only needs decision procedures for the corresponding
problems on alternating automata. In fact, it suffices to be able to solve the
emptiness problem for alternating automata just like it suffices to solve the sat-
isfiability problem for temporal logics in order to solve all sorts of other problems
through simple reductions.

The standard way to solve the emptiness problem for alternating automata
has been using translations into nondeterministic automata. It may be the sur-
prising simplicity of the Miyano-Hayashi construction [15] translating alternating
Biichi into nondeterministic Biichi automata in comparison to the problem of
turning a nondeterministic one into a deterministic one, that has put a brake
onto research on different and possibly direct methods for the emptiness problem
for alternating automata. This construction can be generalised to richer accep-
tance conditions like Streett automata [6], yet it still aims at translating into a
nondeterministic model first.

Here we propose a different and direct method for the analysis of the empti-
ness problem for alternating parity automata. It originates from termination
analysis for abstract functional programs and is called size-change termination
(SCT) [13]. It is noted that the problem underlying this particular termination
analysis can be solved by a reduction to the inclusion problem for nondetermin-
istic Blichi automata but, since this requires complementation, SCT is proposed.

SCT has not passed unnoticed in the world of temporal logics and automata
on infinite words: it has first been used to decide validity for the linear-time pu-
calculus [5] and then prosed as a method to decide universality and inclusion for
nondeterministic Biichi automata [8,9,1]. In fact, the first real work in this area
is Blichi’s original complementation proof for nondeterministic Biichi automata
since the decision problems based on SCT use the same techniques. They are
often called Ramsey-based because their correctness proof usually relies on the
famous combinatorial Ramsey Theorem [17].

This paper is organised as follows. In Sect. 2 we recall the three important
temporal logics mentioned above: LTL, PSL and the linear-time p-calculus. In
Sect. 3 we recall alternating parity automata and various subclasses thereof, and
sketch how their emptiness problems characterise typical problems like satisfia-
bility, subsumption, etc. for the temporal logics at hand. In Sect.4 we describe
an SCT based method to decide emptiness of alternating parity automata.

2 Linear-Time Temporal Logics

2.1 Infinite Words

Let P = {p,q,...} be a countably infinite set of atomic propositions. Linear-time
temporal logics are interpreted over w-sequences of sets of such propositions: an
infinite word w is an element of (27)“. A finite word is a v € (2F)*. We write
e for the empty word of length 0, and |v| in general for the length of the finite
word v.

If wis a word AgA; ... for A; C P then w(i) is used to denote A;. We write
w(i, j) to denote the finite subsequence A, ... A;. Note that w(i, j) = € if j < .

2.2 LTL

One of the simplest and most well-known linear-time temporal logics is LTL.
Its formulas are built from atomic propositions using Boolean operators and
two temporal operators: the next state operator (), and the until operator U.
Formulas of LTL are given by the following grammar.

¢ = qloNe| 9| OeleUyp

Formulas of LTL are interpreted in positions i of an infinite word as follows.

w,iE=q iff ¢ € w(?)

wyiEeAyY iff wilE@and w,ifEY

w,i | e iff w,ibEp

w, i =Qp iff wi+llEgp

w,i = Uy iff thereis j > is.t. w,j =1 and for all h with i < h < j
we have w, h |= ¢

Further Boolean operators like disjunction ¢V 1, implication ¢ — 1, are defined
as abbreviations in the usual way. Other temporal operators can also be derived,
for instance F ¢ := true Uy (“finally”) where true := ¢ V —¢ for some ¢ € P;
Gy :=F—p (“generally”), etc.

We write |p| for the size of the formula ¢, measured in terms of its DAG
representation or, equivalently, the number of different subformulas.

Example 1. LTL can easily express properties concerning infinite occurrences of
some atomic proposition in a word. For example, GF ¢ A F G —p expresses that ¢
holds in infinitely many positions and p holds almost everywhere, i.e. in all but
finitely many positions.

A model for ¢ is a w € (27)¥ s.t. w,0 = ¢. We write L(y) for the set of all
models of ¢. The satisfiability problem is: given a formula ¢, decide whether or
not there is a model for it, i.e. whether or not L(y) # 0.

Proposition 1 ([19]). The satisfiability problem for LTL is PSPACE-complete.

