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ABSTRACT

We present a game-based formalism that can be used to do local model checking for FLC, a modal

fixed point logic that extends the µ-calculus with a sequential composition operator. This logic is

capable of expressing non-regular properties which are interesting for verification purposes.

1. Introduction

The modal µ-calculus [2] is an important specification language for the verification of temporal
properties. This is mainly due to the fact that it subsumes most temporal, dynamic or description
logics.

On the other hand, the modal µ-calculus is equi-expressive to Monadic Second Order Logic [1],
i.e. it can only describe “regular” properties. In [7], Müller-Olm has introduced FLC, Fixed Point
Logic with Chop, which extends the modal µ-calculus with a sequential composition operator,
and has shown that its expressive power is not limited by regularity. In fact, it is not hard to
define the language {anbncn | n ∈ N} in FLC on words for example.

On finite structures, FLC’s model checking problem is decidable [7]. In [5], a tableau formalism
was introduced that can be used to do global model checking. Here we present a game-based
framework [4] for local model checking. These games cannot deny a certain similarity with
alternating push-down automata over trees. Just as FLC extends the modal µ-calculus, they
extend its model checking games [8].

We also give examples of FLC-definable properties that are interesting for verification purposes
and present the most important results on FLC.

2. Preliminaries

A transition system T = (S, {
a
→ | a ∈ A}, L) over a set P = {tt, ff, q, q, . . .} of propositional

constants consists of states, transition relations and a labelling function from states to sets of
propositions. Formulas of FLC are given by

ϕ ::= q | Z | τ | 〈a〉 | [a] | ϕ ∨ ϕ | ϕ ∧ ϕ | µZ.ϕ | νZ.ϕ | ϕ;ϕ

where q ∈ P, a ∈ A, and Z ∈ V, a set of propositional variables. We will write σ for µ or ν.
Formulas are assumed to be well named in the sense that each binder variable is distinct. Our
main interest is with closed formulas, that do not have free variables, in which case there is a
function fp : V → FLC that maps each variable to its defining fixed point formula. The set
Sub(ϕ) of subformulas of ϕ and its alternation depth ad(ϕ) are defined as usual.
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The tail of a variable Z in a formula ϕ, tlZ is a set consisting of those formulas that occur
“behind” Z in fp(Z) in ϕ. We use sequential composition for sets of formulas in a straightforward
way: {ϕ0, . . . , ϕn};ψ := {ϕ0;ψ, . . . , ϕn;ψ}. Let

tlZ(ψ) := {ψ} if ψ ∈ P ∪ {τ, 〈a〉, [a] | a ∈ A} tlZ(σY.ψ) := tlZ(ψ)

tlZ(ϕ ∨ ψ) = tlZ(ϕ ∧ ψ) := tlZ(ϕ) ∪ tlZ(ψ) tlZ(Y ) :=

{

{Y } if Y 6= Z

{τ} o.w.

tlZ(ϕ;ψ) :=

{

tlZ(ϕ);ψ if Z ∈ Sub(ϕ)

{τ} o.w.

}

∪

{

tlZ(ψ) if Z ∈ Sub(ψ)

{τ} o.w.

}

The tail of Z in ϕ is simply calculated as tlZ := tlZ(fp(Z)).

An important factor in the complexity of FLC’s model checking problem is the sequential depth
sd(ϕ) of a formula. Informally the sequential depth of a formula is the maximal number of times
a variable is sequentially composed with itself. It is defined as sd(ϕ) := max{sdZ(fp(Z)) | Z ∈
Sub(ϕ)} − 1 where

sdZ(ϕ ∨ ψ) := max{sdZ(ϕ), sdZ(ψ)} sdZ(ϕ ∧ ψ) := max{sdZ(ϕ), sdZ(ψ)}

sdZ(ϕ;ψ) := sdZ(ϕ) + sdZ(ψ) sdZ(σY.ϕ) := sdZ(ϕ)

sdZ(ψ) := 0 if ψ ∈ {q, τ, 〈a〉, [a]} sdZ(Y ) :=

{

1 if Y = Z

0 o.w.

To simplify the notation of a formula’s semantics we assume a transition system T to be fixed
for the remainder of the paper. In order to handle open formulas we need environments ρ : V →
(2S → 2S). ρ[Z 7→ f ] is the function that maps Z to f and agrees with ρ on all other arguments.

The semantics [[·]]Tρ : 2S → 2S of an FLC formula, relative to T and ρ, is a monotone function

on subsets of states with respect to the inclusion ordering on 2S . These functions together with
the partial order given by

f ⊑ g iff ∀X ⊆ S : f(X) ⊆ g(X)

form a complete lattice with joins ⊔ and meets ⊓. By the Tarski-Knaster Theorem [9] the least
and greatest fixed points of functionals F : (2S → 2S) → (2S → 2S) exist. They are used to
interpret fixed point formulas of FLC.

