
Solving Parity Games by a Reduction to SAT

Martin Lange

Institut für Informatik, University of Munich, Germany

Abstract. This paper presents a reduction from the problem of solving
parity games to the satisfiability problem for formulas of propositional
logic in conjunctive normal form. It uses Jurdziński’s characterisation
of winning strategies via progress measures. The reduction is motivated
by the apparent success that using SAT solvers has had in symbolic
verification. The paper reports on a prototype implementation of the
reduction and presents some runtime results.

1 Introduction

Solving a parity game is an intrinsic and interesting problem in theoretical com-
puter science. It is equivalent to the model checking problem for the modal
µ-calculus [7], and is closely related to the problem of solving other games like
mean pay-off or stochastic games.

It is also one of the few inhabitants of the complexity class NP∩co-NP [8]
– even UP∩co-UP [10] – and many people believe that it is in fact in PTIME.
Although no-one has been able to show inclusion in PTIME so far, people have
invented many algorithms for solving parity games.

Recursive methods like Zielonka’s algorithm [21], etc. solve a game with at
most p different priorities by referring several times to games with strictly less
than p many different priorities. Consequently, their running time is exponential
in the number of priorities in the game.

Strategy improvement as done by Jurdziński and Vöge’s algorithm [12] based
on Puri’s [17] – and similar to Hoffman and Karp’s [9] as well as Ludwig’s [13]
algorithms for stochastic games – uses the fact that strategies can be partially
ordered with a winning strategy being maximal w.r.t. this order. This performs
very well in practice but it is not known whether a polynomial number of itera-
tion steps always suffices to find a winning strategy.

A randomised and also subexponential algorithm is due to Björklund, Pe-
tersson, Sandberg, and Vorobyov [16].

Every model checker for the full µ-calculus is in principal also an algorithm
for solving parity games. Several of the former have emerged beginning with
tableau-like methods [4, 20], automata-theoretic ones [7], equation solvers [1]
and symbolic model checking procedures [2].

The algorithm with the currently best asymptotic complexity is Jurdziński’s
small progress measures procedure [11]. It is exponential in the number of odd
priorities occurring in the game, i.e. in the half of the maximal priority. A similar
asymptotic bound is achieved by Seidl’s fixpoint iteration [19].

Opposing common undergraduate syllabi, polynomial time is not a synonym
for efficiency. The famous SAT problem is NP-complete [5] and, hence, theoret-
ically does not admit efficient algorithms. However, there are many SAT solvers
that are astonishingly efficient in practice, for example Chaff [15]. Such solvers
are used successfully for example in bounded model checking [3].

Inspired by this we present a different approach to solving parity games: a
reduction to SAT. Theoretically this is not too exciting since it is clear that such a
reduction must exists. Furthermore, SAT is believed to be harder than PARITY.
Again, clever heuristics implemented in nowadays SAT solvers can make up for
this and result in an algorithm that is efficient in practice. Furthermore, there are
fragments of SAT that can be solved in polynomial time. Hence, our reduction
opens up a new possibility for showing inclusion of PARITY in PTIME.

The reduction is based on a comment by Emerson where he explains inclusion
of the model checking problem for the modal µ-calculus in NP. He essentially
writes “Guess a rank for each µ-subformula at each state in a transition system.
Show that the lexicographic order on the tuples through the transition system
is well-founded .” [6].

Note that an NP-algorithm is not the same as a reduction to SAT. What
we want is a formula of propositional logic that is satisfiable iff the existential
player has a winning strategy starting in a certain node of the parity game. We
cannot let the SAT solver “guess” a strategy and verify that it is winning by
a graph-theoretical method. The resulting propositional formula has to express
already that the strategy is winning.

Following the idea about ranks consequently with the aim of a local character-
isation of winning strategies we define the notion of a µ-annotation – effectively
and unintentionally re-inventing Jurdziński progress measures [11]. We stick to
the term µ-annotation because in this setting they are not dynamically updated
and, hence, do not measure any progress. We hereby attribute the theory of
µ-annotations to Jurdziński explicitly, but keep the corresponding results and
proofs in this paper in order to put the reduction to SAT on a solid theoretical
foundation.

The rest of the paper is organised as follows. Sections 2 and 3 recall defi-
nitions. Section 4 contains the aforementioned theory regarding µ-annotations,
resp. progress measures. Sections 5 and 6 present two slightly different transla-
tions from PARITY to SAT based on the existence of such annotations. Section 7
presents experimental results of one of these translations, and Section 8 discusses
further work.

