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Abstract

Non-regular program correctness properties play an important role in
the specification of unbounded buffers, recursive procedures, etc. This
thesis surveys results about the relative expressive power and complexity
of temporal logics which are capable of defining non-regular properties.
In particular, it features Propositional Dynamic Logic of Context-Free
Programs, Fixpoint Logic with Chop, the Modal Iteration Calculus, and
Higher-Order Fixpoint Logic.

Regarding expressive power we consider two classes of structures: ar-
bitrary transition systems as well as finite words as a subclass of the
former. The latter is meant to give an intuitive account of the logics’
expressive powers by relating them to known language classes defined in
terms of grammars or Turing Machines.

Regarding the computational complexity of temporal logics beyond
regularity we focus on their model checking problems since their sat-
isfiability problems are all highly undecidable. Their model checking
complexities range between polynomial time and non-elementary.
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This thesis provides an overview of results regarding the expressive power
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Chapter 1

Introduction

1.1 Temporal Logics in Computer Science

Temporal logics have their origin in philosophy as variants of modal logics
which enable reasoning about necessities and possibilities. Prior devel-
oped Tense Logic — the root of what is nowadays called Temporal Logic
— building on apparent logical connections between necessities and time
[Pri57].

Kripke suggested to use node- and edge-labeled directed graphs —
now known as Kripke structures — to give modal logics a sound semantics
[Kri63]. In computer science, such structures also occur in the operational
semantics of state-based programs.! Hence, modalities can be used to
reason about program behaviour.

This has been observed in the seventies when temporal logics — as
modal logics with some reference to the evolving of time — have been
introduced into computer science. One of the first examples was Propo-
sitional Dynamic Logic (PDL) by Fisher and Ladner who equipped multi-
modal logic with a Kleene algebra of accessibility relations in order to
reason about programs that are formed using non-deterministic choice,
composition and iteration [FL79].

Roughly at the same time Pnueli suggested to use Linear Time Tem-
poral Logic (LTL) for program verification purposes. Kamp’s result about
the equi-expressiveness between LTL and first-order logic on certain in-
finite linear orders [Kam68] made LTL a default candidate. However,
LTL cannot reason about internal non-deterministic choices of programs.
This led to the introduction of branching time temporal logics simi-

"'We will use the term program to denote both hard- and software.



lar to PDL, by Ben-Ari/Manna/Pnueli [BAPMS83], and Clarke/Emerson
[EC82]. Later, Emerson and Halpern tried to unify the linear time and
the branching time approach in the introduction of CTL* which subsumes
both LTL and CTL [EHS86].

At the beginning of the eighties, Kozen developed the modal pi-calculus
(£,,) which simply extends multi-modal logic with extremal fixpoint quan-
tifiers [Koz83]. It subsumes all of the logics mentioned above with uni-
form translations for PDL and CTL. The embedding of CTL* and with
it LTL into £, is exponential and slightly more involved [Dam94].

The main research focus was on the satisfiability problem for these
logics. Not only can several problems about program specifications, for
instance subsumption, be reduced to satisfiability. It is also the case
that the satisfiability problem for these logics have reasonably low com-
plexities compared to predicate logics for instance: PDL and CTL are
EXPTIME-complete [FL79, Pra78, EH85], LTL is PSPACE-complete
[SC85], CTL* is 2-EXPTIME-complete [EJ00, VS85], and the modal
p-calculus is also EXPTIME-complete [EJOO].

1.2 Model Checking

In the early '80s another verification method was introduced by Clarke,
Emerson, Sistla and Queille, Sifakis: model checking [CES83, QS82].
Here, the program to be verified is abstracted into a Kripke structure
and the property to be checked is formalised in a temporal logic. Model
checking is then simply the logical problem of determining whether or
not a given interpretation satisfies a given formula. The computational
complexity of the model checking problem is usually below that of the
satisfiability problem for a given logic: for PDL and CTL it is P-complete
[FL79, EH85], for LTL it remains PSPACE-complete (when using the im-
plicit “for all paths” quantification) [SC85], for CTL* it is also PSPACE-
complete [EL87], and for the modal p-calculus it is P-hard and in UPNco-
UP [Jur9s].

The main model checking techniques that are used these days are
automata-theoretic [Var96, KVWO00], tableau- or game-based [SS98, Cle90],
graph-colouring methods [And94, CS92|, and, lately, symbolic methods
[McM93, CBRZ01].

By now, the phrases temporal logics and model checking have be-
come inseparably linked. Model checking temporal logics has become
the main method for automatic program verification [CGP99], and ver-
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ification tools that implement model checking algorithms have revealed
numerous errors in models of soft- and hardware.

The main threat to model checking as a successful verification method
is the state-space explosion problem. The global state-space of a system
that is composed of several components is exponential in the number
of components. Hence, model checking becomes difficult because of the
sheer size of the input that a model checker usually has to face, and
theoretical tractability results become useless. A lot of research effort has
been put into tackling this problem ranging from various optimisations
to the development of new techniques like abstraction [CC77, DGGIT]
or bounded model checking [CBRZ01] which sacrifice completeness of the
model checking results in favour of smaller inputs.

1.3 Non-Regular Program Correctness
Properties

Another drawback of model checking as it has mainly been developed and
used so far is expressive power. The modal p-calculus is equi-expressive
to the bisimulation-invariant fragment of Monadic Second Order Logic
over trees or arbitrary Kripke structures [JW96]. Therefore, every prop-
erty that is expressible in the modal p-calculus or its fragments mentioned
above can also be checked by a finite Rabin tree automaton. Thus, it is
only a regular property. There are, however, many interesting correctness
properties of programs that are not regular. Examples include uniform
inevitability [Eme87] which states that a certain event occurs globally
at the same time in all possible runs of the system; counting properties
like “at any point in a run of a protocol there have never been more
send- than receive-actions”; formulas saying that an unbounded number
of data does not lose its order during a transmission process; or proper-
ties making structural assertions about their models like being bisimilar
to a linear time model, etc.

Here we aim at forming the theoretical foundations for the verifi-
cation of non-regular properties. We introduce several logics that are
capable of expressing such properties, compare them w.r.t. their expres-
sive powers and the complexities of their model checking problems on
finite structures. Their satisfiability problems will receive less attention
due to undecidability. The same applies to the model checking problem
on infinite structures. Undecidability of the satisfiability problem is also



the cause for the lack of the finite model property for these logics.

It is tempting to say that model checking finite structures only with
formulas that do not have the finite model property is meaningless. This
is not the case though. On a given finite structure logics for regular
properties suffice to describe every possible property. But this is only
the case because a given structure either has the property at hand or
not. Hence, with this argumentation one would consequently have to
propose the boolean logic of two values tt and ff as the ultimatively
sufficient logic for model checking.

Given a class of finite structures it should be clear that regular spec-
ification formalisms do not always suffice to describe any property, for
otherwise the Chomsky hierarchy would collapse to that level. Hence,
model checking non-regular properties of finite transition systems is not
meaningless.

On the other hand, if there is an a priori bound on the sizes of each
considered structure then regular properties do suffice. This is reflected
in the fact that every language L C »* with a maximal word length
below some fixed n is regular. But even if regular specification languages
suffice for some reason, non-regular ones can provide a distinct advantage
over regular ones.

Example 1.1 For two words u und w over some alphabet Y. we write
u = w to indicate that u is a prefix of w. We also use |w|, for some a € ¥
to denote the number of occurrences of the letter a in w.

Let ¥ = {in, out} and consider the language

L = {w|VueX u=w=0<|ulin— |t ouw}

It is not hard to see that L is not a regular language. It is (deterministic)
context-free though. Hence, so is its complement L which is, for example,
generated by the following grammar G.

S — AoutU

A — €|inT A

T — out|inTT
U — €|inU |outU

Suppose in and out are interpreted as respective actions of a buffer.
Then L describes those runs of a buffer that cause an underflow, and L
could be used in linear time model checking to verify the absence of such
underflows and, thus, the partial correctness of a buffer implementation.
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An unlimited buffer is an infinite state-space system. Hence, it prob-
ably cannot be verified against L automatically. Consider therefore
bounded buffers that can contain at most n elements. They clearly give
rise to finite state-space systems, and the non-underflowing runs of a
buffer of size n are described by the languages

Ln = {w|VuEE*,ujw=>0§|U\in—\ufout§n}

These languages are regular for every n € N. It is not hard to see that
they are recognised by deterministic finite automata with n + 2 states.
Note that L, C L for all n € N. Hence, any buffer implementation
that is correct w.r.t. L is also correct w.r.t. the corresponding L,,. This
means that any underflow that is detected using a regular specification
language for some L,, will also be detected using the non-regular specifi-
cation language L. The latter provides two distinct advantages, though.

e Using regular specification formalisms for the detection of buffer
underflows requires knowledge about the exact buffer capacity of
the underlying system and is therefore not suitable for black-box
verification. Using the non-regular property L, however, eliminates
the need for this kind of knowledge.

e The grammar G above for L is fixed and does not depend on the
underlying system. The sizes of the deterministic finite automata
for the languages L, grow linearily in n. In some cases, model
checking with a fixed formula may be easier than model checking
when the formula is part of the input as well. Fixed formulas, for
example, can be provided in libraries, and there may be advantages
regarding complexity and optimisations as well.

1.4 Outline

Chp. 2 starts with the basic definitions of labeled transition systems, a
synonym for Kripke structures and the common class of interpretations
for all temporal logics. We briefly recall the modal pu-calculus for two
reasons. The first is its exposed status among temporal logics for reg-
ular properties, subsuming basically all of them. This makes it a good
yardstick which other logics (of non-regular properties) can be measured
against in terms of their expressive power. Secondly, three of these logics
considered explicitly in later chapters are in fact simple extensions of the
modal p-calculus.



To provide further information about the expressive power of a tem-
poral logic we consider a restricted class of models: finite words, resp.
their usual encoding as linear and finite labeled transition systems. This
allows us to embed new formalisms into the well-known Chomsky hier-
archy for which there is no equivalent framework in terms of arbitrary
transition systems.

Chp. 2 furthermore gives a very brief introduction to the main prin-
ciple of descriptive complexity theory: the data complexity of a logic.
This allows us to compare logics to known complexity classes w.r.t. to
expressiveness. The final sections of this chapter explain in more detail
why we hardly consider a logic’s satisfiability problem here, and why
we take the model-theoretic approach to temporal logics rather than the
proof-theoretic one which characterises logics through sound and com-
plete axiomatisations and their properties.

Chp. 3 is entirely devoted to logics of finite words where the term
“logic” is meant in the broadest possible way as a formal system whose
elements can be interpreted over words. As mentioned above, this is
true for complexity classes with Turing Machines that recognised a word,
but also for formal grammars which generate these words. Generation,
recognition, and satisfaction of course are only different ways of looking
at the same concept.

Chp. 4 introduces the oldest temporal proper logic of non-regular
properties: Propositional Dynamic Logic of Context-Free Programs by
Harel, Pnueli and Stavi [HPS83] — originally called PDL of Non-Regular
Programs. It extends ordinary PDL by employing an infinite set of ac-
cessibility relations that is formed using context-free grammars rather
than a Kleene algebra. It has not received much attention since its in-
troduction which is mainly due to the undecidability of its satisfiability
problem and the focus on satisfiability in early years.

Chp. 5 is about a much younger temporal logic of non-regular prop-
erties: Fizpoint Logic with Chop (FLC) by Miiller-Olm. It extends the
modal p-calculus with a sequential composition operator. Note that for-
mulas of modal logic (with or without fixpoints) look like right-linear
grammars with modal operators as terminal symbols. It is therefore not
surprising that p-calculus-expressible properties are only regular. With
sequential composition it becomes possible to put modal operators be-
hind variables and, hence, to achieve non-regular effects comparable to
context-free grammars.

Chp. 6 contains a different extension of the modal p-calculus: the



Modal Iteration Calculus (MIC) by Dawar, Griadel and Kreutzer. They
simply replace the least and greatest fixpoint operators over monotone
functionals in the p-calculus by inflationary and deflationary fixpoints
over arbitrary functionals. This is inspired by work on fixpoint extensions
of first-order logic. However, the results are different. While first-order
logic with inflationary fixpoints is only as expressive as first-order logic
with least fixpoints [GS86, Kre04], MIC properly extends the expressive
power of the modal p-calculus.

Chp. 7 introduces the most expressive of the logics considered here:
Higher-Order Fizpoint Logic (HFL) by Viswanathan and Viswanathan
[VV04]. It consequently follows the idea used to explain the semantics of
FLC: lifting predicates as needed for the modal p-calculus to predicate
transformers for which sequential composition is easily defined. HFL’s
high expressive power is then obtained by employing higher-order pred-
icate transformers, i.e. functions that take predicate transformers as ar-
guments, etc. Syntactically this simply means that HFL is a hybrid of
the modal p-calculus and the simply typed \-calculus with one ground
type and the function arrow as the only type constructor.

This thesis is meant to provide an overview of the theoretical results
on temporal logics for non-regular properties w.r.t. expressive power and
complexity. It only presents the main theorems on the respective logics
and gives some short explanations about the proof technique used to
obtain this result, its difficulty etc. Detailed proofs are omitted for space
considerations but also in order not to spoil the overview character, and
can be found in the accompanying cited papers. Appendix A contains
a detailed unpublished proof concerning the relationship between MIC
and HFL.

