
On Regular Temporal Logics with Past�, ��

Christian Dax1, Felix Klaedtke1, and Martin Lange2

1 ETH Zurich, Switzerland
2 Ludwig-Maximilians-University Munich, Germany

Abstract. The IEEE standardized Property Specification Language, PSL
for short, extends the well-known linear-time temporal logic LTL with
so-called semi-extended regular expressions. PSL and the closely related
SystemVerilog Assertions, SVA for short, are increasingly used in many
phases of the hardware design cycle, from specification to verification.
In this paper, we extend the common core of these specification lan-
guages with past operators. We name this extension RTL. Although all
ω-regular properties are expressible in PSL, SVA, and RTL, past opera-
tors often allow one to specify properties more naturally and concisely.
In fact, we show that RTL is exponentially more succinct than the cores
of PSL and SVA. Furthermore, we present a translation of RTL into
language-equivalent nondeterministic Büchi automata, which is based on
novel constructions for 2-way alternating automata. Our translation has
almost the same worst-case complexity in terms of the size of the resulting
nondeterministic Büchi automata as the existing translations for PSL and
SVA. Consequently, the satisfiability and the model-checking problem for
RTL fall into the same complexity classes as the corresponding problems
for PSL and SVA. From the translation it also follows that the blowup of
translating RTL formulas into initially equivalent PSL/SVA formulas is
at most triply exponential.

1 Introduction

The industry standardized temporal logics PSL [1] and SVA (the assertion lan-
guage of SystemVerilog [2]) are increasingly used in the hardware industry to
formally express, validate, and verify the requirements of circuit designs. The
linear-time core of PSL extends the well-known linear-time temporal logic LTL
with semi-extended regular expressions (SEREs), which are essentially regular
expressions with an additional operator for expressing the intersection of lan-
guages. The core of SVA can be seen as a subset of PSL.1 The prominence
of PSL and SVA in industry over other specification languages like LTL [23],

� Partly supported by the Swiss National Science Foundation (SNF).
�� Due to space limitations, most proofs have been omitted. These can be found in an

extended version of the paper, which is available from the authors’ webpages.
1 For the ease of exposition, we identify, similar to [5, 9, 7, 24], PSL and SVA with

their respective cores. In particular, the cores are “unclocked,” they do not contain
local variables (which are not part of the PSL standard), and their semantics is only
defined over infinite words.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 175–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

176 C. Dax, F. Klaedtke, and M. Lange

μLTL [4], and ETL [28] is that PSL and SVA balance well the competing needs
of a specification language like expressiveness, usability, and implementability [3]:
all ω-regular languages are expressible in PSL/SVA, specifications in PSL/SVA
are fairly easy to read and write, and relevant verification problems (e.g. model
checking) for PSL/SVA are automatically solvable in practice.

Although temporal operators that refer to the past have been found natural
and useful when expressing temporal properties [20, 16, 21, 10, 9], the PSL and
SVA standards support temporal past operators only in a restrictive way. This
design choice has already been made for the predecessor ForSpec [3] of PSL/SVA
and has been justified by the argument that handling “arbitrary mixing of past
and future operators results in nonnegligible implementation cost” [3]. One rea-
son for this belief is that in the automata-theoretic approach to model check-
ing [27], one uses 2-way automata to deal with past and future operators rather
than 1-way automata when only future operators are present. The nowadays
used automata constructions for 2-way automata are more involved than the
corresponding ones for 1-way automata. For instance, with the state-of-the-art
construction in [16], we can translate a 2-way alternating Büchi automaton with
n states into a language-equivalent nondeterministic Büchi automaton (NBA)
with 2O(n2) states. For a given 1-way alternating Büchi automaton, we obtain
with the Miyano-Hayashi construction [22] an NBA with only 2O(n) states. Nev-
ertheless, in this paper, we give arguments in favor of extending PSL and SVA
with past operators and we argue against this assumed additional implementa-
tion cost. In particular, one of our results shows that a restricted class of 2-way
automata suffices and the additional cost for this class is small.

In more detail, the content of the paper is as follows. We first propose an
extension of PSL with past operators, which we name Regular Temporal Logic,
RTL for short. RTL extends PSL by the standard past operators from linear-
time temporal logic and by the corresponding past operators of the PSL/SVA-
specific operators for SEREs. For example, the PSL/SVA-specific operator α�ϕ
describes that a system trace fulfills from the current time point the pattern
given by the SERE α and at the end the post-condition ϕ holds, where ϕ is
a PSL/SVA formula. RTL additionally contains the corresponding counterpart
α−−−�ϕ. This describes that the pre-condition ϕ holds at some time point in the
past and at that time point the system trace fulfills up to the current time point
the pattern α. Note that the temporal operator α� ϕ is closely related to the
modality 〈α〉ϕ in dynamic logic [15]. However, PSL/SVA uses SEREs over state
predicates and in dynamic logic, the expressions are over program statements.