2 Parity Games

A parity game is a tuple G = (V,E, v0, p) where (V,E) is a finite, directed graph
and V is partitioned into two sets V∃ and V∀, v0 ∈ V is the starting node, and
p : V → N is a priority function. G is assumed to be total, i.e. for every v ∈ V
there is a v′ ∈ V with (v, v′) ∈ E.

A play of G is a maximal path π = v0v1v2 . . . through G starting in v0. It is
constructed in the following way. Given a node v ∈ Vx, player x chooses a v′ ∈ V
with (v, v′) ∈ E and the construction of the play continues with v′.

Given a play π = v0v1 . . . let inf π := {v ∈ V | there are infinitely many i ∈ N
s.t. v = vi}. Player ∃ wins the play π = v0v1 . . . if min{p(v) | v ∈ inf π} is even.
If it is odd then player ∀ wins the play π.

A strategy for player x is a function σ : V ∗Vx → V that tells player x which
choice to make depending on the current construction of a play. A strategy is
called positional if for all α, β ∈ V ∗ and all v ∈ Vx we have σ(αv) = σ(βv).
Hence, the choices made according to a positional strategy only depend on the
last node visited. In such a case we will rather use σ : V → V .

A play π = v0v1 . . . is called conforming to a (positional) strategy σ for player
x if for all i ∈ N if vi ∈ Vx then vi+1 = σ(v0 . . . vi). A strategy σ for player x is
called a winning strategy if every play conforming to σ is won by player x.

Given a parity game G and a strategy σ for player ∃ we write G|σ for the
parity game that is induced by σ on G. Formally, G|σ = (V,E ∩ (V∀ × V ∪
{(v, σ(v)) | v ∈ V∃}), v0, p).

The problem of solving a parity game G = (V,E, v0, p) is to determine
whether or not player ∃ has a winning strategy for G. Let PARITY := {G |
player ∃ has a winning strategy for G}.

Theorem 1. [7] Given a parity game G.
(a) Player ∃ has a winning strategy for G iff player ∀ does not have a winning
strategy for G.
(b) A player has a winning strategy for G iff she has a positional winning strategy
for G.

Theorem 2. [8] The problem of solving a parity game is in NP∩co-NP.

Given a parity game G, the finite unraveling R(G) is informally obtained by
unfolding the graph G to a tree with back-edges only to nodes of minimal priority
on the thus created loop. Formally, it is defined as R(G) = (V ′, E′, v0, p′) with

V ′ := {v0 . . . vn ∈ V + | ∀i = 1, . . . , n : (vi−1, vi) ∈ E and
∀v ∈ V there are at most two i, j s.t. vi = vj = v}

V ′∃ := V ′ ∩ V ∗V∃
V ′∀ := V ′ ∩ V ∗V∀
E′ := {(v0 . . . vn, v0 . . . vnvn+1) ∈ V ′ × V ′ | (vn, vn+1) ∈ E} ∪

{(v0 . . . vk . . . vn, v0 . . . vk) ∈ V ′ × V ′ | (vn, vk) ∈ E and
∀i = k, . . . , n : p(vk) ≤ p(vi)}

p′(v0 . . . vn) := p(vn)

For two nodes v, v′ ∈ V ′ we write v ∼ v′ iff there is a w ∈ V s.t. v = v0v1 . . . w
and v′ = v0v

′
1 . . . w for some v1, v′1, Note that ∼ is an equivalence relation

preserving priorities.

Lemma 1. Player ∃ wins the parity game G iff she wins the parity game R(G).

Proof. Suppose she has a winning strategy σ for G. It immediately carries over to
a strategy σ′ onR(G) via σ′(v0 . . . vn) = v0 . . . vnσ(v0 . . . vn). It is not hard to see
that σ′ is a winning strategy. The converse direction follows from Theorem 1: if
she does not have a winning strategy then player ∀ has a winning strategy which
carries over to a strategy on R(G) in the same way. ut

3 Propositional Logic and SAT

Given a set of propositional variables V = {X,Y, . . .}, formulas of propositional
logic are built in the following way.

Φ ::= X | Φ ∨ Φ | Φ ∧ Φ | ¬Φ

We use the usual abbreviations: ϕ → ψ := ¬ϕ ∨ ψ and tt := X ∨ ¬X for some
X ∈ V .

A variable assignment is a mapping ζ : V → {0, 1}. A formula is called
satisfiable iff there is an assignment to the variables in it that makes the formula
true under the usual interpretations of the boolean connectives. Let SAT := {Φ |
Φ is satisfiable }.