We also describe two extensions of LTL in the following. They differ in their
syntax and their semantics need more technicalities, but central concepts like
formula size as well as set of models are defined as they are for LTL. Hence, we
will not repeat them explicitly anymore.

2.3 PSL — An Extension of LTL

It is known that LTL cannot express counting properties like “g holds in ev-
ery second position of a word” [27]. Note that this is an w-regular property.
There are several ways to overcome this weakness, for instance by introducing
quantification over positions, i.e. by extending LTL with stronger logical connec-
tives. PSL extends LTL with tools from the domain of formal languages, namely
semi-extended regular expressions.

The language of all Boolean expressions over atomic propositions as above is
given by the following grammar.

¢ u= q[¢AC]C

Other Boolean operators can be defined as abbreviations. The satisfaction re-
lation between a set A C P and a Boolean expression (is defined straight-
forwardly, i.e. A = (¢ iff ¢ evaluates to 1 under the usual rules for Boolean
connectives when all atomic propositions in A are set to 1 and all in P\ A are
set to 0.

Semi-extended regular expressions (SERE) over Boolean expressions are built
according to the following grammar.

a == (|laUa|lanNalaala®

where (is a Boolean expression as above. We write at to abbreviate o; o*.

A SERE is interpreted in a finite subword of an infinite w € (27)“ as follows.
Note that such a subword is uniquely identified by two positions ¢, € N with
i <j.

w,i,j EC iff i =4 and w(i) E¢

w,i,j EaUpg iff wi,jEaorw i, jES

w,i,j Eanp iff wi,jEaand w,i,jE S

w,i,j Ea;f iff thereis hs.t. i <h <jand w,i,h =« and w,h,j E S

w,i,j Ea* iff there are n > 0 and hy, ..., h, s.t. hg =14, h, = j and
w, hg, hgpr1 Eaforall k=0,...,n—1

Note that in the first clause, satisfaction of a SERE in a finite word is reduced
to satisfaction of a Boolean expression in a symbol of that word.

Formulas of PSL are then built by extending the syntax of LTL with op-
erators that make use of SERE. Note that the standard of PSL [2] describes
many operators for the logic; here we concentrate on two of them only — the
“and then” and the “closure” operator. The constructions to follow can easily
be extended to cover other PSL operators as well though.

¢ = qleNe|p|pUplaorp|Cla

The interpretation in positions of a word w € (27)“ extends the one for LTL
given above by two clauses.

w,i Eaos iff thereis j > is.t. w,i,j Eaand w,j =
w,i ECla iff for all j > i exists v € (27)* s.t. w(i,j)v =«

Ezample 2. The aforementioned language L = {w € (27)¥ | Vi € N: ¢ € w(2i)}
of all words in which ¢ holds in every even position can be defined in PSL by the
formula C1(g; true)*. Equally, it is defined by ¢ A = ((true; true)™ o= O —q).

Proposition 2 ([4,12]). The satisfiability problem for PSL is EXPSPACE-
complete.

The exponential increase in complexity compared to LTL is owed to the use of
the intersection operator in semi-extended regular expressions. Note that these
can be translated into nondeterministic finite automata (NFA) at a blow-up that
is polynomial in the size of such an SERE but exponential in the nesting depth
of the intersection operator. The logic obtained by replacing SERE with NFA
is closely related to LTL with automata connective which also has a PSPACE-
complete satisfiability problem [11].

2.4 The Linear-Time pu-Calculus

The Linear-Time p-Calculus LT, is not directly an extension of LTL. It obtains
w-regular expressive power by adding least (finite iteration) and greatest (infinite

iteration) fixpoint operators to the fragment of LTL without the until operator.
Let V = {X,Y,...} be a countably infinite set of variable. Formulas of LT, are
constructed as follows.

o u= qlX|oAp|-0| Qe |uX.p

where g € P and X € V. We require that each formula is well-formed in the sense
that every variable is bound by a binder mu at most once, and in every subfor-
mula pX.1) every occurrence of X is in the scope of an even number of negation
symbols. For instance, uX.—uY.(=pVvV (O Y)AQ —X is well-formed because both
variable occurrences are under two (different) nested negation operators.

Alongside the least fixpoint quantifier p we introduce the greatest fixrpoint
quantifier v via vX.p := uX.—¢[~X/X] where ¢[¢p/ X] denotes the formula that
is obtained from ¢ by replacing every free occurrence of X with 1. Then the
formula above can be written entirely without negation symbols as pX.vY.(p A
OY)vOX.