Chp. 8 concludes by summarising the results of the previous chapters
in tabular and graphical form. It also lists questions about these logics
that remain open to date, and suggests further research with respect
to the applicability of temporal logics beyond regularity in automatic
program verification.



Chapter 2

Preliminaries

2.1 Labeled Transition Systems and Finite
Words

All the logics considered here are interpreted over directed, node- and
edge-labeled graphs — called Kripke structures or labeled transition sys-
tems.

Definition 2.1 Let X be a finite alphabet, P be an at most countably
infinite set of atomic propositions. A labeled transition system (LTS) is
atuple 7 = (S, {-= | a € £}, L) where

e S is a set (called states),
e % C S xS for every a € X is a binary relation on states, and

o I : S — 27 is a function that assigns to each state the set of
propositions that hold true in it.

Example 2.1 The graph below depicts a simple LTS with S = {0, 1,2, 3},

.- . 1 test .
and two transition relations —““~ and —* over the singleton set P =

{q} of atomic propositions.



lower

q lower

m
" test |'

This is taken from [ALS07] where such transition systems are created in
order to establish a complexity-theoretic hardness result for the model
checking problem of HFL as introduced in Chp. 7.

Finite words over an alphabet ¥ are usually defined as finite sequences
of elements in . It should be clear that such structures can also be
modeled by labeled transition systems. This approach is preferable here
since it provides a common framework for the logics in the following
chapters.

Definition 2.2 An LTS 7 = (S,{-% | a € ¥}, L) over some set P of
atomic propositions is called a finite word, if

o [S] < oo,
e S can be linearly ordered as {sg,...,s,} s.t.
— forall 2 =0,...,n — 1 there is exactly one transition from s;

and this is s; - s;,1 for some a € ¥,

— there is no s € S with s, s for any a € X,
e P=0and L(s) =0 for all s € S,

We sometimes call sy the starting state of 7.

We will not distinguish formally between the finite word 7 (as a
transition system) and the finite word obtained as the concatenation of
the transition labels between sy and s,,.

Example 2.2 The graph below depicts a transition system representing
the word 1011 over a binary alphabet ¥ = {0, 1}.

Oy



Clearly, finite words according to this definition are just another rep-
resentation of elements of >*. It is sometimes customary to encode finite
words of length n as node-labeled linear transition system over a single
accessibility relation and n states only. There is no major difference be-
tween these two styles, and satisfiability preserving translations exist for
modal logics that switch between these two styles [Tho75]. These work
equally well for the temporal logics presented here. Here we prefer the
encoding as edge-labeled linear structures of length n 4 1 because it sim-
plifies the technicalities in the correspondence results between logics and
grammars slightly. It also avoids tedious case distinctions that would
become necessary in the presence of the empty word e since the state
space of transition systems is usually assumed to be non-empty.

Definition 2.3 A bisimulation between two transition systems 77 =
(S1,{= | ae€ X}, L) and 75 = (S3,{— | a € ¥}, Ly) — not neces-
sarily distinct — over a set P of atomic propositions is a binary relation
B C & x 8 s.t. for all (s,t) € B:

o Li(s) = Ly(t), and

o for all s € S; with s % s’ for some @ € ¥ thereis a t' € S, s.t.
t—>t"and (s',t') € B, and

o for all ¥ € S, with t % ¢ for some a € ¥ there is an s’ € Sy s.t.
s ¢ and (¢',t') € B,

Two states s € §; and t € Sy are bisimilar if there is a bisimulation B
with (s,t) € B, written 7;,s ~ T, 1.

A logic £ that is interpreted over labeled transition systems is called
bisimulation-invariant if no formula distinguishes bisimilar structures,
i.e. if for all closed ¢ € L, all LTS 77,7, with states s,t s.t. 77, s ~ T, t
we have: 71, s | ¢ iff To,t = .1

It has been argued (and is commonly accepted) that bisimulation is
the right notion of behavioural equivalence between models of programs
[Mil89]. It is also the strongest in the family of equivalence relations
that are considered in the literature and that are designed to capture
the notion of equivalence for state-based models of programs [CH93].
We therefore restrict our attention to bisimulation-invariant logics in the
following chapters.

!The satisfaction relation |= obviously depends on the logic at hand. Here we
simply accept that every logic comes with such a relation.
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2.2 Properties of Labeled Transition
Systems

This thesis is about properties — a seemingly vague term that can be
defined precisely though. A property of labeled transition systems is
simply a subset of the set of all labeled transition systems. Equally,
a property of finite words is a set of (encodings of) finite words, i.e. a
language. The question of what makes a property regular or not is then,
as in formal language theory, a question of what devices are capable
of defining the corresponding subset. Such a device may be a finite
automaton, a resource-bounded Turing Machine, a formal grammar, a
formula of a particular logic, etc. The set of all finite words defined by a
finite automaton or Turing Machine is, as usual, simply their language.
The set of structures defined by a logical formula is the set of its models,
etc.

Properties of transition systems or finite words can then be grouped
into classes according to the type of device needed for their definition,
e.g. the class of all regular properties as the class of all sets of finite
words that can be defined by a finite automaton. We will consider three
types of formalisms to define such properties: formal languages, com-
plexity classes, and logics. The former two are very much the same, and
the study of the interdependency between the latter two is known as
descriptive complexity theory, c.f. Sect. 2.5 below.

Let IC:={(7,s) | s is a state of the LTS 7 }. All the logics £ in this
work are equipped with a relation = C K x £ that explains which states
of which transition have the property defined by a closed formula of L.
It is then possible to compare different logics w.r.t. the properties they
can express.

Definition 2.4 Let ¢, be two temporal formulas (not necessarily of
the same logic). They are equivalent, written ¢ = o iff for all labeled
transition systems 7 and all their states s we have 7, s = @ iff 7, s = 1.

We will also use a logic’s name L to denote the class of all languages
(of finite words or transition systems) that can be defined by a formula
of this logic, i.e.

L = {(K,s)eK|3peLl. K,skEp}

This is not a cyclic definition. It merely abuses notation s.t. the right-
hand £ denotes a logic as a syntactical object whereas on the left-hand
side L is a semantical one.

11



Hence, we can write £, C Lo, resp. L1 € Lo to denote that Lo is

(strictly) more expressive than £y. Similarly, £; = L, states that the
logics are equi-expressive.

We will compare different temporal logics w.r.t. their expressive power
on arbitrary labeled transition systems as well as finite words. In the lat-
ter case the above definition of = is simply restricted to all 7 which are
finite words according to Definition 2.2. We will not invent a new nota-
tion for equi-expressiveness etc. on finite words but rather state explicitly
when an expressibility result holds over finite words only.

2.3 The Chomsky Hierarchy

We assume familiarity with the Chomsky hierarchy of formal languages
[Cho62]. REG, CFL, CSL, and RE denote the classes of reqular, context-
free, context-sensitive, and recursively enumerable languages over some
alphabet Y. Furthermore, let DCSL denote the class of deterministic
context-sensitive languages, i.e. those that are recognised by a determin-
istic linear bounded Turing Machine. Finally, let PDA and DPDA be the
classes of languages that can be recognised by a non-deterministic, resp.
deterministic pushdown automaton. For detailed definitions see [HUS0].

Theorem 2.1
REG ¢ DPDA € CFL = PDA ¢ DCSL C CSL € RE.

2.4 The Modal p-Calculus

While the Chomsky hierarchy provides a reasonably good framework for
the categorisation of properties of finite words, there is no comparable
framework for arbitrary transition systems. Instead, we will use Kozen’s
modal p-calculus as a reference point against which to measure other
logics. This is because it captures various other logics, and it is the
counterpart to the class of regular properties of finite words, see Thm. 2.2
below.

Definition 2.5 Let X be a finite alphabet, P be an at most countably
infinite set of propositions and V be a countably infinite set of variable
names. Formulas of the modal pi-calculus (L£,,) in positive normal form
are given by the following grammar.

o = q|q|X|eVeleNp|{a)e|lae|pXe|vXp
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where a € 3, ¢ € P, and X € V.

We usually write G instead of \/ .y (@)@ and Ogp instead of A,y [a]e.
This also applies to other temporal logics with these modal operators de-
fined later on.

Definition 2.6 Let 7 = (S,{-% | a € £}, L) be an LTS. Formulas of £,
are interpreted over 7 in the following way. An environment p : V — 25
is used to interpret free variables.

[q], = {s€S|qeL(s)}
[—q {seS|qéLs)}
[X], = p(X)
[V [0 Ul
[oA [l N7

— {$€5|E|te[[g0]]p7 and s >t}
= {seS|VteS s Hi=te[p]l}

= ﬂ{TQSH[W]]Z[XHT]QT}
= U{T§S|TC[[ ]]XHT}

Here, p[X +— T is the function that maps X to T" and agrees with p on
all other arguments.

= e e e e e e e =

T DY DRI TIIDIIDNDTNTNY

B
>
©

Example 2.3 Using nestings of least (“finitely often”) and greatest fix-
point quantifiers (“infinitely often”) it is possible to reason about infinite
occurrences in various ways.

“There is a path on which p holds everywhere and ¢ holds infinitely
often” is expressed as

vX.puY. (qApAOX)V (pAOY)

and the next formula defines the property “on all paths that satisfy ¢
infinitely often, p holds everywhere.”

vX.((pADX)V pYwZ.OY V(=g ADZ))

Theorem 2.2 [EJ91, JW96, Rab69]

The following are equivalent for a bisimulation-invariant property L of
transition systems.
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a) L is £,-definable.
b) L is definable by a sentence of Monadic Second-Order Logic.

c) L is definable by a Rabin tree automaton.

It is therefore reasonable to call a property regular (upto bisimulation)
iff it is definable in the modal p-calculus. In particular, the following
result is a direct consequence of this. We remark that it also holds for
w-words [BKP86, Var88, BB89|.

Theorem 2.3
On finite words: £, = REG.

2.5 Descriptive Complexity

Definition 2.7 For a function f(n) let DTIME(f(n)), NTIME(f(n)),
DSPACE(f(n)), and NSPACE(f(n)) be the class of languages that can
be recognised by a deterministic, resp. non-deterministic Turing Machine
in time, resp. space f(n). For a class F' of functions, let DTIME(F)

= UfeF DTIME(f).
Let 20 := f(n) and 25:? .= 22" Important complexity classes
mentioned in the following chapters are, for any k£ € N,

KEXPTIME := DTIME({ 22 | p(n) polynomial })
EXPTIME := 1EXPTIME
P := OEXPTIME

PSPACE := DSPACE({ p(n) | p(n) polynomial })

Consider the model checking problem for a logic £. Given a ¢ € L,
and an LTS 7 with starting state s, decide whether or not 7,s | ¢
holds. If 7 is a finite word, this is simply the word problem for a certain
class L of specifications.

The computational complexity of this problem will also be called the
combined complexity of L’s model checking problem or simply of £. The
term “combined” expresses that the input size of this problem is the sum
of the size of the LTS and the size of the formula. This is often too
coarse for theoretical considerations because it hides which part of the
input is a possible cause of the high complexity. It is also a bad measure
for practical purposes.
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Verification via model checking may be embedded in a design cycle
where erroneous models a subject to alterations, redesign, extensions
etc. The correctness properties to be checked, however, often remain
unchanged (unless a mistake in the formula occurs for example). We
will therefore consider two more special model checking problems when
either the LTS or the formula is considered fixed, hence, not part of the
input. We will speak of the data complexity of L as the computational
complexity of its model checking problem for any fixed formula ¢ €
L. This provides a more realistic measure for the usefulness of model
checking for this logic in program verification.

The data complexity also allows us to compare logics over finite words
directly to complexity classes. We say that a logic £ captures a complex-
ity class C, written £ = C, if

e the data complexity of £ is in C, and

e for every language L € C thereisa ¢y € Ls.t. L={(7,s) |7T,s E
v}

Hence, formulas of £ behave exactly like resource-bounded Turing Ma-
chines from C. This opens up possibilities for the transferral of (in-)
expressibility results from complexity classes to logics, c.f. Chp. 6 and 7.

We will speak of the expression complezrity of a logic as the compu-
tational complexity of its model checking problem on any fixed L'TS. For
verification purposes its use may be void. However, it provides insight
into the complexity of the logic itself rather than the complexity of the
interaction between a logic and labeled transition systems.

2.6 Satisfiability and Validity

The second important decision problem for a logic £ besides model check-
ing is its satisfiability problem. Given a ¢ € L decide whether or not
there is an LTS 7 with starting state s s.t. 7,s = ¢. This problem
will receive less attention than the model checking problem in the follow-
ing chapters for a simple reason: it is undecidable for all the temporal
logics of non-regular properties considered here, whereas model checking
remains decidable for all of them on finite transition systems.

Both have simple explanations. Model checking on finite-state sys-
tems is trivially decidable by brute-force methods, i.e. enumeration and
testing of all the (finitely many) semantical objects. This argument has
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been used to establish decidability of the model checking problems for
the logics in Chp. 5 and 7 for example [MO99, VV04].