A formula is said to be in conjunctive normal form, if it is of the form∧
i∈I

∨
j∈Ji

li,j where for all i, j: li,j is a literal, i.e. a possibly negated variable.
Let SAT-CNF := SAT ∩ {Φ | Φ is in conjunctive normal form }.

Theorem 3. [5] SAT and SAT-CNF are both NP-complete under polynomial
time reductions.

4 Characterising Winning Strategies Locally

Given a parity game G = (V,E, v0, p), let p0 ≥ max { p(v) | v ∈ V } be an odd
upper bound on the priorities occurring in G. A µ-annotation for G is a tuple
a = (a1, a3, . . . , ap0) ∈ N

p0+1
2 .

Given two µ-annotations a = (a1, . . . , ap0) and b = (b1, . . . , bp0) for G and a
p ≤ p0, we define

a£p b iff
{
ai ≤ bi for all i = 1, . . . , p− 1 if p is even
ap < bp and ai ≤ bi for all i = 1, . . . , p− 2 o.w.

We write a(p) for some odd p ∈ N to denote the p-component of a.
A µ-annotation for G is an η that assigns to each v ∈ V an annotation in

the above sense. It is called successful, iff for all v ∈ V :

– if v ∈ V∀ then for all w ∈ vE: η(w) £p(w) η(v),
– if v ∈ V∃ then there is a w ∈ vE: η(w) £p(w) η(v).

Lemma 2. Let G be a parity game, η be a µ-annotation for G, and π = v0v1 . . .
be a play of G. If for all i ∈ N: η(vi+1) £p(vi+1) η(vi) then the minimal priority
occurring infinitely often in π is even.

Proof. Suppose that the minimal priority p that occurs infinitely often in π
is odd. Then there are infinitely many nodes vi1 , vi2 , . . . on π, s.t. η(vi1)

(p) >
η(vi2)

(p) > . . . since eventually there is no lower even priority anymore that
would allow η(vij)

(p) < η(vij+1)
(p) for some j ∈ N. But then we cannot have

η(vi+1) £p(vi+1) η(vi) for all i ∈ N, because the natural numbers are Noetherian.
ut

Lemma 3. Let G be a parity game and σ be a strategy for a player ∃. An η is
a successful µ-annotation for G iff it is a successful µ-annotation for G|σ.

Proof. The “only if” part is trivial since G|σ is a substructure of G. For the
“if” part note that G and G|σ have the same set of nodes. Hence, a successful
µ-annotation η for G|σ is also a µ-annotation for G. It is easy to see that it is also
successful. Let G = (V∃, V∀, E, v0, p) and G|σ = (V∃, V∀, E′, v0, p). Take any node
v ∈ V . If v ∈ V∀ then vE = vE′, hence success immediately carries over to G
on these nodes. If v ∈ V∃ then vE′ = {w} for some w ∈ V with η(w) £p(w) η(v).
Now vE ⊇ {w}, i.e. there still is a w with η(w) £p(w) η(v). ut

Lemma 4. Let G be a parity game. There is a successful µ-annotation for G iff
there is a successful µ-annotation for R(G).

Proof. Let V be the node set of G and V ′ be the node set of R(G). A successful
µ-annotation η for G immediately carries over to a µ-annotation η′ on R(G) via
η′(v0 . . . vn) = η(vn). It is not hard to see that η′ is also successful.

Now suppose there is a successful µ-annotation η′ for R(G). In a first step
we construct a successful µ-annotation ηmin with minimal values. This can be
done by successively decreasing annotation values whilst preserving success in
each step. For loops in R(G) this has to be done simultaneously for all nodes
on this loop. Next, observe that an annotation at a node v only depends on the
annotations at nodes reachable from v. Furthermore, for two nodes v, v′ ∈ V ′ the
paths emerging from v and v′ projected onto their last component are the same.
Hence, we have ηmin(v) = ηmin(v′) if v ∼ v′. Finally, this yields a well-defined
µ-annotation for G via η(w) = ηmin(v′) for some v′ = v0 . . . w. Again, it is not
hard to see that η is successful. ut

Theorem 4. Player ∃ wins the parity game G iff there is a successful µ-anno-
tation for G.

Proof. (⇐) Suppose there is a successful µ-annotation η for G = (V,E, v0, p). It
immediately yields a positional strategy σ for player ∃ defined by σ(v) = w only
if η(w) £p(w) η(v). By assumption, for every v ∈ V∃ there is at least one such
w. If there is more than one satisfying the inequality then σ(v) can simply be
defined as any of them. It remains to be seen that σ is a winning strategy.