[[q]]ρ = λX.{s ∈ S | q ∈ L(s)} [[Z]]ρ = ρ(Z)

[[ϕ;ψ]]ρ = [[ϕ]]ρ ◦ [[ψ]]ρ [[τ ]]ρ = λX.X

[[ϕ ∨ ψ]]ρ = λX.[[ϕ]]ρ(X) ∪ [[ψ]]ρ(X) [[ϕ ∧ ψ]]ρ = λX.[[ϕ]]ρ(X) ∩ [[ψ]]ρ(X)

[[〈a〉]]ρ = λX.{s ∈ S | ∃t ∈ X, s.t. s
a
→ t}

[[[a]]]ρ = λX.{s ∈ S | ∀t ∈ S, s
a
→ t⇒ t ∈ X}

[[µZ.ϕ]]ρ =
d
{f : 2S → 2S | f monotone, [[ϕ]]ρ[Z 7→f ] ⊑ f}

[[νZ.ϕ]]ρ =
⊔

{f : 2S → 2S | f monotone, f ⊑ [[ϕ]]ρ[Z 7→f ]}

A state s satisfies a formula ϕ under ρ, written s |=ρ ϕ, iff s ∈ [[ϕ]]ρ(S).

Example Let A = {a, b} and ϕ = νY.[b]ff ∧ [a](νZ.[b] ∧ [a](Z;Z)); (([a]ff ∧ [b]ff) ∨ Y ). It says
“the number of bs never exceeds the number of as” which is non-regular and, therefore, is not
expressible in Lµ. This is an interesting property of protocols when a and b are the actions send
and receive.

The subformula ψ = νZ.[b]∧ [a](Z;Z) expresses “there can be at most one b more than there
are as”. This can be understood best by unfolding the fixed point formula and thus obtaining
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sequences of modalities and variables. It is easy to see that replacing a Z with a [b] reduces the
number of Zs whereas replacing it with the other conjunct adds a new Z to the sequence.

Then, [b]ff ∧ [a]ψ postulates that at the beginning no b is possible and for every n as there
can be at most n bs. Finally, the Y in ϕ allows such sequences to be composed or finished in a
deadlock state.

Example The property of repeating words on every path is expressible in FLC, if there is an
end marker #. The following formula says that every sequence of actions w ending in a # is
followed by another w.

ϕ := # ∨
∧

a∈Σ

ψa

ψa := (µZ.#; tt ∨ ([−];Z ∧ [a]; (µY.# ∨ [−];Y )); [−]); 〈a〉

Each ψa checks for the letter a ∈ Σ: if a occurs before # on a path at position n then there is
an a-action n steps after the later #.

3. Local model checking games for FLC

Model checking games are played by two players, called ∃ and ∀, on a transition system T and
an FLC formula ϕ. Player ∃ tries to establish that a given state s of T satisfies ϕ, whereas ∀
tries to show that s 6|= ϕ.

A play is a (possibly infinite) sequence C0, C1, . . . of configurations, and a configuration is
an element of Conf = S × Sub(ϕ)∗ × Sub(ϕ). It is written s, δ ⊢ ψ where δ is interpreted as a
stack of subformulas with its top on the left. The empty stack is denoted by ǫ. With a stack
δ = ϕ0 . . . ϕk we associate the formula δ := ϕ0; . . . ;ϕk while ǫ is associated with the formula τ .

(∨) :
s, δ ⊢ ϕ0 ∨ ϕ1

s, δ ⊢ ϕi

∃i (∧) :
s, δ ⊢ ϕ0 ∧ ϕ1

s, δ ⊢ ϕi

∀i (FP) :
s, δ ⊢ σZ.ϕ

s, δ ⊢ Z

(VAR) :
s, δ ⊢ Z

s, δ ⊢ ϕ
if fp(Z) = σZ.ϕ (; ) :

s, δ ⊢ ϕ0;ϕ1

s, ϕ1δ ⊢ ϕ0

(TERM) :
s, ψδ ⊢ τ

s, δ ⊢ ψ

(DIAM) :
s, ψδ ⊢ 〈a〉

t, δ ⊢ ψ
∃ s

a
→ t (BOX) :

s, ψδ ⊢ [a]

t, δ ⊢ ψ
∀ s

a
→ t

Figure 1: The model checking game rules.

Each play for s0 of T and ϕ begins with C0 = s0, ǫ ⊢ ϕ. A play proceeds according to the rules
depicted in Figure 1. Some of them require one of the players to choose a subformula or a state.
This is indicated at the right side of a rule. Rules (∨) and (∧) are straightforward. Rules (VAR)
and (FP) are justified by the unfolding characterisations of fixed points: σZ.ϕ ≡ ϕ[σZ.ϕ/Z]. If
a formula ϕ;ψ is encountered then ψ is stored on the stack with rule (; ) to be dealt with later
on while the players try to prove or refute ϕ. Modalities cause either of the players to choose a
successor state. After that rules, (DIAM) and (BOX) pop the top formula from the stack into the
right side of the actual configuration. Rule (TERM) does the same without a choice of one of the
players. The winning conditions are not straight-forward but require another definition.