For satisfiability remember that — on finite words — model checking is
in fact the well-known word or membership problem. Satisfiability then
is the equally well-known non-emptiness problem. This is decidable for
regular languages and, perhaps surprisingly, for non-regular but context-
free languages. However, note that the class of context-free languages is
not closed under intersections. A logic corresponding to that class could
not contain the intersection operator. Hence, it would be impossible to
conjoin program specifications in this logic which would make it useless
for verification purposes. Comparing a logic’s satisfiability problem to
the non-emptiness problem for context-free languages is therefore mean-
ingless. The problem that is more appropriate is the intersection problem
for them: given two context-free languages L, and Ly, decide whether
or not Ly N Ly # () holds. This, however, is known to be undecidable
[GR63]. Hence, we cannot expect to have a sensible but decidable logic
that can express context-free properties.

The same holds of course for the validity problem of a logic since it is
only the complement of its satisfiability problem provided that the logic
is closed under complements. All those considered here are.

2.7 Finitary Axiomatisations and the
Finite Model Property

We first provide a very short introduction to the theory of undecidability.

Definition 2.8 Formulas and terms of First-Order Arithmetic over a set
V: of variables are given by the following grammar.

o = t=t|t<t|eVe|-p|Ing
t = n|z|t+t|t*t
where n € N and = € V.

These formulas are interpreted over the structure of natural numbers
with the usual semantics of equality, less-than, addition and multiplica-
tion. We write nq,...,n, E ¢(x1,...,2,) to indicate that the formula
© is true when its free variables x4, ..., x,, are interpreted by nq, ..., ny,.

Second-Order Arithmetic extends this logic with variables X € V, for
relations between natural numbers and quantification over them.

o n=t=t|t<t|X({t,....t)|eVe|p|Ine|IX.e
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t = nlaz|t+t|txt

where n € N, z € V;, and X € V,. Again, their interpretation is
standard. Second-order variables are interpreted by relations of matching
arity.

A formula ¢(x) with one free variable defines a subset L(y) of the
natural numbers. L(¢) :={n | n = ¢(z)}. Clearly, this can be seen as a
language over the alphabet ¥ = {0, 1} for instance.

Definition 2.9 The arithmetic hierarchy is based upon the class ¥J =
19 of languages defined by a quantifier-free arithmetic formula in the
following way.

0.1 == {L|L=L3x...3x5.¢) for some k € N and ¢ € II)}
I, = {L|L=L(Vay...Vay.1) for some k € N and ¢ € X0}

The analytic hierarchy is based upon the class
o= Uz = Jm = 10
neN neN
using a similar construction with second-order quantification.

Yio o= {L|L=LEX;...3X3.¢) for some k € N and ¢ € 11, }
I, = {L|L=L(VX;...VXy) for some k € N and ¢y € 3}

Theorem 2.4 [Rog67]

For all n € N and all i € {0,1}:
a) E; - ZiL—H: HiL - H;-‘,—la
b) 3, G IL, 4, 1L, & 504

The levels of the arithmetic and the analytic hierarchy represent dif-
ferent grades of undecidability. X is exactly the class of semi-decidable
languages. Consequently, I1{ is the class of co-semi-decidable languages.
Hence, everything that is properly included in 9 or ITj or beyond is not
even semi-decidable.

Theorem 2.5 [Rog67]
>0 = RE.
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These degrees of undecidability may not matter for practical pur-
poses: if a problem is undecidable then it cannot be solved automatically
regardless of how undecidable it is. However, the different degrees of un-
decidability of a logic’s satisfiability problem do matter in the context of
a decidable model checking problem, as we will explain.

Definition 2.10 A logic £ has the finite model property if for all satis-
fiable ¢ € L thereis an LTS 7 = (S,{— | a € £}, L) with an s € S s.t.
|S| < 00 and T, s = ¢.

The following describes a connection between decidability of the model
checking and satisfiability checking problems as well as the finite model

property.

Theorem 2.6

If a logic £ has a decidable model checking problem and the finite model
property then its satisfiability problem is semi-decidable.

This is simply because one can enumerate all possible finite models
and check each of them consecutively using the decidability of the model
checking problem.

The contrapositive of this theorem holds in general for all of the
temporal logics of the following chapters. Their satisfiability problems
are usually provably not semi-decidable. Hence, they cannot have the
finite model property. This is not too surprising since the finite model
property in conjunction with bisimulation-invariance also contradicts the
possibility of expressing non-regular properties.

But non-semi-decidability also entails a result about the axiomatis-
ability of a logic £. A finitary axiomatisation is a finite set of axioms
and rules with finitely many premisses for every conclusion. A proof for
a formula ¢ € L is a finite tree whose root is labeled with ¢, whose leaves
are labeled with axioms and whose internal nodes are instances of the
rules. An axiomatisation is sound if every provable formula is valid. It
is complete if the converse always holds.

Theorem 2.7

If a logic £ has a complete finitary axiomatisation then its validity prob-
lem is semi-decidable.

The proof proceeds very much along the same lines as the argument
above for Thm. 2.6. Note that finite proof trees can also be enumerated
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and checked for being a proof. Completeness ensures that a proof for ¢
will be among the enumerated ones if ¢ is valid.

As said above, the logics considered here have satisfiability and, hence,
validity problems of high degree of undecidability. Hence, in addition to
the lack of finite model property they also do not admit finitary axioma-
tisations.
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Chapter 3

The Space Above
Context-Free Languages

3.1 Closures of Language Classes

Definition 3.1 Let £ be some class of formal languages over some al-
phabet ¥. We consider three types of closures of L.

e The positive Boolean closure BT (L) is the smallest class of lan-
guages that subsumes £ and is closed under finite unions and finite
intersections.

e The Boolean closure B(L) is the smallest class of languages that
subsumes £ and is closed under finite unions, finite intersections,
and complements.

e The star-free closure SF(L) is the smallest class of languages that
subsumes £ and is closed under finite unions, finite intersections,
complements, and compositions of two languages.

Clearly, for any class £ we have
L C BY(L) C B(L) C SF(L)

In many cases, these closures do not increase the underlying class. For
example SF(REG) = REG. The same holds for context-sensitive lan-
guages.

Theorem 3.1 [Imm88; Sze88]
SF(CSL) = CSL.
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Note that such a result does not hold for £ = CFL. A direct conse-
quence of Thm. 3.1 is then the following.

Theorem 3.2
SF(CFL) C CSL.

3.2 Alternating Context-Free Languages

Definition 3.2 Let X be a finite set of action names. A context-free
grammar (CFG) over ¥ is a tuple G = (N, X, S, P) where

e N is a finite set of non-terminals,
e S € N is the designated starting symbol,
e PC N x (NUZX)"is a finite set of productions.

As usual, we write X — w instead of (X,w) € P, and use € to denote
the empty word.

The language of words generated by G is L(G) := {w | w € £* and
S =* w} where = is the extension of — to arbitrary sentential forms:
for all X € N and all u,w,v € (NUX)* let uXv = uwov if X — w.

Most of the logics considered in the following chapters have the ability
to model context-free effects. In addition, they are closed under intersec-
tions. Thus, they cannot coincide with CFL on finite words. Note that
B(CFL) and SF(CFL) only admit a bounded number of intersections to
form a language. However, temporal logics usually have recursion oper-
ators like fixpoint quantifiers that allow properties to be defined using
an unbounded number of intersection operators. This is reflected in the
concept of an alternating grammar in which non-terminals are either ex-
istential — as they are in context-free grammars — or universal. The latter
generate a word if all possible rule applications lead to this word.

Such grammars were studied by Moriya et al. [Mor89, MHHOO05] and
Ibarra et al. [[JW92]. However, their model of universal choice is rather
strange. It commutes with sequential composition which is an existential
construct. As a consequence, the standard construction for the concate-
nation of two grammars only over-approximates the actual concatenation
of their languages.
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Definition 3.3 An alternating context-free grammar according to Moriya
etc. is a tuple G = (N3, Ny, 3, S, P) with N := N3 U Ny and the rest as
above. We usually write productions like A — o1& ... &aqy to indicate
A € Ny.

A deriwvation in G is a tree whose nodes are labeled with sentential
forms over NUX. It is simply explained extending the derivation relation
= in context-free grammars. Each derivation starts with the sentential
form S. An existential nonterminal A € N3 is rewritten in the usual
style: wAv = wxv if A — x. A universal non-terminal A € Ny rewrites
to all possibilities. uAv = uxv,...,uxpv if A — x1& ... &xy. Clearly,
these derivations can be arranged to form a tree.

Such a derivation for a word w is called successful if all paths end in
w.

Here we only consider left-most derivations which are more restrictive
than unconstrained derivations [IJW92, MHHOO05]. We write L(G) for
the set of words that can be leftmost-derived in G, and ACFL} for the
set of languages that can be generated by such a grammar.

Example 3.1 The following example illustrates the strange effect that
the interaction between universal choice and concatenation has in this
model.

Let G; = (N, 2, S;, P;) for i = 1,2 be two context-free grammars.
Then the disjoint union of the two with the additional production S —
S1&S; is an alternating context-free grammar that generates L(G7) N
L(G5). Similarly, their disjoint union with the additional production S —
S19; is an (even non-alternating) context-free grammar that generates
L(G1)L(Ga).

These standard constructions can generate intersections of concate-
nations, but they fail to generate concatenations of intersections.

S — ABA A—ce€la B — ab & ba

This grammar generates the language {aba} even though no word can
be derived from the non-terminal B.

Theorem 3.3
B*(CFL) C ACFL%.

This is because BT (CFL) consists, by the distributive laws for inter-
sections and unions, of intersections of context-free languages only, and
the example above shows how they can be generated.
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It is not hard to search the tree of derivations for a given word w and
a given grammar G recursively using space O(|w|? - log |G]). Hence, the
data complexity of a ACFLY is at most deterministic quadratic space.

Theorem 3.4
ACFL% - DSPACE(O(nQ)).

Alternation in context-free grammars has also been studied by Okhotin
[OkhO1]. He uses the term conjunctive grammars for what is a context-
free grammar with a natural extension to universal choice. A derivation
in such a grammar is a linear sequence of sentential forms over an ex-
tended alphabet. Additional symbols are used to denote parts which
result from a universal branching.

Definition 3.4 A conjunctive grammar is a tuple G = (N3, Ny, %, S, P)
as above. A derivation in G is a finite sequence of sentential forms over
NUXU{(,), &} assuming that neither of the additional symbols occurs
in N UX. It starts in S and continues according to the following rules.

wAv = urv if A€ Ngand A — =z
uwAv = u(x1& .. &xp)v if Ae Nyand A — & ... &y,
w(w& . .. &w)v = uwv

It is successful if it ends in in a terminal string w. Again, L(G) = {w |
S =* w}.

The notion of conjunctive grammar does not easily extend to w-words
since the information about which non-terminal has been generated by
which is lost in their derivations. A third type of alternating context-free
grammar has been introduced in [Lan02a] making up for this deficiency.
Since we are not particularly concerned with w-words we only mention
this as a motivation for yet another type of alternating context-free gram-
mar. Derivations in this third formalism are trees. It is therefore easy to
explain what a derivation of an w-word is — using a parity condition on
non-terminals for instance.

Definition 3.5 An alternating context-free grammar is tuple G = (N,
Ny, %, S, P) with N := N3 U Ny the set of non-terminals and the rest as
usual.

A deriwation for a word w € ¥* in G is a tree whose nodes are
labeled with subwords of w and sentential forms occurring in G. The
root is labeled with (w,.S), and the tree is built top-down according to
the following rules.
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e If a node is labeled (v, X) for some X € N3 then there is a unique
son labeled (v, u) for some u s.t. X — u € P.

e If a node is labeled (v, X) for some X € Ny then for every X —
u € P there is a son labeled (v, u). Furthermore, every son of this
node is of this kind.

e If a node is labeled (v, uz) with u,z € (NUX)" then there are two
sons labeled (vy,u) and (v, 2) s.t. v = vivs.

A derivation is successful if every leaf is of the form (a, a) for some a € .
Let L(G) be the set of words for which there is a successful derivation in
G. We write ACFL to denote the class of languages that can be generated
by an alternating context-free grammar.

Two reasonably straight-forward inductions — on the height of deriva-
tion trees in alternating context-free grammars and on the length of a
derivation in a conjunctive grammar — show that not only are the classes
of languages generated by these two formalisms the same. A grammar
even generates the same language when regarded as a conjunctive or an
alternating context-free one. We will therefore not distinguish between
these two formalisms anymore and write ACFL for the class of languages
that are generated by either of these grammars.

Clearly, ACFL subsumes CFL. Also, the intersection of two languages
can easily be modeled using universal choice. This leads to the following
result.

Theorem 3.5 [Okh01, Wot73]
B*(CFL) C ACFL.

The strictness of this inclusion is witnessed by the language {wcw |
w € {a,b}*}. Tt can be generated by a conjunctive grammar, i.e. it is
alternating context-free [OkhO1]. On the other hand it was shown that
it cannot be represented as the intersection of finitely many context-free
languages [Wot73].

Another extension of context-free grammars are so-called Boolean
grammars [Okh03a]. In addition to the universal choices from alter-
nating context-free grammars they also contain negation operators that
allow to specify what a non-terminal does not generate. It should be
clear that this imposes additional problems in explaining what the lan-
guage generated by such a grammar is. For details we refer to [Okh04]
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and [KNRO6]. Here we simple accept it as an extension of context-free
grammars.