In order to interpret an LT, formula with free variables in a position of a word
w € (27)* we need the help of environments p : V — 2N, We write p[X ~ P] for
the environment that maps X to P and behaves like p on all other arguments.

w,i,pEq iff ¢ € w(i)
wi,pEeANY iff w,iplEeand wipEY
w,i,p [—p iff w,i,plE e

wyi,plEpXe it i |{PCN|[P2{j|wjpX—P|Ee}}

Ezample 3. The language of all words containing ¢ in every even position can
easily be defined in LT,;: vX.q A OO X.

The formula pX.vY.(p AQY) V(O X mentioned above states that p holds in
almost all positions. L.e. it is equivalent to the LTL formula F G p.

Proposition 3 ([22]). The satisfiability problem for LT, is PSPACE-complete.

The reason for introducing LT, is the fact that it subsumes the two important
temporal logics LTL and PSL. While this is also trivially true for PSL, LT,
provides a clean (albeit not necessarily intuitive) syntax which is advantageous
for the further treatment of these logics.

Proposition 4. There are equivalence-preserving translations from . ..

— LTL into LT, that incur a linear blow-up,
— PSL into LT, that incur a blow-up which is polynomial in the size of the
formula and exponential in the nesting depth of the intersection operators

[12].

The translation from LTL into LT, is realised by the fact that ¢ U1 can be
expressed as uX. ¢V (¢ A O X). The translation from PSL is more complicated
and uses the fact that SERE can be translated into NFA, as well as a close

resemblance between LT, formulas and automata. This close resemblance will
be used in the following where we introduce alternating parity automata, a model
of finite automata operating on infinite words that easily captures LT, and allows
several problems on other automata to be regarded as emptiness problems.

3 Automata on Infinite Words

3.1 Alternating Parity Automata

We introduce a very powerful automaton model which captures many well-known
models of automata on infinite words, including (non)deterministic Biichi and
co-Biichi automata.

For a set M let BT (M) denote that set of all positive Boolean formulas over
M, i.e. the least set that contains M and satisfies: if {y,9} C BT (M) then
{e AoV ap} CBH(M).

A alternating parity automaton (APA) is a tuple A = (Q, AP, qo, 9, £2) where
Q@ is a finite set of states, AP is a finite subset of P as used in the previous
section, g9 € @ is a designated starting state, § : @ — BT(Q U AP U -AP)
with =AP := {—q | ¢ € AP} is the transition function, and {2 : @ — N assigns
priorities to the states.

Here we measure the size of an automaton, |A|, as the number of its states.

A run of the APA A on a word w € (27)¥ is a leveled DAG t whose nodes are
labeled with states from @, that has a single root on level 0, and the succesors
of a node on level n are all on level n + 1. Furthermore, it obeys the following
rules. We write ¢(v) for the label of node v.

1. We have t(vg) = qop for the root vg.
2. Take any node v on some level n and let uq, ..., u be the set of its successors.
Then we have {t(uy),...,t(ur)} | 6(t(v),w(n)).

Such a run t is accepting if on every path through ¢ the greatest priority of states
that occur infinitely often is even. The language of A is L(A) = {w | there is an
accepting run of A on w}.

Ezample 4. Take the language L = {w € (21»9})“ | if ¢ holds infinitely often,
then gAp holds infinitely often in w}. It is accepted by the APA ({0, 1,2}, {p, q},0,
4, £2) where {2 is the identity function, and the transition function is defined for
all three states i as

5@ =((PAgA2)V1V(gA0)
It is also accepted by the APA ({0,1,2},{p,¢},0,9, 2) where £2(0) = 2(2) =0
and 2(1) =1, and

0(0)=(—gVpV1)AD
0(1)=(gApAr2)V1
5(2) =2

3.2 Subclasses of Alternating Parity Automata

Let A= (Q,AP,qo,d,2) be an APA. Then A is an alternating Bichi automaton
(ABA) if 2: Q — {1,2}. Tt is an alternating co-Biichi automaton (AcoBA) if
2:Q — {0,1}. Le. Biichi acceptance is concerned with the infinite occurrence
of some states whereas co-Biichi acceptance demands that certain states occur
almost everywhere in a path of a run.