Let player ∀ play against σ with any other strategy σ′. The result is a play π =
v0v1 Since η is a successful µ-annotation we have for all i ∈ N: η(vi+1)£p(vi+1)

η(vi). Lemma 2 then shows that player ∃ wins the play. Since she does so for
any play π which is conforming to σ, she wins the game G.

(⇒) Suppose player ∃ has a winning strategy σ forG. According to Theorem 1
we can assume σ to be positional. We will use σ to construct a µ-annotation η
for R(G|σ). Let pmax be the maximal odd priority used in G. At the beginning
set η(v0) = (2 · |V |, . . . , 2 · |V |). Suppose a node v on level n of the quasi-tree
R(G) has already been assigned an annotation η(v) = (a1, . . . , apmax

). Then for
every son w of v that is not a predecessor of v set

η(w) :=
{

(a1, . . . , ap(w)−2, ap(w) − 1, 2 · |V |, . . . , 2 · |V |) , if p(w) is odd,
(a1, . . . , ap(w)−1, 2 · |V |, . . . , 2 · |V |) , o.w.

Note that the depth of the quasi-tree R(G) is at most 2 · |V | which is why the
starting value for η at v0 suffices.

It remains to be seen that η is successful. Clearly, if w is a son but not a
predecessor of v in R(G|σ) then η(w) £p(w) η(v). Now suppose there is an edge
from v to w in R(G|σ) s.t. w is also a predecessor of v. According to Lemma 1,
player ∃ also wins the parity gameR(G|σ). Hence, the minimal priority occurring
on the path w0 . . . wn, with w = w0 and v = wn, is even. Let p0 be this priority.
By the construction above we have η(wi)(p) = η(wj)(p) for all i, j = 0, . . . , n and
all p < p0, in particular i = 0 and j = n. Furthermore, R(G|σ) is constructed
s.t. p(w) = p0 ≤ p(wi) for all i = 0, . . . , n. Thus, we also have η(w) £p(w) η(v).

Applying Lemmas 3 and 4 shows that there also is a successful µ-annotation
for G which concludes the proof. ut
Corollary 1. Let G be a parity game with node set V . There is a successful µ-
annotation for G iff there is a successful µ-annotation η for G s.t. for all v ∈ V :
if η(v) = (a1, . . . , ap) then for all i = 1, . . . , p: 0 ≤ ai < |V |.
Proof. Given a successful µ-annotation for G we can apply Theorem 4 twice
in order to first obtain a positional winning strategy σ for player ∃ and then a
successful µ-annotation η′ for R(G|σ) with node set V ′. We have η′(v)(p) ≤ 2·|V |
for all v ∈ V ′. The proof of Lemma 4 reduces this to a minimal successful µ-
annotation η for R(G) which is also a successful µ-annotation for G. But then
we must have η(v)(p) < |V | because the length of a maximal descending chain
of natural numbers in any component of the annotations is bounded by the
maximal number of transitions on a loop in G|σ which is |V |. Finally, the proof
of Lemma 3 shows that a successful µ-annotation for G|σ is also a successful
µ-annotation for G. ut

5 Using Unary Encodings of Annotation Values

Theorems 4 and 1 yield a reduction from PARITY to SAT. Given a parity
game G = (V,E, v0, p), let pmax be the maximal priority used in G. We build a
propositional formula Φ1

G, s.t. a satisfying variable assignment for Φ1
G encodes a

successful µ-annotation for G. Φ1
G contains variables

– Sv for every v ∈ V . They are used to mark nodes that can be visited in a
play that is conforming to σ.

– Tv,w for every v ∈ V and every w ∈ vE. They are used to mark edges that
player ∃ moves along in a play conforming to σ.

– Y vp,a for every v ∈ V , every odd priority p used inG and every a ∈ {0, . . . , |V |−
1}. Intuitively, Y vp,a asserts that η(v)(p) = a.

Part Ψ of Φ1
G expresses that the variables Sv and Tv,w represent a positional

strategy for player ∃. Furthermore, Φ1
G asserts that this strategy is a winning

strategy, i.e. the corresponding annotation values form a successful annotation
for G. Finally, Ψ ′ says that every p-component of every node v must have at
least one value.

Φ1
G := Ψ ∧ Ψ ′ ∧

∧

v∈V

∧

w∈vE
Tv,w → A(v, w)

A(v, w) :=
∧

p < p(w)
p odd

E(v, w, p) ∧
{

L(v, w) if p(w) is odd

1 o.w.