We use the term BCFL to denote the class of languages that are
generated by boolean grammars — the boolean context-free languages.
The following is immediate even from the short description of boolean
grammars.

Theorem 3.6
SF(CFL) U ACFL C BCFL.

A straight-forward extension of the well-known Cocke-Younger-Kasami
algorithm for membership in a context-free language [You67] yields an
upper bound on BCFL and, hence, ACFL: every boolean / alternating
context-free language can be recognised in deterministic quadratic space.
This is because only a table of size O(n?) needs to be filled when n is the
length of the input word.

However, a better algorithm for the word problem (with a fixed gram-
mar) of boolean grammars runs in deterministic linear space [Okh04].
Hence, every boolean context-free language is also a deterministic context-
sensitive one.

Theorem 3.7 [Okh04]
BCFL C DSPACE(O(n)).

It is not known whether or not this inclusion is strict.

Another obvious choice for the extension of context-free languages
with alternation is the correspondence between CFL and PDA. An alter-
nating push-down automaton [LLS84] has, in addition to non-deterministic
choice, universal choices as well. In a configuration with a universal state
it recognises a word if all possible successor configurations lead to accept-
ing configurations. Let APDA denote that class of languages that are
recognisable be such an automaton. Clearly, APDA contains PDA, and
this inclusion is strict since PDA is not closed under intersections which
APDA trivially is.

Theorem 3.8 [LLS84, CKS81]
APDA = DTIME(2°().

It is tempting to assume that alternating pushdown automata recog-
nise exactly those languages that are generated by alternating context-
free grammars — lifting the well-known correspondence between these
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grammars and automata from the non-deterministic model to the alter-
nating one. This is not true even though there is a published claim about
this by Moriya [Mor89]. In fact, both directions fail in the general case.

e In the languages generated by alternating context-free grammars
not every word has a left-most derivation which is a crucial ingre-
dient for the proof of the simulation of context-free grammars by
pushdown automata.

e [t is too naive to simply adapt the standard translation from a
push-down automaton to a context-free grammar for the alternat-
ing case. Remember that the grammar’s non-terminals are triples
of states, stack symbols and states. The second state is used by
the grammar to “guess” which state the automaton will be in after
removing the currently pushed symbol onto the stack. This fails for
an alternating push-down automaton due to universal branching.
There is no unique such state but different branches can have led
to different states once this symbol is popped.

The first problem can be avoided by only considering left-most deriva-
tions as done above in the case of ACFL}Y for instance. In order to
overcome the second problem, Ibarra et. al [[JW92] define so called
linear-erasing alternating context-free grammars and show that they gen-
erate exactly those languages that are recognisable in deterministic time
20(") which coincides with APDA according to Thm. 3.8.

3.3 A General Inexpressivity Theorem

Definition 3.6 Let G = (N, X%, S, P) € G be a formal grammar. W.l.o.g.
we can assume N = {A;,..., A,} for some n € Nand ¥ = {ay,...,a,}
for some m € N. Note that every such grammar is uniquely determined
by the list P of its productions. We introduce the convention that the
first non-terminal listed in P is the starting symbol, and that every non-
terminal listed on the right-hand side of a production but not anywhere
on the left-hand side generates the empty language. This can be modeled
by A — aA for example.

It should be clear that every such grammar G can be represented as
a word G over the alphabet ¥g := {A,a,—,|,&,;,(,),0,1}.

We call a class G of formal grammars auto-presentable if LY =

present 7

{G | G € G} is itself a language that can be defined by a grammar G € G.
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We will write L(G) for the class of languages that is generated by
grammars from G.

Note that all classes of grammars from REG up to BCFL are all
auto-presentable. In fact, even LPTIT, € REG. The classes of context-
sensitive grammars are also auto-presentable since string length compar-

ison can be done in linear space.

Definition 3.7 Let G be a class of auto-presentable grammars and ng g =

{G|GeGand G ¢&L(G)} be the set of all all representations of such
grammars that do not generate themselves.

Note that Lgmg is neither the empty language nor the universal lan-
guage for any G that contains grammars for the empty and the universal
language.

Theorem 3.9
Let G be any class of auto-presentable grammars, and C be a complexity
class s.t.

1. the combined model checking problem for G is in C, and

2. co—C is closed under compositions and closed under intersections
with L(G), and

3. the pairing mapping f(w) = (w,w) is computable in co—C.
Then co—C Z L(G).

PROOF Let G be fixed. We need to present a language in co—C that is
not included in L(G). Such a language is Lgiag'

First of all observe that by assumption (1) the set {(G,w) | w €
L(G)}isinC. By (2) co—C is closed under intersection with any language

from L(G), in particular LY....;. So we have {(G,w) | w ¢ L(G)} €
co—C. By (2) and (3) we also have Lgmg € co—C.
On the other hand, suppose that Lgiag € L(G). Then there is a

formal grammar G gy € G s.t. ) L(G giag). Now consider its word

diag

—~—

representation G 4,4 We have

Gaiag € LSy, i Guiag @ L(Gaig) iff Gaiag & LY

diag diag

which is obviously a contradiction. n
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Note that if C is a deterministic complexity class we have co—C = C.
Also, the combined model checking complexity of a specification formal-
ism is an upper bound on its data complexity. In that case the conclusion
of Thm. 3.9 is equivalent to L(G) C C.

Unfortunately, the currently best known upper bounds on the com-
bined model checking complexity of various formal grammars are too high
to yield separation results that are stronger than those we get out of the
space hierarchy theorem. For example, the best known upper bound on
the combined complexity of ACFL is DSPACE(O(n?)). Hence, we get
ACFL ¢ DSPACE(O(n?)), while the space hierarchy theorem already
yields ACFL C DSPACE(f(n)) for any space-constructible function f
s.t. n=o(f(n)).

As mentioned above, the combined complexity for ACFLY is deter-
ministic space O(n? logn), thus we have ACFLY C DSPACE(O(n?logn))

Im =

which is also a consequence of the space hierarchy theorem.
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Chapter 4

Propositional Dynamic Logic
of Context-Free Programs

4.1 Syntax and Semantics

Definition 4.1 Let X be a finite set of action names, P be an at most
countably infinite set of atomic propositions. Formulas of Propositional
Dynamic Logic of Context-Free Programs over Y and P are given by the
following grammar.

p u= qleVe|e|(Gy
where ¢ € P, and G = (N, 3, S, P) is a context-free grammar over X.
We will use the standard abbreviations ¢ A1) := = (=@ V =), [Gle =
—(G)—p, tt := q V —q for some g € P, and £f := —tt.

Definition 4.2 Let 7 = (S,{-* | a € ¥}, L) be an LTS. The transition
relations - C § x § extend to finite words and languages over ¥ in a
straight-forward way. For all s,t € S, all a € ¥, all w € ¥*, and all
L C ¥* we define

st iff s=t
s st iff JuesS, st. suand u—>1t
st iff Jw € L, s.t. s—5t

Given such an LTS and a PDL[CFG] formula ¢ we explain its satisfaction
in 7 inductively.

T,sFq it g€ L(s)
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T,sEpVy iff T,sEporT,skEo
T.sE—p M T,sho
T,s = (GQ)p iff  3ted, st s and T,tE

Example 4.1

Consider the context-free grammar G over the alphabet ¥ = {a, b} given
by the production rule

S — b|aSS

Note that L(G) = {w | Vu,v € ¥* : w = uwv = |u|, < |ulp}. This is
easily seen to be a non-regular language. Moreover, L(G) describes the
undesired runs of a buffer if, for example, b = out and a = in. Hence, the
PDL[CFG] formula [G]£f specifies that on all paths in a transition system
the number of b-transitions never exceeds the number of a-transitions,

cf. Ex. 1.1.

Example 4.2

Consider the language L = {ww | w € ¥}. This is non-regular, not even
context-free. However, it is known that its complement L is context-free.
Let ¥ = {a, b} for example. Then L is generated by the grammar G with
production rules

S — T.T, | TyT,
T, — a|UTU
T, — b|ULU
U — alb

Consequently, the PDL|CFG] formula [G]ff asserts that all runs of an
LTS are of the form ww. .. for some w € ¥+,

4.2 Expressive Power

Definition 4.3 A right-linear grammar is a CFG G = (N, %, S, P) s.t.
for all (X, w) € P: w e *(N U {e}).

Propositional Dynamic Logic (PDL) is obtained from PDL[CFG]| by
restricting the use of context-free grammars G in a modal operator (G)
to right-linear grammars only.
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Note that usually the modal operators in PDL are parametrised by
regular expressions over Y. The form using right-linear grammars is
clearly equi-expressive. But notice that it may not be equi-succinct be-
cause of possible exponential blow-ups occurring in the translations from
regular expressions to right-linear grammars via nondeterministic finite
automata and back — depending on how their sizes are measured.

It is well-known that PDL is a strict fragment of the modal p-calculus.
In fact, there is a very simple and uniform translation of PDL into £,
[Koz83|. The resulting formulas are even alternation-free.

Theorem 4.1
PDL C PDLICFG].

The inclusion holds trivially. The fact that it is strict is witnessed
for instance by the formula ¢ := (G)tt where G generates the context-
free language {a™0™ | n € N}. It is a simple exercise to show that this
property cannot even be expressed by a finite Biichi tree automaton.

Theorem 4.2
On finite words: B(CFL) C PDL[CFG] C SF(CFL).

The first “C” is straight-forward. On finite words, a context-free lan-
guage L is expressed as (G)tt where L(G) = L. Furthermore, PDL[CFG]
has all boolean operators.

The second “C” is easily shown by induction on the formula structure.
Note that on finite words (G)¢ corresponds to left-concatenation with the
context-free language L(G). However, SF(CFL) allows left-concatenation
with arbitrary languages from SF(CFL). Hence, this inclusion is likely
to be strict.

4.3 Complexity Results

Clearly, PDL|CFG] is much more expressive than PDL. This increase is,
however, not reflected in the complexity of its model checking problem.

Theorem 4.3 [Lan05]

The model checking problem (combined complexity) for PDL[CFG] is
P-complete.
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Note that the model checking problem for mono-modal logic K is
already P-hard. Inclusion in P is a consequence of the fact that the ex-

tended transition relations LG)>, where G is a context-free grammar,
can be computed in a simple fixpoint iteration. This only needs polyno-
mial time and can be embedded in a model checking procedure for multi-
modal logic K. The resulting algorithm has worst-case running time of
O(m? - n®) where n is the number of states of the underlying transition
system and m is the size of the formula.

Theorem 4.4

The model checking problem on finite words (combined complexity) for
PDLICFG] is P-complete.

This low complexity bound becomes less surprising if one considers
the apparent relationship between PDL[CFG]’s model checking problem
and the word problem for context-free grammars. Remember that the
latter can be solved in time O(m - n) where m is the size of a grammar
and n is the size of the underlying word [You67].

This relationship breaks apart when considering PDL|CFG]’s satis-
fiability problem. Note that deciding satisfiability of a formula of the
form (G)tt is equivalent to checking L(G) for emptiness which is decid-
able. However, PDL[CFG] also features conjunctions in the formula, and
remember that the intersection problem for two context-free languages
is undecidable [GR63]. It is therefore not surprising that the satisfiabil-
ity problem for PDL[CFG] is also undecidable. Maybe surprising is its
degree of undecidability — it is not even in the arithmetic hierarchy.

The upper bound is trivially inherited from Thm. 4.3. The lower
bound is a consequence of Thm. 4.2 and the fact that the word problem
for context-free languages is P-hard.

Theorem 4.5 [HPS83]
The satisfiability problem for PDL[CFG] is ¥}-complete.
Definition 4.4 Let G be a context-free grammar. With PDL[G] we

denote the fragment of PDL[CFG] in which every occurring context-free
grammar is either G itself or right-linear.

For better readability we will use symbolic names, e.g. PDL[a"b"]
denotes PDL[G] for some context-free grammar G that generates the
well-known non-regular language {a™" | n € N}. Harel, Pnueli and
Stavi showed that the satisfiability problem for PDL[a"b"] is already X}-
complete.
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Chapter 5

Fixpoint Logic with Chop

5.1 Syntax and Semantics

Definition 5.1 Let ¥ = {a,b,...} be a finite set of action names, P =
{p,q,...} be an at most countably infinite set of atomic propositions
and V = {X,Y,...} be a countably infinite set variables. Formulas of
Fizpoint Logic with Chop (FLC) in positive normal form over ¥ and P
are given by the following grammar.

o = q|qleVelenel{a)]la|pe|T] X |uXpo|vXep

where a € 3, g € P, and X € V.

We use the usual abbreviations tt := ¢V —q and ff := ¢ A —¢q for some
q € P,as well as ¢ :=\/ (a) and O := A __yla] etc. We even allow
restricted implications of the form ¢ — ¢ as an abbreviation for =q V .

Definition 5.2 Let 7 = (S,{-*= | a € ¥}, L) be an LTS. In order to
give the sequential composition operator a natural meaning, the seman-
tics of an FLC formula is a predicate transformer of type 25 — 25 rather
than a predicate of type 2° as in the case of the modal p-calculus.