The literature contains different definitions of a weak automaton, sometimes
constraining the graph structure of the automaton, sometimes weakening the
acceptance condition by changing “occurs infinitely often” into “occurs” simply.
These notions are equivalent though [14]. Here we consider the former. A is
called weak (WAPA) if for all ¢,¢' € @ s.t. ¢’ occurs in §(q) we have 2(¢") <
£2(q). Hence, the priorities on every path in a run of a weak automaton are
monotonically decreasing, and the largest priority that occurs infinitely often
is automatically the one that occurs almost everywhere. Consequently, weak
alternating automata can easily be defined as ABA or AcoBA.

A is nondeterministic if for all ¢ € @ we have that §(¢q) is a disjunction
of minterms containing exactly one state, i.e. all other conjuncts are atomic
propositions or negations thereof.

3.3 Constructions on Alternating Parity Automata
Alternating automata are closed under all Boolean operations.
Proposition 5. Let A and B be two APA. There are APA

1. A st. L(A) = (2P)* \ L(A) and |A| = |A|;
2. Ay s.t. L(Ay) = L(A)U L(B) and |A1] = O(|A] + |B]);
3. Ay s.t. L(A3) = L(A) N L(B) and |Az] = O(|A] + |B]);

Proof. (1) Let A = (Q, AP, qo,6,12). We define A = (Q, AP, qo,9,12) where
2(q) := 2(q) + 1, and 4(q) := d(q) where p = —p, =p = p, (V7 = (A7 and
¢ An = (V7. Clearly, the dual APA is not any bigger than its counterpart. A
careful inspection reveals that it recognises the complement language.

(243) The APA A; and Ay are obtained by taking the union of A and B
and adding a new state qo with arbitrary priority and transitions obtained as
the disjunction, resp. conjunction of the transitions of the two original starting
states. O

This makes APA a rich model for various decision problems.

3.4 Decision Problems for Alternating Parity Automata
Important decision problems for automata are the following.

— Non-Emptiness: given an APA A, is L(A) # 0?
— Universality: given an APA A, is L(A) = (27)«?
— Subsumption: given APA A and B, is L(A) C L(B)?

— Equivalence: given APA A and B, is L(A) = L(B)?

Thanks to Prop. 5 these problems are all interreducible in linear time. For in-
stance, equivalence reduces to non-emptiness because L(A) # L(B) iff L(C) # 0
where C recognises (L(A) N L(B)) U (L(A) N L(B)). Equally, non-emptiness and
universality are interreducible because L(A) # 0 iff L(A) # (27)~.

Note that these reductions need the full power of alternation as well as the
full power of the parity acceptance condition unless they are weak. The dual
of a Biichi automaton for instance is not a Biichi automaton but a co-Biichi
automaton and vice-versa. Weakness is preserved by dualisation though. Also,
the dual of a nondeterministic automaton is in general not a nondeterministic
automaton anymore. However, regarding it as an alternating automaton enables
easy dualisation.

3.5 Alternating Parity Automata and Temporal Logics

Many decision problems for linear-time temporal logics can be phrased as an
emptiness problem for (a subclass) of alternating parity automata. The crucial
ingredient for this is of course an equivalence-preserving translation from for-
mulas to automata. With Prop. 4 above it suffices to check that LT, can be
translated into alternating parity automata that way. However, translating log-
ics like LTL and PSL separately can be benefitial because they may not need
the full power of the parity acceptance condition.

Proposition 6 ([23,14,10,4]). For every ...

— LTL formula ¢ there is a weak APA A, s.t. L(A,) = L(p) and |A,| =

O(lel);
— PSL formula ¢ there is a weak APA A, s.t. L(A,) = L(¢) and |A,| =
20(#l) .

— LT, formula ¢ there is an APA A, s.t. L(Ay,) = L(p) and |Ay| = O(|¢]).

4 The Size-Change Termination Principle for Alternating
Parity Automata

4.1 Boxes and Their Composition

We use < to denote the usual total ordering on N or Z, and introduce a second
(non-well-founded) total ordering called reward ordering: i < j iff (—1)* i <
(-1)7-j.Le.wehave ... <3<1<0=<2<...