E(v, w, p) :=
|V |−1∧
a=0

(Y vp,a →
∨

b≤a
Y wp,b)

L(v, w) :=
|V |−1∧
a=0

(Y vp(w),a →
∨

b<a

Y wp(w),b)

Ψ := Sv0 ∧
∧

v∈V∀

∧

w∈vE
(Sv → Tv,w) ∧

∧

v∈V∃
(Sv →

∨

w∈vE
Tv,w)

∧
∧

(v,w)∈E
Tv,w → Sw

Ψ ′ :=
∧

v∈V

∧

p ≤ pmax

p odd

|V |−1∨
a=0

Y vp,a

Formula A(v, w) asserts that η(w) £p(w) η(v) for an annotation η given as an
assignment to the variables Y vp,a. Formula E(v, w, p) says that η(w)(p) ≤ η(v)(p),
and formula L(v, w) says that η(w)(p(w)) < η(v)(p(w)).

Theorem 5. Player ∃ has a winning strategy for the parity game G iff Φ1
G is

satisfiable.

Proof. Suppose player ∃ wins the parity game G = (V,E, v0, p). According to
Theorem 1, she has a positional winning strategy σ. This immediately yields

a valuation for the variables Sv and Tv,w fulfilling the subformula Ψ . Further-
more, according to Theorem 4, there is a successful µ-annotation η for G. This
immediately yields an assignment for the variables Y vp,a defined by Y vp,a = 1 iff
η(v)(p) = a. It is not hard to see that the remaining conjuncts are all fulfilled by
this evaluation.

Now suppose that Φ1
G is satisfiable. Then, the satisfying variable assignment

defines a positional strategy σ for player ∃. Next we define an annotation η for
G by η(v)(p) = a iff a = min { b | Y vp,b = 1 }. Again, it is not hard to see that η
is successful. Note that ΦG asserts that whenever (v, w) ∈ E and both v and w
belong to the strategy, then η(w) £p(w) η(v). This implies success of η. ut
Most SAT solvers expect their input to be in conjunctive normal form, and
their performance depends on the input size as well as the number of variables
occurring in it.

Proposition 1. Given a parity game G with nodes V , edges E and maximal
priority pmax , there is a Φ′ in conjunctive normal form that is equivalent to Φ1

G

w.r.t. satisfiability s.t. |Φ′| = O(|V |2 · (|E|+ dpmax

2 e) + |V | · |E| · bpmax

2 c) and the
number of variables used in Φ′ is |V |+ |E|+ |V |2 · dpmax

2 e.
Proof. In order to transform Φ1

G to conjunctive normal form, one only needs the
equivalence ϕ → (ψ1 ∧ ψ2) ≡ (ϕ → ψ1) ∧ (ϕ → ψ2). Note that this results in a
linear blow-up only since the formulas on the left-hand side of the implication
are of constant size. The result of this transformation applied to Φ1

G is presented
in Appendix A. ut

6 Using Binary Encodings of Annotation Values

We present a second reduction from PARITY to SAT that proceeds along the
same lines but encodes the annotation values binarily. This yields asymptotically
smaller formulas and uses less variables. The disadvantage is their transformation
into conjunctive normal form which is more complex and requires the introduc-
tion of additional variables. However, those variables are merely macros, hence,
their values in an assignment are completely determined by the values of the
variables used in the first place.

Given a parity game G with nodes V , edges E and maximal priority pmax ,
let n := |V |, m := dlogne− 1. In addition to the variables Sv and Tv,w for every
v ∈ V,w ∈ vE as introduced in Section 5, formula Φ2

G uses variables Xv
p,i for

every v ∈ V , every odd priority p ≤ pmax , and every i = 0, . . . ,m. Intuitively,
Xv
p,i represents the i-th bit of η(v)(p) for an annotation η of G.

Φ2
G := Ψ ∧

∧

v∈V

∧

w∈vE
Tv,w → A(v, w)

A(v, w) :=
∧

p < p(w)
p odd

Em(v, w, p) ∧
{

Lm(v, w) if p(w) is odd

1 o.w.

E0(v, w, p) := Xw
p,0 → Xv

p,0

Ei(v, w, p) := (Xw
p,i → Xv

p,i) ∧ ((Xw
p,i ∨ ¬Xv

p,i) → Ei−1(v, w, p))

L0(v, w) := ¬Xw
p(w),0 ∧Xv

p(w),0

Li(v, w) := (Xw
p(w),i → Xv

p(w),i) ∧ ((Xw
p(w),i ∨ ¬Xv

p(w),i) → Li−1(v, w))

where Ψ is as defined in Φ1
G.