Let 25 — ., 2° be the set of monotone (w.r.t. C) functions of type
25 — 25 This set, together with the partial order C defined by

fCyg it VI'CS:f(T)Cg(T)
forms a complete lattice with joins LI and meets . Note that this lattice

includes all constant functions and is closed under function composition
o. According to the Knaster-Tarski-Theorem [Tar55], least and greatest
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fixpoints of monotone (w.r.t. C) functionals of type (25 — 25) — (25 —
25) exist in this lattice.

These closure properties are used to explain the semantics of FLC
over 7. It is done inductively using environments p : V — (25 —mon 23)
that interpret free variables in a formula. With p|X — f] we denote the
function that maps X to f and behaves like p on all other arguments.

[ A{seS|qe L(s)}

[-q], = A{seS|qg¢&L(s)}
[evell = [elZ ulvl]
[ong]] = lel; N[y}

=

—
s

N

M {seS|FHteSst. s——tandteT}

[l N {seS|VteS:s"timpliest € T}
[o59 [¢17 o lv 17

[7], = N[.T

[X], = p(X)
[1X01] = [ {f 2% —mon 25 | [Ty E £}

1= B —— N R S I e

T DY ODTNRINRTIYDIIDINTIRIDINTI™TNY

= I_l{f : 28 7 mon 28 | f C [I:()OHZ—[X’—?f]}

We then define T, s |=, ¢ if s € [¢]7(S).

This induces two different equivalences in FLC. Two formulas ¢
and 1 are strongly equivalent, written ¢ = 1, if for all 7 and all p:
[[‘P]]Z = [[w]]g. Thus, being strongly equivalent means expressing the
same property in terms of predicate transformers.

Two formulas ¢ and ¢ are weakly equivalent, written ¢ = 1, if for
all 7, all states s and all p: 7,s |=, ¢ iff 7,5 =, ¢. Thus, weakly

equivalent formulas always define the same set of states in an LTS.

It should be clear that strong equivalence is really stronger than weak
equivalence: ¢ = ¢ implies ¢ ~ 1. The converse does not hold. For
example, (a) =~ (a);tt but (a) Z (a); tt.

Note that strong equivalence is the natural notion whereas weak
equivalence is the important one for program verification. Two FLC
specifications should be regarded as equivalent if the corresponding for-
mulas are weakly equivalent, i.e. if they are satisfied by exactly the same
models. Furthermore, FLC is closed under complementation w.r.t. weak
equivalence but not w.r.t. strong equivalence [Lan06a).
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Example 5.1

Using modal operators “behind” variables it is possible to achieve context-
free effects. For example,

ap = pX.([a] AC); ([0] AO)V ([a] AC); X5 ([0] A O)

says that all paths start with a prefix of the form a™b™ for some n >
1. Using conjunctions it becomes possible to define context-sensitive
properties. Let ¢, := uY.([c] A O) V ([¢] A C); Y.

Y = wa,b;wcA¢a;¢b,c

says that all paths start with a prefix of the form a"b"c" for some n > 1.

Example 5.2

It is well-known that the property “on all paths eventually ¢ holds” is
regular, it is for instance expressed by the CTL formula EFg expresses.
In predicate logic this is of the form “V paths 3 moment ...”. If the
quantifications are swapped (“J moment V paths ...) then this property
— called uniform inevitability — is not regular anymore [Eme87]. However,
it is expressed by the simple FLC formula

¢ = (pX.7VX;0)q

Some guidance in reading and understanding such formulas is provided
by a game-theoretic characterisation of FLC’s model checking problem
[Lan02b, Lan06a].

Example 5.3 [LS02]

The following formula shows that FLC is capable of doing unlimited
counting.
¢ = vX.[b];ff Ala); (VY] A[a]; YY) X

says that along any path the number of b-actions never exceeds the num-
ber of a-actions, c.f. Ex. 1.1 and 4.1.

Example 5.4

Consider the well-known context-sensitive (and non-context-free) lan-
guage {ww | w € ¥*}. Its complement is context-free though. It is
therefore not surprising that the property “all paths begin with a prefix
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of the form ww for some w € X7 is FLC-definable. Note that this would
be trivial if w € ¥* was allowed.

p = N (WXldAD:X;0); (WX o) AD;X;0) ;£
a,beX a#b

Compare this to a grammar for the context-free language {£"aX"3X™pE™ |
n,m € N} which is exactly the aforementioned complement language.

Example 5.5

Given two non-deterministic, finite automata A and B over the alphabet
Y = {a,b}. Let Q4, Qp be their resp. sets of states, s4 and sp the
starting and F4 and Fpg the final states. Consider the transition system
T4 that consists of the disjunct union of A and B as graphs plus a new
state s with transitions s % s, and s - sp. Furthermore, the labeling
on the states is as follows.

L(s) = 0

L(qg) = {e} if g€ Qa\ Fa
L(q) = {e f} if g€ Fy
L(g) = {u, f} if g€ Qp\ Fp
L(qg) = {u} if g € Fp

The goal is to show that FLC can express language (non-)inclusion be-
tween nondeterministic finite automata. l.e. the aim is to construct a
formula ¢ s.t.

Taps = it L(A) € L(B)

Note that L(A) € L(B) iff there is a path emerging from s with labeling
aw for some w € ¥* that ends in a state labeled f, s.t. all paths with
labeling bw end in such a state, too.

We define auxiliary formulas 1, := (e — (a)) A (v — [a]) and equally
1, with b instead of a. Then the desired formula is

p = (uX.((a) A(B) vV Xivha V Xit )i f

Again, for a some guidelines about how to read and understand FLC
formulas with refer to its game-theory [Lan02b, Lan06a].
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5.2 Expressive Power

Theorem 5.1 [MO99]
£, C FLC.

The inclusion is shown by a simple uniform translation. The fact that
there are non-regular and FLC-definable properties is also easy to see,
c.f. the examples above.

As in the case of the modal p-calculus one can consider fragments of
FLC of bounded alternation depth.

Definition 5.3 Let ¢ € FLC. Take two variables X, Y in ¢ and assume
they are bound by 0 X.¢) and ¢'Y.¢)'. We write X <, Y if there is a free
occurrence of Y in 0 X.1), and use <, to denote the transitive closure of
<

The alternation depth of an FLC formula ¢, ad(y) is the number n
in a maximally long chain of variables

Xo <o X1 <y ... <o X,

s.t. forall i = 0,...,n —1: X; and X;,; are not of the same fixpoint

type.
Let FLCF := {¢ € FLC | ad(y) < k}. Clearly, FLC = |,y FLC*.

As mentioned earlier, we will also use FLC* semantically to denote
the class of languages of FLCF formulas.

Theorem 5.2 [Lan06a]
For all k € N: FLC* C FLCkFL,

The proof of this result proceeds along the lines of Arnold’s argument
showing that the alternation hierarchy in £, is strict over the class of
binary trees [Arn99]. It develops a game-theoretic characterisation of
FLC’s model checking problem and reveal hard formulas for every level
of the alternation hierarchy. These express the existence of a winning
strategy for one of the player and are, not surprisingly, extensions of the
Walukiewicz formulas that do this for the modal u-calculus. It then uses
Banach’s fixpoint theorem in a diagonalisation argument to show that
these formulas cannot be expressed with less alternation.
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Definition 5.4 An FLC formula is disjunctive if it can be derived in the
following restricted grammar.

P! i= (@) [PVt et T X | uXef

where a € ¥ and ¢ € P. Similarly, conjunctive formulas are exactly
those that can be derived in the following one.

" = a] [ A % [ T X | v X.pf
Formulas of Heterogenous FLC' (HFLC) over ¥ and P are given by the
following grammar.

¢ = qloVeloAp|ehel e

where g € P, and ¢?, resp. ¢°, is a closed and disjunctive, resp. conjunc-
tive formula.

Theorem 5.3
HFLC C FLCO.

The inclusion is not hard to see. Note that u-quantifiers can only
occur in disjunctive parts, and v-quantifiers can only occur in conjunctive
parts. However, these parts have to be closed when put together in an
HFLC formula. Hence, the result is always alternation-free.

The strictness of this inclusion becomes apparent when considering
the next result. For instance, HFLC is not capable of expressing the
(even regular) property “on all paths eventually ¢”.

Theorem 5.4 [LS06]
HFLC = PDL|CFG].

The direction “2” is not difficult. Every modal operator (G) for a
context-free grammar G can be translated straight-forwardly into a dis-
junctive formula ¢ whose semantics coincides with the relation L@,
Consequently, every [G] can be translated into a conjunctive part. The
rest of the translation is uniform.

For the direction “C” one needs to observe that every disjunctive or
conjunctive formula can be put into a normal form in which no boolean

operator occurs under a sequential composition. It is then easy to extract
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context-free grammars from these normal forms that reverse the above
translation.

Finally, we consider FLC’s expressive power on finite words. We in-
troduce the fragment LFLC which results from FLC by removing the
operator [a] from the syntax. Hence, LFLC is only capable of expressing
the existence of certain paths. On finite words, this does not necessarily
look like a restriction but it is indeed because the proof of complementa-
tion closure of FLC (on arbitrary structures) relies on the duality between
(a) and [a]. Clearly, we have LFLC C FLC on arbitrary structures, in
particular on finite words.

It is also not hard to see that every context-free language is LFLC-
definable. In fact, every context-free grammar gives rise to an LFLC
formula using a single simultaneous least fixpoint quantifier. This inclu-
sion is proper because of the non-closure of CSL under intersections.

Theorem 5.5 [MO99]
On finite words: CFL C LFLC.

Note that LFLC-definable properties are closed under union, inter-
section, and composition. Hence, LFLC is as least as expressive as the
boolean closure of the context-free languages. Since the conjunction op-
erator can occur inside of fixpoint formulas, LFLC can define languages
using an unbounded number of intersections.

Theorem 5.6 [Lan02a]
On finite words: LFLC = ACFL.

We note that this result also extends to w-words. The theory of w-
context-free languages has been introduced by Cohen and Gold [CGT77].
There, a context-free grammar generates an w-word as the limit of a
derivation. Successful derivations are defined using a Muller condition
on the occurrences of non-terminals in these infinite derivations. If this
is extended to derivation trees in alternating context-free grammars as
in [Lan02a] then it is not hard to see that these Muller conditions can be
simulated by parity conditions using latest appearance records [DJWIT].

5.3 Complexity Results

A direct consequence of Thm. 5.4 is the fact that FLC’s satisfiability
problem is highly undecidable. Note that this holds for the tiny fragment

39



HFLC already. Furthermore, the complexity results on PDL[CFG]’s
model checking problem from Thm. 4.3 carry over to HFLC through
the linear translations in Thm. 5.4 as well.

Theorem 5.7 [LS06]
The satisfiability problem for FLC is ¥{-hard.

Theorem 5.8 [LS06]

The combined complexity of the model checking problem for HFLC is
P-complete.

It was observed by Miiller-Olm that the model checking problem for
full FLC is decidable on finite transition systems. He also showed a
lower bound of PSPACE for its data complexity [MO99, LS02]. This is

not optimal though.

Theorem 5.9 [LS02, Lan06b]

The model checking problem (combined complexity) for FLC is EXP-
TIME-complete.

In fact, the lower bound already holds for certain fixed and non-
alternating formulas (but clearly not any in HFLC).

Theorem 5.10 [Lan06b, ALS07]

The model checking problem (data complexity) for FLC is EXPTIME-
complete.

The currently known best upper bound on the expression complexity
is EXPTIME which is trivially inherited from the upper bound for the
combined complexity. [Lan06b] states wrongly that UPNco-UP is a bet-
ter upper bound, but this relies on the characterisation of FLC’s model
checking problem as parity games [LS02] which is not correct either.

Theorem 5.11 [Lan02a, Okh03b]

The model checking problem on finite words (combined complexity) for
FLC is P-complete.

The lower bound is inherited from PDL[CFG], i.e. the word problem
for context-free languages. The upper bound is obtained by extending the
well-known CYK-algorithm [You67] for the word problem in context-free
grammars to alternating context-free grammars.

40



Chapter 6

The Modal Iteration Calculus

6.1 Inflationary Fixpoint Iterations

Definition 6.1 Let (V, <) be a complete lattice with infimum L and
joins LI, and f : V — V not necessarily monotone. The inflationary
fizpoint of f is defined for as ifpf :=| |, f®, where for all ordinals a:

o= L, T = Uy, o= L] e

a<k

with x being a limit ordinal.

Note that the approximations trivially form an ascending chain of

lattice elements.

TR L
This chain is bound to become stationary at some ordinal level — namely
at the inflationary fixpoint of f.

The Békic principle states that simultaneous fixpoint operators over
monotone functions have the same expressive power as parametric ones.
Let (V, <) be a lattice and consider a function F': VxV — V xV defined
as F(z,y) = (fi(z,y), fa(z,y)). Suppose both f; and f, are monotone
in each of their arguments. According to the Knaster-Tarski-Theorem
[Tarbb], F' has a least fixpoint (z*,y*). The Béki¢ principle [Bék84] now
reads as

*

vt = px.fi(ryt) = pxfi(r, py.fo(z,y))

and similarly for y*.
The proof of each direction relies on the monotonicity of f; and f.
In the setting of inflationary fixpoints, monotonicity is not a prerequisite
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anymore. Hence, it is not surprising that such an equation does not hold
for inflationary fixpoints. In general, both directions fail.