For the remainder of this section we fix an APA A = (Q, AP, qo, 4, 2). Let
P ={02(q) | g € @} be the set of all priorities occurring in A. We write P, for
P U{L} which will be used to model partial functions into P.

A box is an element of type @ x Q — P,. The name suggest a particular
visual representation of such a function. We regard the elements of) as ports
of a circuit, and a box has in- and out-ports which can be connected by an edge
labeled with a number. For instance, if @ = {0,1,2} and P = {3,4,5} then the
following is a box over Q.

1--\-1
o+ "o

We define a composition operation o on two boxes f, g by

(f 2 9)(g,p) = max{max{f(q,¢),9(¢';p)} | ¢’ € Q}

Here we use the important convention that | is the mazimal element w.r.t. <,
but the minimal element w.r.t. <. Then box composition works as one would
expect it from the graphical representation.

4 4 4

1- L1 o 14 L1 = 14 L1
\ \ 3

o+ "to o+ "o 0o+ Lo

Box composition is lifted to sets of boxes in the natural way: F o G := {fog |
feF,geqG}

With every finite word v € (2AF)* we associate a set of boxes [v] as follows:
[€] contains only a single box f which is defined by f(q,q") = 2(q) if ¢ = g and
f(g,q") = L otherwise. Furthermore, for every one-letter word a C AP we have
that f € [a] if for all ¢,¢' € Q:

L. f(g.q') € {£2(q), L}, and
2. {p| flg,p) # L} Ua = d(q)

Intuitively, a box belongs to [a] if it connects every in-port to all the out-ports in
some model that agrees with a on the atomic propositions and their negations.
The labels on the connections simply reflect the priority of the in-port.

Using composition it is easy to define [v] for longer words v: [av] := [a] o [v].
We write [A*] for {[v] | v € (22F)* and [A*] for {[v] | v € (27)F. Note that
these are finite sets.

A box f is called idempotent if fo f = f. It is called good w.r.t. some Q' C Q
if for all ¢ € Q' we have that f(q, q) is even.

4.2 Characterising the Emptiness Problem for Alternating Parity
Automata

Theorem 1. L(A) # 0 iff there are f € [A*] and g € [AT] s.t. g is idempotent
and good w.r.t. {q | f(qo0,q) # L}.

Proof. “<” Suppose such f,g € [A] exist. Then there must be words vy =
ai...ap, and vy = by...by, withn > 0, m > 1st. f € [vf] and g € [v,].
Le. there must be f1 € [a1],...,fn € [an],01 € [b1],---,9m € [bw] st. f =

fio...of,and g=g10...06y,. A run on v;(vy)* can easily be extracted from
the sequence f1,..., fn,91,---59m,91,... by following all connections starting
from ¢o. Suppose this run was not accepting. Then it would contain a path on
which the highest priority seen infinitely often is odd. Note that idempotency
of g means that this path is compressed into a connection from some ¢’ to itself
in this box. Furthermore, ¢’ must be reachable from ¢y in f. But then g(¢’,¢)
must be odd which contradicts the assumption that g is good.

“=” Suppose that L(A) # 0, i.e. there is a w € (2AF)% s.t. w € L(A). Then
there is an accepting run ¢t of A on w. Let w = agay ... The run ¢ can easily
be transformed into a sequence of boxes fy, f1,... by possibly adding nodes
to each level s.t. every state is present on every level, and adding corresponding
connections. Now consider a colouring of all ordered pairs of levels i, j with ¢ < 7,
assigning to this pair the box f; ; :== f; o... o f;. Since there are only finitely
many boxes, Ramsey’s Theorem [18] gives us an infinite sequence jg < ji < ...
of indices s.t. all pairs of indices from this sequence get assigned to the same
box. In particular we have f;, ;j, = fji 52 = fjoje = fio,j1 © fir,j» Which shows
that it is idempotent. Define the required boxes as f := fy ;, and g := fj,.j,-
What remains to be seen is that g is good w.r.t. the set of all states that qo
is connected to in f. As above, suppose it was not. Then the run would have
contained an infinite path on which the highest priority occurring infinitely often
was odd which would contradict the assumption that it was accepting. a

References

1. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holik, C.-D. Hong, R. Mayr, and
T. Vojnar. Simulation subsumption in ramsey-based Biichi automata universality
and inclusion testing. In Proc. 22nd Int. Conf. on Computer Aided Verification,
CAV’10, volume 6174 of LNCS, pages 132-147. Springer, 2010.