PSL, SVA, and RTL have the same expressive power: they all describe the
class of ω-regular languages. However, RTL allows one to describe ω-regular
languages more concisely than PSL and SVA. To show this, we establish a lower
bound on the succinctness of RTL and SVA. We define a family of ω-regular
languages and prove that these languages can be described in RTL exponentially
more succinctly than in SVA. For the LTL-expressible properties, i.e, the ω-
regular languages that are star-free, we obtain as a byproduct that RTL is double

On Regular Temporal Logics with Past 177

exponentially more succinct than LTL, even when extended with the classical
temporal past operators Y (yesterday) and S (since).

Furthermore, we investigate the additional computational cost for solving the
satisfiability problem and the model-checking problem for RTL. As for PSL
and SVA, these problems are EXPSPACE-complete for RTL. In practice, the
satisfiability problem and the model-checking problem for PSL and SVA are
solved by using an automata-theoretic approach [5, 9, 7], translating a given
formula into an NBA. With the standard automata constructions for PSL and
SVA, one obtains for a PSL/SVA formula of size n an NBA of size O(22·22n

) [5,7].
We present a novel construction for RTL that translates an RTL formula of size
n into an NBA of size O(23·22n

). Note that the upper bounds of the sizes of the
resulting automata for PSL/SVA and RTL only differ by a small constant in
the exponent despite the richer structure of RTL. Our translation is based on
alternation-elimination constructions for restricted classes of 2-way alternating
automata that were recently presented in [12] and which we further improve in
this paper for the alternating automata that we obtain from our translation of
RTL formulas into alternating automata. This construction can also be used to
translate a given RTL formula into an initially equivalent SVA formula whose
size is triple exponentially larger, not quite matching the lower bound mentioned
above. One of these three exponentials is due to the fact that the resulting SVA
formulas do not contain SEREs anymore, but only regular expressions.

We point out that our translation for RTL into NBAs significantly improves
over translations that we obtain when utilizing automata constructions that do
not take the given special class of alternating automata into account. For in-
stance, when using the state-of-the-art construction [16] for translating 2-way
alternating automata into NBAs, one obtains an NBA of size O(24·24n+22n

),
where n is again the size of the given RTL formula. Overall, the presented trans-
lation indicates that extensions of temporal logics with past operators can be
handled with only a minor overhead in the automata-theoretic model-checking
approach when adequate constructions for 2-way alternating automata are used.

2 Preliminaries

Words and Trees. We denote the set of finite words over the alphabet Σ by Σ∗

and the set of infinite words over Σ by Σω. The length of a word w ∈ Σ∗ is
written as |w| and ε denotes the empty word. For a finite or infinite word w, wi
denotes the symbol of w at position i ∈ N, where we assume that i < |w| if w is
finite. We write v � w if v is a prefix of the word w. For i, j < |w|, we write wi..
for the suffix wiwi+1 . . . and wi..j for the subword wiwi+1 . . . wj .

A (Σ-labeled) tree is a function t : T → Σ, where T ⊆ N
∗ satisfies the

conditions: (i) T is prefix-closed (i.e., if v ∈ T and u � v then u ∈ T) and (ii) if
vi ∈ T and i > 0 then v(i− 1) ∈ T . The elements in T are called the nodes of t
and the empty word ε is called the root of t. A node vi ∈ T with i ∈ N is called
a child of the node v ∈ T . An (infinite) path in t is a word π ∈ N

ω such that
v ∈ T , for every prefix v of π. We write t(π) for the word t(π0)t(π1) . . . ∈ Σω.

178 C. Dax, F. Klaedtke, and M. Lange

Propositional Logic. We denote the set of Boolean formulas over the set P of
propositions by B(P), i.e., B(P) consists of the formulas that are inductively
built from the propositions in P and the connectives ∨, ∧, and ¬. For M ⊆ P
and b ∈ B(P), we write M |= b iff b evaluates to true when assigning true to the
propositions in M and false to the propositions in P \M . We write B+(P) for
the set of Boolean formulas in which the connective ¬ does not occur.