Note that the modal p-calculus only features parametrised fixpoint
operators in its ordinary form. Most of its implementations work with
simultaneous ones instead, since they allow shorter representations of
formulas. This is valid because of the Békic principle. A logic featuring
inflationary fixpoint operators would either have to allow simultaneous
ones straight away or sacrifice some of its potential in expressive power.

6.2 Syntax and Semantics

Definition 6.2 Let X be a finite set of action names, P an at most
countably infinite set of atomic propositions, and V be a countably in-
finite set of variables. Formulas of the Modal Iteration Calculus (MIC)
are given by the following grammar.

o = q|X|peVe|-p|(a)e|ifp,(X,.... X).(¢1,-- . ¢n)

where n > 1,1 < i <n,q € P,a € X and X, X; € V. Again, we
use the usual abbreviations for tt, ff, ¢ A 1, [a]e, etc. We also write
ifpX.p instead of ifp,(X1).(¢1), and sometimes use a vertical rather
than horizontal notation for the systems of equations between variables
and formulas.

The fragment 1MIC is obtained from MIC by restricting the use of
inflationary fixpoint operators to n = 1.

Definition 6.3 Let 7 = (S,{-% | a € ¥}, L) be an LTS. The semantics
of a MIC formula is defined inductively using environments p : V — 25,

[

q], = {s€S|qeL(s)}
[o Vi

©

@

= [el; VIv];

S\[el7
= {se8§|FHeSst. sHtandte [[90]]3}

[-
[{a

TROTOT YO

e e e =

For the remaining case of ifpi)?.gﬁ assume X = (X;,...,X,) and @ =
(P15, n). Let fj == X1 ... AT, [ @; ]]Z: for every j = 1,...,n where
pli=pXy—T,..., X, — T,]. Furthermore, let

Fg:=AT1 .. XL, (fi(Th, .. T), s ful(Ths 2 T))
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Then we define
[[ifpiX.gB]]Z— = m(ifp Fp)

where m;(T1,...,T,) = T; projects a tuple onto its i-th component.

Example 6.1 [DGKO04b]

The non-regular but context-free language {a"0™ | n < m} on finite
words of the form a*b* is defined by the following MIC formula.

¢ = ifpX.(a AY(X))V (bADOX)
W(X) = ifpY.0(bA=X)VO(aAXAY)

Here we assume that each state is labeled with either {a} or {b}. Note
that this, as well as the fact that models are linear (upto bisimulation)
are expressible in £, already.

In order to see that the above formula expresses the desired property
one either computes the inflationary fixpoints by hand. Alternatively, one
can consult the game-theoretic characterisation of MIC’s model checking
problem via backtracking games [DGKO04a).

Example 6.2

Uniform inevitability — as mentioned in Example 5.2 — is also MIC-
definable.

. X1 . Q\/(Ott/\DXl/\D—!XQ)

el x, . ox,

expresses that ¢ holds on all paths eventually — at the same moment.

Example 6.3

Another important non-regular property (of trees) is that of being bisim-
ilar to a (possibly infinite) word. As said before, bisimilar models are
usually considered equivalent w.r.t. the program behaviour that they
model. Furthermore, model checking on words is often easier than on
general trees or transition systems. Hence, replacing the tree model of a
program with a word model might speed up verification tasks.

Note that a tree is bisimilar to a word iff it is balanced and within
any level of the tree all nodes carry the same label. Due to our definition
of (finite) words we interpret this as “for all nodes on level n there is a
unique alphabet symbol a s.t. nodes on level n+ 1 are only reachable via
—% transitions.”
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It is easier to consider the complement of this. A tree is not bisimilar
to a word iff it is either unbalanced or there are two nodes on the same
level with outgoing transitions of different kinds.

. X . OXAO-Y
Yo = Py

is satisfied by an LTS iff its unfolding to a tree is finite and balanced.
We first define a formula that checks whether or not an LTS contains a
finite path.

P = ifpX.Off VOX

Finally, on finite and balanced trees the following formula checks the
property mentioned above: there are two nodes on the same level with
two differently labeled outgoing edges.

X; . Reach({a)tt A Xo A = X3) A

. Reach({b)tt A X5 A =X
Pnbis — \/ lfpl X2 ) DXQ (< > 2 3)

7 X; . X,
where Reach(v) := ifpZ.4 V &Z simply checks whether there is a path

on which v holds eventually.
Putting this together we obtain the formula

Pbis = Pfin A Pboal A TPnbis
which is satisfied by an LTS iff it is bisimilar to a finite word.

6.3 Complexity Results

The situation here is comparable to that of FLC. Due to the increase
in expressive power compared to the modal p-calculus, MIC’s satisfia-
bility problem becomes highly undecidable. Its model checking problem,
however, retains a comparably low complexity.

Theorem 6.1 [DGKO04b]
The satisfiability problem for MIC is hard for |J, .y X}, and in Xj.

The lower bound is proved by encoding natural numbers as sets of
nodes in well-founded trees, and first-order arithmetic as MIC formulas.
The upper bound is a consequence of the fact that MIC can be embedded
into first-order logic with inflationary fixpoints. We remark that both
results already hold true for 1MIC.
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Theorem 6.2 [DGKO04b]

The model checking problem (combined complexity) for MIC is PSPACE-
complete.

Theorem 6.3 [DGKO04b]

The model checking problem (expression complexity) for MIC is PSPACE-
complete.

Remember that FLC’s model checking problem remains hard when
the formula is fixed. MIC behaves in the opposite way.

Theorem 6.4 [DGKO04b]
The model checking problem (data complexity) for MIC is in P.

6.4 Expressive Power

Theorem 6.5 [DGKO04b]
£, C 1IMIC.

The inclusion holds because the inflationary fixpoint of a monotone
function equals its least fixpoint. Hence, £, can trivially be translated
into 1IMIC by replacing every p with ifp.

Theorem 6.6 [DGKO04b]
IMIC C MIC.

The inclusion is trivial. Dawar, Gradel and Kreutzer then present a
MIC formula whose models are exactly the trees (upto bisimulation) of
finite height and show by induction on the structure of formulas that it
is not equivalent to any 1MIC formula.

It is possible to find FLC-definable properties which cannot be ex-
pressed in MIC. One example of such a property was presented in Exam-
ple 5.5 describing language inclusion of nondeterministic finite automata
in FLC. Dawar, Gradel and Kreutzer have shown that the automaticity
— the least sizes of finite tree automata recognising the sets of fixed-
length tree prefixes of a certain property — is at most exponential for any
MIC-definable property [DGKO04b]. The automaticity of the property in
Example 5.5 is asymptotically worse than that.
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Theorem 6.7
FLC ¢ MIC.

However, there is also a much simpler complexity-theoretic argument.
Suppose FLC C MIC, i.e. for every FLC formula ¢ there is a ¢’ € MIC
that is equivalent to it (w.r.t. the definition of weak equivalence in FLC
of course). According to Thm. 5.10 there is a ¢y € FLC whose set of
models is an EXPTIME-hard language. Consider ¢f, which obviously has
the same set of models. According to Thm. 6.4, the set of its models is
in P. But P # EXPTIME.

Not much is known about the expressive power of MIC on finite
words. For example, it is not even known whether MIC can express
all context-free languages. Example 6.1 shows that it can express some,
and Dawar, Gradel and Kreutzer present some 1MIC formulas expressing
non-context-free properties.

Theorem 6.8 [DGKO01]
On finite words: 1IMIC € CFL.

Some better bounds have been found in terms of complexity classes.

Theorem 6.9 [DGKO04b]
On finite words: DTIME(O(n)) € MIC C DSPACE(O(n)).

As a consequence, every MIC-definable property is deterministic con-
text-sensitive.
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Chapter 7

Higher-Order Fixpoint Logic

7.1 Syntax and Semantics

Definition 7.1 Let P = {p,q, ...} be a set of atomic propositions, ¥ =
{a,b,...} be a finite set of action names, and V = {X,Y,...} a set of
variable names.

A v e {—, 4,0} is called a variance. The set of HFL types is the
smallest set containing the atomic type Pr and being closed under func-
tion typing with variances, i.e. if ¢ and 7 are HFL types and v is a
variance, then ¢” — 7 is an HFL type.

Formulas of HFL are given by the following grammar:

o = q|X|-plevel{ae|ee | MX": 7)o (X :7).p

where v is a variance, 7 is a type, a € X, and ¢q € P.

We use the standard abbreviations: tt := ¢ V —¢q for some ¢ € P,
ff = otk p AY = (mp A ), [a]Y = —(a), and vX.p =
—uX.—p[-X/X]. We will assume that any variable without an explicit
type annotation is of the ground type Pr. Also, if a variance is omitted
it is implicitly assumed to be 0.

A sequence I' of the form Xi*: 7,..., X : 7,, where X are variables,
7; are types and v; are variances is called a contezrt (we assume all X; are
distinet). An HFL formula ¢ has type 7 in context I' if the statement
' F ¢: 7 can be inferred using the rules of Figure 7.1. We say that ¢ is
well-formed if I' - p: 7 for some I' and 7. In this case 7 is called the type
of ¢ w.r.t. I'. It is not hard to see that the type of a formula is unique
(upto I'), and that I" = () suffices for closed formulas.
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v e {0,+} I“kFe:r I'+¢: Pr
I'Fq: Pr X" 7HX:7 CE—p: T I'F (a)p: Pr

'Fe: Pr T'kH4: Pr X obF@: T
'Fevay: Pr FEAXXY:0)@:(c" —T)
'by:(ct—>71) Thy:o F'Fp:(c-—71) I"F4:o
L (o) :7 CE(py):T
F'tp:(c"—>7) Tky:0o T F:o LXTrkeoT
CE(p):T FFw(X:7)p:T

Figure 7.1: Type inference rules for HFL.

Definition 7.2 For a variance v, we define its complement v~ as + if v =
—,as —, if v = 4, and 0 otherwise. For a context I' = X7*: 7,..., X' 7,

the complement '~ is defined as Xfl_ CTL e, XU T
The semantics of a type w.r.t. a transition system 7 = (S,{-% | a €

¥}, L) is a complete lattice, inductively defined on the type as
[Pr]” = (2°,Cp,)  with Cp, :=C
[o" =717 = (([o)7)" —mon [7]7,Corr )
with  f Corr g iff Vo €[o]”: f(2) Er g(x)

where A —,,,, B denotes the space of all monotone functions from A to
B. A negative variance turns a lattice upside down, a positive keeps it,
and a neutral variance does both at the same time.

(V.C) = (V.C) (VT =(M13) (VL) = (V=)

Definition 7.3 An environment p is a possibly partial map on the vari-
able set V. For a context I' = X{* : 7,..., X' : 7,,, we say that p
respects I, denoted by p = T, if p(X;) € [n:]7 fori € {1,...,n}. We
write p[X +— a] for the environment that maps X to a and otherwise
agrees with p. If p =T and a € [7]7 then p[X — a] =T, X : 7, where
X is a variable that does not appear in T'.

For any well-typed term I" F ¢ : 7 and environment p = I', we define
the semantics of ¢ inductively to be an element of [7]7. In the clause
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for function application (¢ ) the context IV is I' if v € {+,0}, and is
—ifvo=-—.

[[Fl—q:Pr]]pT = {se8|qe L(s)}

[TEX:7]7 = p(X)

[[Fl——w:Pr]]z; = S\[[F_l—cp:Pr]]Z
[THevy:Pr]] = [Ite:Pr]l Ul k4 :Pr]”
[TE{(a)p: Pr]]pT = {seS|

de[l'Fe: Pr]]z s.t. st}
[TEXXY:7)p:T" — T’]}Z = e [r]7 T, X 7k T’]]Z[XHd]
[TFo: T']]Z = ([[FI— o7’ —>7"]]Z—) ([T F T]]Z)
[THuX :n)p:7]] = [|{zelr]"|
[[F7X+ cTE ¥ T:I]’[Z;[X)—)IE] L, ZE}
Definition 7.4 We consider fragments of formulas that can be built
using restricted type ranks and maximal arities of types only. Note that

by right-associativity of the function type operator —, every HFL type
is isomorphic to one of the form  — ... — 7,,, — Pr. Let

rank(t, — ... — Ty — Pr) = max{rank(r;)+1|i=1,...,m}

mar(my, — ... — T, — Pr) = max{m,max{mar(r;) |i=1,...,m}}
where m > 0 and max® = 0. Now let

HFLF™ .= { ¢ € HFL| F ¢ : Pr using types 7 with rank(r) < k,

mar(T) < m only }

Note that HFL = HFL%° U Uis1 Uzt HFL*™ since higher-order types
necessarily need to have arguments and vice-versa. We also write HFL?
instead of HFL* and HFL* for |J,,», HFL»™ if & > 1.

Example 7.1 [VV04]

HFL is capable of expressing assume-guarantee properties. Let p(X) and
Y(Y') be two formulas. Define

sEvX.errYy iff VEeEN:s | (tt) = s | o (t)

where ©°(tt) := tt and " (tt) := p(PF(tt)), etc.
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Viswanathan and Viswanathan note that the modal p-calculus is not
closed under assume-guarantee properties. For example, let p(X) =
(a)X and (YY) := (b)Y, then vX.(a)X > vY.(b)Y expresses “if there is
an a-path of length £ for some k then there is also a b-path of length
k +17. This is not a regular property.