2. Inc. Accellera Organization. Formal semantics of Accellera property specification
language, 2004. In Appendix B of http://www.eda.org/vfv/docs/PSL-v1.1.pdf.

3. B. Baniegbal and H. Barringer. Temporal logic with fixed points. In Proc. Coll.
on Temporal Logic in Specification, volume 398 of LNCS, pages 62—-73. Springer,
1989.

4. D. Bustan, D. Fisman, and J. Havlicek. Automata constructions for PSL. Technical
Report MCS05-04, The Weizmann Institute of Science, 2005.

5. C. Dax, M. Hofmann, and M. Lange. A proof system for the linear time p-calculus.
In Proc. 26th Conf. on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 06, volume 4337 of LNCS, pages 274—285. Springer, 2006.

6. C. Dax and F. Klaedtke. Alternation elimination by complementation (extended
abstract). In Proc. 15th Int. Conf. on Logic for Programming, Artificial Intelli-
gence, and Reasoning, LPAR’08, volume 5330 of LNCS, pages 214-229. Springer,
2008.

7. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 16, pages 996—-1072. Elsevier and MIT Press, New York, USA, 1990.

8. S. Fogarty and M. Y. Vardi. Biichi complementation and size-change termination.
In Proc. 15th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’09, volume 5505 of LNCS, pages 16-30. Springer, 2009.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

S. Fogarty and M. Y. Vardi. Efficient Biichi universality checking. In Proc. 16th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’10, volume 6015 of LNCS, pages 205—220. Springer, 2010.

R. Kaivola. Using Automata to Characterise Fized Point Temporal Logics. PhD
thesis, LFCS, Division of Informatics, The University of Edinburgh, 1997. Tech.
Rep. ECS-LFCS-97-356.

O. Kupferman, N. Piterman, and M. Y. Vardi. Extended temporal logic revisited.
In Proc. 12th Int. Conf. on Concurrency Theory, CONCUR’01, volume 2154 of
LNCS, pages 519-535. Springer, 2001.

M. Lange. Linear time logics around PSL: Complexity, expressiveness, and a little
bit of succinctness. In Proc. 18th Int. Conf. on Concurrency Theory, CONCUR’07,
volume 4703 of LNCS, pages 90-104. Springer, 2007.

C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. ACM SIGPLAN Notices, 36(3):81-92, 2001.

C. Loding and W. Thomas. Alternating automata and logics over infinite words.
In Proc. IFIP Int. Conf. on Theoretical Computer Science, IFIP TCS2000, volume
1872 of LNCS, pages 521-535. Springer, 2000.

S. Miyano and T. Hayashi. Alternating finite automata on omega-words. TCS,
32(3):321-330, 1984.

A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations
of Computer Science, FOCS’77, pages 4657, Providence, RI, USA, 1977. IEEE.
F. P. Ramsey. On a problem of formal logic. Proc. London Mathematical Society,
Series 2, 30(4):338-384, 1928.

F. P. Ramsey. On a problem in formal logic. Proc. London Math. Soc. (3), 30:264—
286, 1930.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the Association for Computing Machinery, 32(3):733-749, 1985.
C. Stirling. Comparing linear and branching time temporal logics. In B. Ban-
iegbal, H. Barringer, and A. Pnueli, editors, Proc. Conf. on Temporal Logic in
Specification, volume 398 of LNCS, pages 1-20, Berlin, 1989. Springer.

Vardi. Linear vs. branching time: A complexity-theoretic perspective. In LICS:
IEEE Symposium on Logic in Computer Science, 1998.

M. Y. Vardi. A temporal fixpoint calculus. In ACM, editor, Proc. Conf. on Princi-
ples of Programming Languages, POPL’88, pages 250-259, NY, USA, 1983. ACM
Press.

M. Y. Vardi. Alternating automata and program verification. LNCS, 1000:471-485,
1995.

M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic, volume
1043 of LNCS, pages 238-266. Springer, New York, NY, USA, 1996.

M. Y. Vardi. Branching vs. linear time: Final showdown. In T. Margaria and
W. Yi, editors, Proc. 7th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’01, volume 2031 of LNCS, pages 1-22. Springer,
2001.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1-37, 1994.

P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72-99, 1983.