Definition A variable Z is called stack-increasing in a play C0, C1, . . . if there are infinitely
many configurations Ci0 , Ci1 , . . ., s.t.

• ij < ij+1 for all j ∈ N
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• Cij = sj, δj ⊢ Z for some sj and δj ,

• for all j ∈ N exists γ ∈ tlZ ∪ {ǫ} s.t. δj+1 = γδj , and γ = ǫ iff tlZ = ∅.

Player ∃ wins a play C0, . . . , Cn, . . . iff

1. Cn = s, δ ⊢ q and q ∈ L(s), or

2. Cn = s, ǫ ⊢ τ , or

3. Cn = s, ǫ ⊢ 〈a〉 and there is a t ∈ S, s.t. s
a
→ t, or

4. Cn = s, δ ⊢ [a], and δ = ǫ or ∄t ∈ S, s.t. s
a
→ t, or

5. the play is infinite, and there is a Z ∈ V s.t. Z is the greatest, w.r.t. <ϕ, stack-increasing
variable and fp(Z) = νZ.ψ for some ψ.

Player ∀ wins such a play iff

6. Cn = s, δ ⊢ q and q 6∈ L(s), or

7. Cn = s, δ ⊢ 〈a〉, and ∄t ∈ S, s.t. s
a
→ t, or

8. the play is infinite, and there is a Z ∈ V s.t. Z is the greatest, w.r.t. <ϕ, stack-increasing
variable and fp(Z) = µZ.ψ for some ψ.

A player has a winning strategy, or simply wins the game, for s, δ ⊢ ϕ if she can enforce a
winning play for herself, starting with this configuration.

The following example illustrates the importance of being stack-increasing. Note that in a Lµ

model checking game the winner is determined by the outermost variable that occurs infinitely
often. There, if two variables occur infinitely often then one of them is outer and the inner one’s
defining fixed point formula, say fp(Y ), occurs infinitely often, too. Thus two occurrences of Y
cannot be related to each other in terms of approximants indices. FLC only has this property
for stack-increasing variables.

Example Let ϕ = µY.〈b〉 ∨ 〈a〉νZ.Y ;Z;Y . ad(ϕ) = 1 and sd(ϕ) = 2. Let T be the transition

system consisting of states {s, t} and transitions s
a
→ t and t

b
→ t. s |= ϕ. The game tree for

player ∃ is shown in Figure 2. Since ϕ does not contain any ∧, [a] or [b], player ∀ does not make
any choices and the tree is in fact a single play.

Both Y and Z occur infinitely often in the play. However, neither fp(Y ) nor fp(Z) does. Note
that Z <ϕ Y . Y gets “fulfilled” each time it is replaced by its defining fixed point formula, but
reproduced by Z. On the other hand, Y does not start a new computation of fp(Z) each time it
is reproduced. But Y is not stack-increasing whereas Z is. And Z denotes a greatest fixed point,
therefore player ∃ wins this play.

4. Results on FLC(’s model checking problem)

Theorem (Decidability) FLC’s satisfiability checking problem is undecidable; FLC does not
have the finite model property; its model checking problem is decidable for finite structures [7];
but undecidable for normed deterministic BPA already [4].

Theorem (Expressiveness) On linear structures (infinite words) the class of FLC-definable
languages coincides with the class of alternating context-free grammars (with a parity acceptance
condition) [3].

Theorem (Complexity) FLC’s model checking problem is in EXPTIME and PSPACE-hard
[5], even for a fixed formula [6]. For formulas with fixed alternation (and sequential) depth, the
model checking problem is in PSPACE.

Obviously, the complexity results refer to finite structures only.
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s, ǫ ⊢ µY.〈b〉 ∨ 〈a〉νZ.Y ;Z;Y

s, ǫ ⊢ Y

s, ǫ ⊢ 〈b〉 ∨ 〈a〉νZ.Y ;Z;Y
∃〈a〉νZ.Y ;Z;Y

s, ǫ ⊢ 〈a〉νZ.Y ;Z;Y

s, νZ.Y ;Z;Y ⊢ 〈a〉
∃s

a
→ tt, ǫ ⊢ νZ.Y ;Z;Y

t, ǫ ⊢ Z

t, ǫ ⊢ Y ;Z;Y

t, Z;Y ⊢ Y

t, Z;Y ⊢ 〈b〉 ∨ 〈a〉νZ.Y ;Z;Y
∃〈b〉

t, Z;Y ⊢ 〈b〉
∃t

b
→ tt, Y ⊢ Z

t, Y ⊢ Y ;Z;Y

t, Z;Y ;Y ⊢ Y
...

Figure 2: ∃’s winning play from the example.
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