In general, we have

VX p(X) oY p(Y) = (WZAXAY.(-XVY)AZ p(X) (V) tt (tt)

with appropriate type annotations. Hence, assume-guarantee properties
are HFL!-definable

Example 7.2 [LS05]

Let 2§ :=n and 27, := 2%, For any m € N, there is an HFL formula
©m expressing the fact that there is a maximal path of length 2! (number
of states on this path) through a transition system. It can be constructed
using a typed version of the Church numeral 2. Let 7 = Pr and 7,11 =
7; — 7;. For i > 1 define 1); of type 7,41 as M(F : 1) M X : 7;1).F (F X).
Then

Om = djm Q/Jm_l e 'lbl ()\X<>X) Off

expresses the desired property. Note that for any m € N, ¢,, is of size
linear in m.

Example 7.3

Recall Ex. 6.3 which shows that MIC is capable of expressing the property
of being bisimilar to a word model. This can also be done in HFL using
function arguments as stacks rather than inflationary fixpoints.
Remember that a tree is not bisimilar to a word iff there are two
nodes on the same level with outgoing transitions of different kinds.

p = \/ (BXAAAB.(ANB)V (X ©AOB)) (a)tt (b)tt
a,beT,atb

This formula is equivalent by fixpoint approximation and S-reduction to

\/ (@)t A B)te) v (Oayts AO(b)ee) V (OO(aytt A OO(b)tE) V...

a,beX a#b

Since HFL is closed under negation it is also possible to express bisimi-
larity to a word.
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7.2 Expressive Power and Complexity

Results
Theorem 7.1
L, = HFLY.

Note that £, is a syntactical fragment of HFL and that every subfor-
mula of a £, formula has type rank 0 in HFL. Furthermore, any HFLY
formula cannot contain a subformula of type rank > 1. Hence, it cannot
contain a subformula of the form A(X : 7). or ¢ 1. It is easy to see
that the remaining syntax only allows to build formulas that are in £,
already.

Theorem 7.2 [VV04]
FLC C HFLYL

This is not surprising. Note that the semantics of any FLC formula
is a function of type Pr — Pr, i.e. of type rank 1 and maximal arity 1.
The translation from FLC to HFLY! is straight-forward.

Viswanathan and Viswanathan also show that there are HFL-definable
properties which are not FLC-definable using a diagonalisation argument.
Such a formula is of type rank 2, though. We believe that FLC is already
strictly contained in HFL!. The formula presented in Example 7.3 does
not seem to be expressible in FL.C which remains to be proved. However,
it can easily be expressed in FLC with inverse modalities. Hence, such a
proof would already separate FLC from FLC with inverse modalities on
trees.

Thm. 7.2 raises the question after the relationship between MIC and
HFL. Unfortunately, we can only answer this partially.

Theorem 7.3
MIC € HFL! on finite structures.

Strictness is a simple consequence of Thm. 6.7 — the fact that there
are FLC-definable properties which are not expressible in MIC. The type
rank 1 is the price for the transition from a non-monotone to a monotone
function. The width of an inflationary fixpoint operator — the number of
simultaneously defined variables — translates into a number of arguments
to a function of type rank 1. Thus, there is probably no fixed m s.t. we
can embed MIC into HFL¥™ as it is the case for FLC. For a detailed
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proof of this inclusion see Appendix A. An immediate consequence is
the fact that IMIC can be embedded using fixed arities only.

Theorem 7.4
IMIC ¢ HFLY! on finite structures.

The satisfiability problem for logics like PDL[CFG] and MIC, that
are rather weak in comparison to HFL, is already beyond the arithmetic
hierarchy. Hence, HFL is highly undecidable as well. Since HFL incor-
porates functions of arbitrary rank it seems possible that its satisfiability
problem (or that of HFL* for some fixed and low k already) is even be-
yond the analytical hierarchy. However, Gradel, Dawar, and Kreutzer’s
encoding of the arithmetic hierarchy in MIC does not seem to extend
casily to second-order quantification since 2" is not enumerable.

Example 7.2 provides a hint at the fact that HFL’s model checking
problem is difficult. It is non-elementary in general, but still fairly low
in the Grzegorczyk hierarchy [Grz53|, namely included in &;.

Theorem 7.5 [LS05, ALS07]

The model checking problem for HFL (combined complexity) is in
DTIME(251)).

Viswanathan and Viswanathan remarked that HFL’s model checking
problem is decidable on finite transition systems 7. Note that every
lattice [7]7 is finite, but possibly of size ZkO(") where n is the number of
states of 7 and k = rank(7). Thus, model checking can be performed by
fixpoint iteration in these finite lattices.

A more careful analysis using fixpoint elimination yields a reduction
from HFL’s model checking problem to the problem of solving a (rather
large) reachability game.

Theorem 7.6 [ALS07]

For all k> 1,m > 2, the model checking problem for HFL¥™ (combined
complexity) is kEXPTIME-complete.

The reduction in the lower bound from the word problem for alternat-
ing space bounded Turing Machines can be refined to yield HFL formulas
which do not depend on the machine’s input word anymore. The price
to pay is a slightly higher arity of the resulting types.
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Theorem 7.7 [ALS07]

For all k > 1,m > 4, the model checking problem for HFL*™ (data
complexity) is kEXPTIME-complete.

The size of the resulting reachability game in the general upper bound,
for a transition system of size n and an HFL*™ formula ¢ is

O(TL2) |90|2(771(19—1)771’“*2QZ(k—l-ﬁ-m)k*1 )2(m+\<p|)

Note how this collapses when, in addition to £ and m, the parameter n
is also fixed. Hence, it is the data complexity that makes the problem
difficult rather than its expression complexity.

Theorem 7.8 [ALSO7]

For all k,m > 1, the model checking problem for HFL*™ (expression
complexity) is in EXPTIME.

The fact that the data complexity of HFL is non-elementary yields
another hierarchy result about expressive power.

Theorem 7.9 [ALS07]
For all k € N: HFL* C HFL*!,

Formulas that witness the strictness of this inclusion are constructed
in the proof of the lower bound in Thm. 7.8. The set of their models is
EEXPTIME-hard. If they were equivalent to an HFL*~! formula then
this would also be an HFL*~1™ formula for some m. But their sets of
models are recognisable in (kK — 1)EXPTIME which is strictly less than
kEXPTIME according to the time-hierarchy theorem.

93



Chapter 8

Conclusions

8.1 Summary

This thesis provides an overview of some temporal logics that are capable
of expressing non-regular properties. It focuses on extensions of the well-
known modal p-calculus and fragments thereof, in particular

e Propositional Dynamic Logic of Context-Free Programs which ex-
tends ordinary Propositional Dynamic Logic with the programs
formed by context-free grammars;

e Fixpoint Logic with Chop which extends the modal p-calculus with
an operator for sequential composition;

e the Modal Iteration Calculus which extends the modal p-calculus
by replacing least with inflationary fixpoint quantifiers; and

e Higher-Order Fixpoint Logic which merges the modal p-calculus
with a simply typed \-calculus.

Regarding relative expressive power, it turns out that the latter subsumes
all others, the second subsumes the first and the second and third are
probably incomparable. From this point of view, it is not surprising that
the complexity of model checking formulas of such logics is low in the
first case, very high in the last case and mildly non-tractable in the two
others.

Both aspects are summarised in more detail in the following two sec-
tions where we put these logics, their fragments and the related for-
malisms mentioned earlier into two pictures showing their relationships
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over arbitrary structures, resp. finite words. We also compare them w.r.t.
their model checking problems regarding both combined and data com-
plexities. The latter carries a clear message: model checking a non-
regular property need not be vastly more expensive than model checking
a regular property — it simply depends on which logic is chosen. Note
that both PDL[CFG] and MIC are capable of expressing non-regular
properties, and both their data complexities are in P.

8.2 The Family of Temporal Logics Beyond
Regularity

Fig. 8.1 shows the relationships between the branching time temporal
logics of non-regular properties that are featured in the previous chapters,
and how they link to the modal pu-calculus.

Strict inclusions are indicated using dashed lines. A continuous line
upwards shows an inclusion which is not known to be strict. The following
table contains properties that witness the non-inclusion relations in this
picture.

non-inclusion example property

PDL[CFG] ¢ L, “there is a path of the form a™b"™”

L, ¢ PDL[CFG] | “on all paths eventually ...”

FLC® ¢ PDL[CFG] | “on all paths eventually ...”

description of winning strategies
FLCk! ¢ FLC* in FLC model checking games
with £ priorities

“there is a path of the form a"b™”

IMIC ¢ L, for m >n
MIC ¢ 1MIC bisimilarity of subtrees
FLC ¢ MIC language inclusion between NFA
HFLY ¢ MIC language inclusion between NFA
HFLA ¢ HFLF description of alternating space

bounded Turing Machines
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Figure 8.1: Branching Time Temporal Logics of Non-Regular Properties.
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Fig. 8.2 contains the corresponding picture for linear time temporal
logics, complexity classes and algebraic characterisations of languages of
finite words.

8.3 The Complexity of Model Checking a
Non-Regular Property

The table in Fig. 8.3 summarises the results on the model checking com-
plexities for the branching time temporal logics PDL[CFG], FLC, MIC,
HFL and their fragments mentioned in the previous chapters. It also
indicates whether the known upper bounds could be matched by lower
bounds yet.

Here we consider not only the combined complexity but also the data
complexity since it is a more realistic measure for verification problems.

8.4 Open Questions

Fig. 8.1 and Fig. 8.2 indicate that there still are some open problems
regarding the expressive power of temporal logics beyond regularity.

(1) Is FLC strictly included in HFL''?

We suspect the answer is yes. In fact, it is very easy to see that HFL!
can do more on the level of functions. The semantics of any FL.C formula
is only a monotone function of type Pr — Pr. HFL*! can build formulas
using non-monotone functions like AX.—X though. However, this does
not answer the question at hand because definability in FLC and HFL'!
is not directly concerned with such functions: is there an HFL'! formula
of type Pr that is not equivalent to any FL.C formula? IL.e. is it possible to
use non-monotone functions to define a sequence of elements of a family
of lattices that cannot be defined using a fixed combination of monotone
functions only?

(2) Are there MIC-definable properties that are not FLC-
definable?

Note that the opposite holds. Hence, a positive answer would entirely
separate MIC and FL.C and show that inflationary fixpoints and sequen-
tial composition are — at least when it comes to modal logics — two entirely
different mechanisms.
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SEXPTIME

HFL

—

2EXPTIME

EXPTIME

HFL3

/I\|

APDA = DTIME(2°)  DSPACE(O(n?)) HFLL
|
NSPACE(O(n)) = CSL
|
DSPACE(O(n)) = DCSL
BCFL
/ /
., SF(CFL) —
ACFLY ‘ FLC
I
PDL[CFC]
‘ ACFL = LFLC
B(CFL) .-~
, .
el MIC
B*(CFL) / \
. DTIME(O 1IMIC
CFL = PDA
| —— inclusion
DPP‘\A - — — strict inclusion
HFLY = £, = REG = NSPACE(O(1)) ——  equivalence

Figure 8.2: Non-Regular Properties of Finite Words.
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logic Combin(?d optimal data . optimal
complexity complexity

PDL[CFG] p yes p

FLCF EXPTIME yes EXPTIME yes

FLC EXPTIME yes EXPTIME yes

IMIC PSPACE yes P

MIC PSPACE yes P

HFL? UPNco-UP P yes

HFLF™ EEXPTIME | for m > 2 || kEXPTIME | for m >4

HFL non-elemen. yes non-elemen. yes

Figure 8.3: Combined and data complexities of temporal logics beyond

regularity.

(3) Is MIC included in HFL' over arbitrary transition sys-

tems?

Equally, can inflationary fixpoints in a complete lattice V' always be
defined using least or greatest fixpoints in the lattice of functions V- — V'
with pointwise order?

(4) Are there fizpoint alternation hierarchies in HFL, HFL*
fork>17¢

This might not have much practical relevance since type ranks and, to
some extend, arities are the cause for HFL’s high complexity.

(5) How do ACFLY  SF(CFL), ACFL and MIC relate to
each other?

This would reduce the width of the picture in Fig. 8.2. It would also
provide some more insight into the interaction between universal quan-
tification and sequential composition in context-free grammars.
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(6) Which inclusions are strict between Bt (CFL) and EXPTIME ¢

This of course is not an easy question. The strictness of the complexity-
theoretic inclusions in there have been open for quite a while without
much hope for a settling answer. Regarding the inclusions between var-
ious grammar formalisms — including question (5) above — we also refer
to Okhotin’s list of open problems in boolean and conjunctive grammars
[Okh06].

(7) Is the type rank hierarchy in HFL strict over finite
words as well?

This seems quite likely given the situation depicted in Fig. 8.2. The
strict exponential-time hierarchy implies that for all & > 1 we have
HFL* C KEXPTIME or HFL* C HFL*! on finite words. The strict-
ness of the second inclusion would follow immediately if the reduction
from the word problem for alternating Turing machines to HFL’s model
checking problem could be modified to use the Turing Machine’s input
word as the transition system.
Related to that is the following question.