Formula A(v, w) is the same as used in Φ1
G. Formula Ei(v, w, p) says that

the i-th bit of η(w)(p) is less or equal than that of η(v)(p), and if they are equal
then the same holds recursively for the next lower bit. Formula Li(v, w) does
the same for the p(w) components of η(w) and η(v) but requires them to differ
at one bit at least.

The following is proved in just the same way as Theorem 5 with the values
encoded binarily instead of unarily. Note that – for fixed v and p – any assignment
to the variables Xv

p,i defines a value between 0 and |V | − 1. Thus, it is not
necessary to explicitly require one to exist as it is done by Ψ ′ in Φ1

G.

Theorem 6. Player ∃ has a winning strategy for the parity game G iff Φ2
G is

satisfiable.

Proposition 2. For every parity game G with nodes V , edges E and maximal
priority pmax , there is a Φ′ in conjunctive normal form that is equivalent to Φ2

G

w.r.t. satisfiability s.t. |Φ′| = O(|E| · pmax

2 · log |V |) and the number of variables
used in Φ′ is

|V | · (1 + dpmax

2
e · dlog |V |e) + |E| · (1 + dlog |V |e · (4 · dpmax

2
e+ 2))

Proof. ΦG can be brought into conjunctive normal form using limited expansion:
a subformula ψ that violates the conjunctive normal form is replaced by a new
variable ψ, and top-level clauses are added that express Zψ ↔ ψ. This is done
recursively on ψ’s subformulas for as long as they are not literals. ut

7 Experimental Results

We report on a prototype implementation of the translation from PARITY to
SAT in Section 6. The programming language used for this implementation is the
lazy functional language Haskell using the Glasgow Haskell Compiler.
The tests were carried out on a machine with two Intel r© XeonTM 2.4 GHz
processors and 4GB of RAM. The second processor remained unused. We do
not report on the implementation using unary encodings, since its performance
was worse than the binary one throughout all the tests.

The program takes parameters n, p and o, and creates a random graph with
n nodes. The probability that v ∈ V∃ is 50% for each v ∈ V . Moreover, each v is

pmax = 1 pmax = d√ne
n

reduction solving reduction solving

100 0.05s 0.03s - 0.05s 0.3s 0.1s - 0.2s
200 0.1s 0.06s - 0.1s 1s - 1.2s 0.7s - 11m54s
300 0.2s 0.2s 2.2s - 2.6s 1.1s - 2.1s
400 0.3s 0.2s - 0.3s 4s - 4.2s 1.4s - 4.4s
500 0.4s 0.2s - 0.3s 5.5s - 5.9s 3.3s - 37.3s
600 0.6s 0.4s 8.3s - 9.2s 4.8s - 1m4s
700 0.7s 0.3s - 0.5s 10.9s - 12.1s 3.8s - 1m25s
800 0.8s 0.6s 14s - 15.5s 6s - 1m44s
900 0.9s 0.6s - 0.7s 17s - 20s 9.2s - 2h6m
1000 1s 0.7s - 0.8s 20s - 23s 6.3s - 4m19s
1100 1.2s 0.9s - 1s 29s - 34s 9.8s - 1m11s
1200 1.4s 1s 40s 16s - 6m40s
1300 1.5s 1.1s - 1.5s 45s 18s - †
1400 1.6s 1.2s - 1.3s 52s 20s - 19m48s
1500 1.7s 1.3s 58s - 1m6s 16s - 2h28m
1600 1.8s 1.4s - 1.8s 1m12s 16s - †

Fig. 1. The running times based on binary coding.

assigned a priority that is chosen randomly from an even distribution between 0
and p inclusively. Finally, every v has exactly outdegree o. We have restricted the
test runs to o = 2 in order to reduce dimensions for presenting the results. Note
that every parity game can easily be transformed into an equivalent game with
constant outdegree 2. The random graphs are directly translated into proposi-
tional formulas in conjunctive normal form and fed to the SAT solver zChaff
[15].

Two sets of benchmarks were carried out on such random graphs of succes-
sively increasing size n: one with p = 1 which corresponds to model checking
formulas of the modal µ-calculus with at most one alternation; the other with
p = d√ne which seems to be a reasonable choice for a principally unbounded
but feasible number of priorities. Each input was processed 5 times. The minimal
and maximal running times that occurred in this test series are shown in Fig-
ure 1. A value of “†” means that zChaff was aborted manually after running
for more than 6h. For n > 1600 and pmax = d√ne there is an increasing number
of instances that do not terminate within 6h. For pmax = 1, the series shows a
steady growth with more diverging running times. For example, checking games
with n = 20000 takes approx. 1 min for the reduction and 30 sec to 5 min for
the solving.