(8) Are there arity hierarchies in HFL, resp. each HFLF?

For higher-order predicate logics, several hierarchy results regarding the
arity of higher-order relations have been found [Gro96, FT06]. These are,
for example, obtained by diagonalisation similar to the technique used in
Thm. 3.9.

(9) Is the alternation hierarchy in FLC strict over finite
models and over linear words?

Unfortunately, the proof of the strictness of the alternation hierarchy
only works for infinite models [Lan06a]. It does not directly transfer to
finite models as in the case of the modal p-calculus due to the lack of the
finite model property.

Similarly, on linear models the alternation hierarchy in the modal
p-calculus collapses down to level 0. This relies on the fact that on
w-words parity automata are equi-expressive to weak Biichi automata
[KVO8] which can be translated into alternation-free u-calculus formu-
las. Remember that it is even unknown whether alternating context-free
grammars define the same languages as alternating push-down automata.
This, however, might be necessary in order to remove alternation from
FLC formulas using translations to and from automata.
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8.5 Further Work

The unanswered questions of the previous section clearly provide material
for ongoing research on temporal logics for non-regular properties. These
are mainly concerned with their theoretical aspects though. There are,
however, also practical considerations.

The table in Fig. 8.3 shows that model checking a fixed non-regular
property need not be intractable. It simply depends on the property and
the logic that it can be formalised in. Clearly, this statement should be
evaluated empirically in the form of a verification tool for non-regular
properties. It is not hard to extend symbolic model checking algorithms
for the modal g-calculus to PDL[CFG] and MIC. For FLC and HFL' this
is slightly more tricky because a naive extension leads to a guaranteed
exponential (in the size of the underlying transition system) running time.
A less naive approach employs a technique called neediness analysis that
is also found in abstract program interpretation. This works for HFL!
and, hence, covers other specification formalisms like FLC as well.

Another direction to take for further work concerns the pragmatics of
the presented logics. The most successful logics in verification — in terms
of usage — are those that provide the most intuitive formulas, e.g. LTL
and CTL, and without a doubt these two aspects are correlated. From
this point of view, the logics presented here stand very little chances
of being used successfully for the verification of non-regular properties.
PDL[CFG| may be the only exception here. However, it is also the least
expressive of them.

However, these logics need not be used at a front-end of a verification
tool. Just like LTL and CTL can be seen as readable fragments of the
less readable modal p-calculus, fragments of FLC, MIC and HFL! that
can be given a better syntax without explicit fixpoint operators ought to
be found. An example is given by FairCTL, the extension of CTL with
fairness constraints over path quantifiers [EL87]. It is well-known that
CTL cannot express fairness, i.e. the fact on all execution paths some
(atomic) statement holds infinitely often. This can be done in LTL,
but model checking LTL is PSPACE-hard whereas it is in P for CTL.
FairCTL provides a way out of this dilemma. In this logic one can form
statements like A,Gt) which read as “all paths on which ¢ holds infinitely
often satisfy ¢ everywhere”.

One possibility for the specification of non-regular properties in a
logic with a friendly syntax is to index CTL path quantifiers with non-
regular linear time properties. There, a formula of the form A,Gt would
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read as “all paths that satisfy ¢ also satisfy ¢ everywhere” where ¢ is
a non-regular property of w-words. It remains to be seen which logics
are expressive enough to subsume such an extension of CTL as a frag-
ment, and whether this could lead to reasonably efficient model checking
procedures.

An application of such a logic may be found in verification of infinite-
state-systems through abstraction. There, the abstraction process — the
transformation of an infinite-state-system to a finite-state one — often
destroys too much of the systems structure such that model checking the
original property on the finite-state structure provides no useful informa-
tion about the satisfaction of the property on the infinite-state structure.
In order to restrict this loss of information it has been suggested to in-
corporate fairness constraints into the property such that only fair paths
of the finite-state system are considered in order to obtain information
about the infinite-state one [BIS04]. Another appropriate choice to ex-
clude traces that do not occur in the concrete system may be to incor-
porate a logical description of the infinite-state system into the formula.
This would clearly have to be a non-regular property in general.

62



Index

A-calculus combined, 17
simply typed, 10, 57 data, 9, 18
' expression, 18
abstraction, 6 complexity class, 14
alternation, 63 context, 50
depth, 40
analytic hierarchy, 20 derivation, 25, 26
arithmetic vl 14
first-order, 19 equn;a ence,37
second-order, 19 i roEg,?)7
arithmetic hierarchy, 20 weax,
automaticity, 48 finite model property, 21
automaton fixpoint
alternating push-down, 28, 63 inflationary, 44
biichi, 34 fixpoint logic with chop, 9, 36, 57
deterministic push-down, 15 heterogeneous, 41
finite, 14 formula, 14
non-deterministic finite, 39 conjunctive, 40
push-down, 15 disjunctive, 40
rabin, 6, 17 function

t 51
backtracking games, 46 monotone,

bisimilar, 13 grammar, 14
bisimulation, 13 alternating, 24
-invariance, 6, 13 alternating context-free, 25, 26,
63
Chomsky hierarchy, 15 auto-presentable, 29
chomsky hierarchy, 15 boolean, 27
closure

conjunctive, 26
context-free, 24
linear erasing, 29

boolean, 23

positive boolean, 23

star-free, 23
complexity higher-order fixpoint logic, 10, 57

63



kripke structure, 4, 11 well-formed, 50

word
labeled transition system, 11 finite, 12

language, 14
context-free, 15
context-sensitive, 15
deterministic context-sensitive,

15

formal, 14
recursively enumerable, 15
regular, 15

latest appearance record, 42

logic, 14

modal p-calculus, 5, 6, 10, 15
modal iteration calculus, 9, 45, 57
model checking, 5, 17

bounded, 6
monadic second-order logic, 6, 17

predicate transformer, 10, 36
property, 14
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regular, 6, 14, 17
propositional dynamic logic, 4, 33

of context-free programs, 9, 32,
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starting state, 12
temporal logic, 4
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linear time, 4
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turing machine, 14
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Appendix A
Unpublished Proofs

A.1 From the Modal Iteration Calculus to
Higher-Order Fixpoint Logic

Before we present an inductive translation we simplify matters by ex-
tracting the most difficult case — that of inflationary fixpoint operators
of course — into a general lattice-theoretical lemma.

Inflationary Fixpoints and Higher-Order Least Fixpoints
Suppose (V, <) is a complete lattice with joins V and least element L.
Let f:V — V be an arbitrary total function. Recall the definition of
[’s inflationary fixpoint as ifpf =\/, ifp®f over all ordinals o with

ifp’f = L
ifpetf = ifp*fV f(ifp*f)
ifp"f = \/ ifp"f

a<k

where k is a limit ordinal.

The fact that we want to embed MIC into a function calculus where
functions are ordered by pointwise inclusion suggests to generalise the
concept of an inflationary fixpoint slightly. Let ifp_ f for any z € V
be defined as above with x instead of L. ILe. ifp, f is the result of
the inflationary fixpoint iteration starting in x rather than 1. Thus,
ifpf = ifp,f. Then we can do a little bit of inflationary fixpoint
arithmetic.

4



Lemma 1 For all x € V, all total functions f : V — V we have:

PROOF We have z = ifplf < ifp, f. Hence, only ifp,y )/ < ifp,f
remains to be shown. We will do this by trans-finite induction on the
approximants. The base case is easy.

ifp?z:Vf(x)f = zV f(z) = ifp,f < ifp,f

The case of a successor ordinal is not much harder.

PSS = 1PN V(10 ) < ifp,fV[(ifp,f) = ifp,f

by the hypothesis and because ifp_ f is indeed a fixpoint of f for any =.
Finally, the case of a limit ordinal does not pose a great deal of
difficulty either.

ifp;vf(x)f = \/ifpﬁvf(x) < \/ifpzf = ifp,f

a<k a<k

This finishes the claim. n

Lemma 2 For all f : V — V all z € V and all finite ordinals o we
have: ifpot!f = PG pay f-

PrROOF Simply by induction on a. The base case is

ifp,f = ifpyfV f(ifp)f) = zV f(z) = ifpg\/f(a:)f
The step case is
ifpy ™ f = ifpg TV f(itp T )
= lfpg\/f(z)f\/f(lfpgvf(x)f) = 1fp$\j—}(z)

using the hypothesis. m

We remark that Lemma 2 is not true for ordinals beyond w. This
should also be intuitively clear. Iterating for w + 10 steps starting in x
for instance is not the same as iterating w + 9 steps when starting in
x V f(x). This simply reflects non-commutativity of ordinal addition.

Now note that (V' — V,C) forms a complete lattice too. Its order
is defined pointwise: f C g iff f(z) < g(z) for all x € V. Its bottom
element is denoted L as well, and we use U for its joins.

5



We associate with every total function f : V' — V a functional F :
(V—=V)—= (V—=V)defined as Fy(g) := Az.x V g(x V f(x)). Note that
this is monotonic w.r.t. C since its argument g only occurs positively
in the definition. According to the Knaster-Tarski Theorem [Tarb5], it
possesses a least fixpoint pfF of type V. — V. We now claim that
this can be used to find the inflationary fixpoint of f — provided that the
inflationary fixpoint iteration stabilises after a finite number of iterations.

Lemma 3 Let f:V — V be a total function on a complete lattice V.
Then ifpf > (uFy)(L).

ProoOF We will show a more general relation: for all x € V we have
ifp,f > (uFy)(z). This statement about a relation in V' can be lifted
to a statement about a relation in V' — V' because the order in there is
pointwise: Ax.ifp,f 3 ufy. Now this can be shown by fixpoint induc-
tion. According to the Knaster-Tarski theorem it suffices to show that
Ax.ifp, f is a pre-fixpoint of Fy which amounts to showing

Av.ifp, f 3 Az Vv (Awvifp, f)(zV f(z) = AvaVifp, . f

Again, by the pointwise definition of J we need to show that for all
x € V: ifp f > a2V ifvaf(m)f. But this is exactly what has been
proved in Lemma 1. -

Lemma 4 Let f: V — V be a total function on a complete lattice V.
If ifpf = ifp¥f then ifpf < (uFy)(L).

PROOF Again, we generalise the statement. We will show for all x € V
and all finite ordinals a: ifp$f < (uFy)(x). The base case of a = 0 is

ifphf =@
=xV_L
— oV (1F))(x v f(@))
= (W' Fy)(x) < (uFy)(2)

The case of the successor ordinals uses Lemma 2 and the fact that
(uFp)(x) =2V (uFy)(z Vv f(z)) by unfolding.

<zV lfpg\/f(:c)f
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< aV (pFp)(@V f(z) = (uFy)(z)

Finally, if ifpf = ifp*f then we have

itpf — itpf = \itp"f < \/(uFp(L) = (uFy)(L)

a<w a<w

which finishes the claim. n

Proof of Thm. 7.3: MIC C HFL!' on finite structures.

As said before, the strictness is a consequence of the fact that there
are FLC-definable properties (of finitely branching structures) that are
provably not MIC-definable, and everything FLC-definable is also HFL!-
definable. What remains to be seen is that every MIC-definable property
is also HFL!-definable.

We first observe that adding simultaneous fixpoint operators does
not increase the expressive power of HFL!. The simultaneous fixpoint
formula

Zl . (pl(Zl,...,Zn)
Hi
Zn - pu(Zy,...0.2y)

abbreviates in the usual manner the formula

/LZzSOZOJ/ZlSDl(Zl? ceey Zi7 .. .), ceey Zi7 e ,IUZHQOH( .« oy Zi7 ey Zn))

etc. For better readability we omit type annotations here. They can eas-
ily be derived from the corresponding types in the simultaneous version
of this formula.

Let ¢(Xq,...,Xy) € MIC. W.lLo.g. we can assume all inflationary
fixpoint variables in ¢ to be distinct — not just the free ones X7, ..., X.
We inductively define an HFL! formula || of type Pr with free variables
X1,..., X} of type Pr, s.t. for all LTS 7, all their states s, and all
environments p:

T.skpp iff T,sk, ol

The translation is straight-forward for all cases other than those of an
inflationary fixpoint operator.

lg] = ¢ forallqeP
level = lel Vvl

7



=l = —lel
[{a)el = {a)]¢l
It should be clear that the correctness property proposed above is an
inductive invariant in these cases.
Now suppose ¢ = ifp,(Xi,..., X,).(¢1,. .., pn) forsomei € {1,... n}.
Define tr(y) as (u;F) & ... £ff with

n times

Froo Xy 00X, X Vv (F1 (X1 Ve]) oo (X V ||g0n|\))

E, . AX1.. A, X, V(B (X Ve]) - (X Veal))

All X; are of type Pr, and all F} are of type Pr’ — Pr — since the X; can
occur both positively and negatively in the |¢;|.

Simply abbreviate p[X; — Si,..., X, — S,] as p/. Note that |¢| =
(uFr)(L, ..., L) where

F(S1,. ., 8,) = (Wl(xl,...,xn)]]g,...,[[%(Xl,...,xn)]];)
Hence, correctness of this case follows from the inductive hypothesis and

Lemmas 3 and 4, as well as the fact that on finite structures, fixpoints of
inflationary iterations are trivially reached after at most w many steps.
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