8 Conclusions

We have shown how the apparent power of recent SAT solvers can be used to
solve parity games. The experimental results look promising: most parity games

are solved very quickly, but there are a few examples of formulas that could not
be solved in reasonable time.

What remains to be done is to

– extend the translation in order to solve parity games globally, i.e. compute
the entire winning region of one of the players rather than decide for a
designated node only which winning region it belongs to;

– speed up the implementation and make it more memory-efficient by re-
implementing it in a different language, for example C++;

– compare the optimised procedure with implementations of other algorithms
for parity games, for instance omega [18], as well as model checkers for the
modal µ-calculus like SMV [14], etc.

– check how this algorithms performs on families of parity games that are
known to cause exponential behaviour of other algorithms;

– check whether the formulas created by one of the translations above can be
solved in polynomial time.

References

1. G. Bhat and R. Cleaveland. Efficient model checking via the equational µ-calculus.
In Proc. 11th Symp. on Logic in Computer Science, LICS’96, pages 304–312, New
Brunswick, New Jersey, July 1996. IEEE.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

3. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

4. R. Cleaveland. Tableau-based model checking in the propositional µ-calculus. Acta
Informatica, 27(8):725–748, 1990.

5. S. A. Cook. The complexity of theorem-proving procedures. In Conf. Rec. 3rd An-
nual ACM Symposium on Theory of Computing, STOC’71, pages 151–158, Shaker
Heights, OH, USA, 1971. ACM.

6. E. A. Emerson. Model checking and the µ-calculus. In N. Immerman and P. G.
Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of DI-
MACS: Series in Discrete Mathematics and Theoretical Computer Science, chap-
ter 6. AMS, 1997.

7. E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and determinacy. In
Proc. 32nd Symp. on Foundations of Computer Science, pages 368–377, San Juan,
Puerto Rico, October 1991. IEEE.

8. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the µ-calculus
and its fragments. TCS, 258(1–3):491–522, 2001.

9. A. Hoffman and R. M. Karp. On nonterminating stochastic games. Management
Science, 12:359–370, 1966.

10. M. Jurdziński. Deciding the winner in parity games is in UP∩co-UP . Inf. Pro-
cess. Lett., 68(3):119–124, 1998.

11. M. Jurdziński. Small progress measures for solving parity games. In H. Reichel
and S. Tison, editors, Proc. 17th Ann. Symp. on Theoretical Aspects of Computer
Science, STACS’00, volume 1770 of LNCS, pages 290–301. Springer, 2000.

12. M. Jurdziński and J. Vöge. A discrete strategy improvement algorithm for solving
parity games. In E. A. Emerson and A. P. Sistla, editors, Proc. 12th Int. Conf.
on Computer Aided Verification, CAV’00, volume 1855 of LNCS, pages 202–215.
Springer, 2000.

13. W. Ludwig. A subexponential randomized algorithm for the simple stochastic
game problem. Information and Computation, 117(1):151–155, 1995.

14. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell
Massachusetts, 1993.

15. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Proc. 38th Design Automation Conference,
DAC’01, June 2001.

16. V. Petersson and S. Vorobyov. A randomized subexponential algorithm for parity
games. Nordic Journal of Computing, 8(3):324–345, 2001.

17. A. Puri. Theory of hybrid systems and discrete event systems. PhD thesis, Uni-
versity of California, Berkeley, 1995.

18. D. Schmitz and J. Vöge. Implementation of a strategy improvement algorithm
for finite-state parity games. In S. Yu and A. Pun, editors, Proc. Int. Conf. on
Implementation and Application of Automata, CIAA’00, volume 2088 of LNCS,
pages 263–271. Springer, 2000.

19. H. Seidl. Fast and simple nested fixpoint. Information Processing Letters,
59(6):303–308, 1996.

20. C. Stirling. Local model checking games. In I. Lee and S. A. Smolka, editors, Proc.
6th Conf. on Concurrency Theory, CONCUR’95, volume 962 of LNCS, pages 1–11,
Berlin, Germany, August 1995. Springer.

21. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. – Informatique
Théorique et Applications, 21:99–135, 1987.

A Transformation of Φ1
G to CNF

The following formula in conjunctive normal form is equivalent to Φ1
G w.r.t.

satisfiability.

Φ′ := Sv0 ∧
∧

v∈V∀

∧

w∈vE
(¬Sv ∨ Tv,w) ∧

∧

v∈V∃
(¬Sv ∨

∨

w∈vE
Tv,w)

∧
∧

v∈V

(∧

p ≤ pmax

p odd

|V |−1∨
a=0

Y vp,a

∧
∧

w ∈ vE
p(w) odd

|V |−1∧
a=0

¬Tv,w ∨ ¬Y vp(w),a ∨
∨

b<a

Y wp(w),b

∧
∧

w∈vE

(
(¬Tv,w ∨ Sw)

∧
∧

p < p(w)
p odd

|V |−1∧
a=0

¬Tv,w ∨ ¬Y vp,a ∨
∨

b≤a
Y wp,b

))

B Transformation of Φ2
G to CNF

In addition to the variables Sv, Tv,w and Xv
p,i used in Φ2

G we need variables

– Ev,wp,i to abbreviate Ei(v, w, p),
– Lv,wi to abbreviate Li(v, w),
– Iv,wp,i to abbreviate ¬Xw

p,i ∨Xv
p,i,

– Jv,wp,i to abbreviate ¬Kv,w
p,i ∨ Ev,wp,i−1,

– Kv,w
p,i to abbreviate Xw

p,i ∨ ¬Xv
p,i,

– Hv,w
i to abbreviate ¬Kv,w

p(w),i ∨ Lv,wi−1,

Then we can write Φ2
G in conjunctive normal form as

Φ′ := Sv0 ∧
∧

v∈V∀

∧

w∈vE
(¬Sv ∨ Tv,w) ∧

∧

v∈V∃
(¬Sv ∨

∨

w∈vE
Tv,w)

∧
∧

v∈V

(∧

w ∈ vE
p(w) odd

(¬Tv,w ∨ Lv,wm) ∧ DL(v, w) ∧ DH(v, w)

∧
∧

w∈vE

(
(¬Tv,w ∨ Sw)

∧
∧

p ≤ p(w)
p odd

DI(v, w, p) ∧DK(v, w, p)

∧
∧

p < p(w)
p odd

(
(¬Tv,w ∨ Ev,wp,m)

∧DE(v, w, p) ∧DJ (v, w, p)
)))

where

DE(v, w, p) :=

(¬Ev,wp,0 ∨ ¬Xw
p,0 ∨Xv

p,0) ∧ (Ev,wp,0 ∨Xw
p,0) ∧ (Ev,wp,0 ∨ ¬Xv

p,0) ∧
m∧

i=1

(Ev,wp,i ∨ ¬Iv,wp,i ∨ ¬Jv,wp,i) ∧ (¬Ev,wp,i ∨ Iv,wp,i) ∧ (¬Ev,wp,i ∨ Jv,wp,i)

DL(v, w) :=

(Lv,w0 ∨Xw
p(w),0 ∨ ¬Xv

p(w),0) ∧
(¬Lv,w0 ∨ ¬Xw

p(w),0) ∧ (¬Lv,w0 ∨Xv
p(w),0) ∧

m∧

i=1

(Lv,wi ∨ ¬Iv,wp(w),i ∨ ¬Hv,w
i) ∧ (¬Lv,wi ∨ Iv,wp(w),i) ∧ (¬Lv,wi ∨Hv,w

i)

DI(v, w, p) :=
m∧

i=1

(¬Iv,wp,i ∨ ¬Xw
p,i ∨Xv

p,i) ∧ (Iv,wp,i ∨Xw
p,i) ∧ (Iv,wp,i ∨ ¬Xv

p,i)

DK(v, w, p) :=
m∧

i=1

(¬Kv,w
p,i ∨Xw

p,i ∨ ¬Xv
p,i) ∧ (Kv,w

p,i ∨ ¬Xw
p,i) ∧ (Kv,w

p,i ∨Xv
p,i)

DJ(v, w, p) :=
m∧

i=1

(¬Jv,wp,i ∨ Ev,wp,i−1 ∨ ¬Kv,w
p,i) ∧ (Jv,wp,i ∨ ¬Ev,wp,i−1) ∧ (Jv,wp,i ∨Kv,w

p,i)

DH(v, w) :=
m∧

i=1

(¬Hv,w
i ∨ ¬Kv,w

p(w),i ∨ Lv,wi−1) ∧ (Hv,w
i ∨Kv,w

p(w),i) ∧ (Hv,w
i ∨ ¬Lv,wi−1)