Regular Expressions. The syntax of semi-extended regular expressions (SEREs)
over the proposition set P is defined by the grammar α ::= ε | b | α � α |
α∗, where b ∈ B(P) and � ∈ {∪,∩, ;, :}. The language of an SERE over the
proposition set P is inductively defined: (i) L(ε) := {ε}, (ii) L(b) := {w ∈
(2P)∗ | |w| = 1 and w |= α}, for b ∈ B(P), (iii) L(β � γ) := L(β) � L(γ), for
� ∈ {∪,∩, ;, :}, where L ; L′ := {uv | u ∈ L and v ∈ L′} is the concatenation of
L and L′, and L : L′ := {ubv | ub ∈ L and bv ∈ L′ with b ∈ 2P } the fusion, and
(iv) L(β∗) :=

⋃
n∈N

Ln(β), where L0 := {ε} and Li+1 := L ; Li, for all i ∈ N.
The size of an SERE is its syntactic length, i.e., ||ε|| := 1, ||b|| := 1, for b ∈ B(P),
||β � γ|| := 1 + ||β|| + ||γ||, for � ∈ {∪,∩, ;, :}, and ||β∗|| := 1 + ||β||.
Automata. In the following, we define 2-way alternating automata, which scan
input words letter by letter with their read-only head. Let D := {−1, 0, 1} be
the set of directions in which the read-only head can move. A 2-way alternating
Büchi automaton (2ABA) A is a tuple (Q,Σ, δ, qI , F), where Q is a finite set of
states, Σ is a finite nonempty alphabet, δ : Q×Σ → B+(Q×D) is the transition
function, qI ∈ Q is the initial state, and F ⊆ Q is the acceptance condition. The
size ||A|| of the automaton A is |Q|.

A configuration of A is a pair (q, i) ∈ Q×N. Intuitively, q is the current state
and the read-only head is at position i of the input word. A run of A on w ∈ Σω

is a tree r : T → Q× N such that r(ε) = (qI , 0) and
{
(q′, j′− j) ∈ Q×D | r(y) = (q′, j′), where y is a child of x in r

} |= δ(q, wj) ,

for each node x ∈ T with r(x) = (q, j). For π := (q0, i0)(q1, i1) . . . ∈ (Q ×
N)ω, we define Inf (π) := {q | q occurs infinitely often in q0q1 . . . ∈ Qω}. A path
π ∈ T in a run r is accepting if Inf (r(π)) ∩ F �= ∅. The run r is accepting if
every path in r is accepting. The language of A is the set L(A) := {w ∈ Σω |
there is an accepting run of A on w}.

The automaton A is 1-way if δ(q, a) ∈ B+(Q×{1}), for all q ∈ Q and a ∈ Σ.
That means, A can only move the read-only head to the right. If A is 1-way, we
assume that δ is of the form δ : Q × Σ → B+(Q). We call a 1-way automaton
a nondeterministic Büchi automaton (NBA) if its transition function returns a
disjunction of states for all inputs. We view the transition function δ of an NBA
as a function of the form δ : Q×Σ → 2Q. This means that clauses are written
as sets. Note that a run r : T → Q×N of an NBA A on w ∈ Σω can be reduced
to a single path π in r that is consistent with the transition function. Using
standard terminology, we also call r(π) ∈ (Q× N)ω a run of A on w.

On Regular Temporal Logics with Past 179

w, i |= p iff p ∈ wi

w, i |= cl(α) iff ∃k ≥ i : wi..k ∈ L(α), or ∀k ≥ i : ∃v ∈ L(α) : wi..k � v
w, i |= ϕ ∧ ψ iff w, i |= ϕ and w, i |= ψ
w, i |= ¬ϕ iff w, i �|= ϕ
w, i |= Xϕ iff w, i+ 1 |= ϕ
w, i |= ϕ U ψ iff ∃k ≥ i : w, k |= ψ and ∀j : if i ≤ j < k then w, j |= ϕ
w, i |= α� ϕ iff ∃k ≥ i : wi..k ∈ L(α) and w, k |= ϕ
w, i |= Yϕ iff i > 0 and w, i− 1 |= ϕ
w, i |= ϕ S ψ iff ∃k ≤ i : w, k |= ψ and ∀j : if k < j ≤ i then w, j |= ϕ
w, i |= α−−−� ϕ iff ∃k ≤ i : wk..i ∈ L(α) and w, k |= ϕ

Fig. 1. Interpretation of an RTL formula over P at a position i ≥ 0 of a word w ∈ (2P)ω

3 Temporal Logics with Expressions and Past Operators

In this section, we extend LTL with SEREs and past operators. We call the
extension Regular Temporal Logic, RTL for short. The cores of the two industrial-
standard property-specification languages PSL [1] and SVA [2] are fragments of
RTL. The syntax of RTL over the set P of propositions is given by the grammar

ϕ ::= p | cl(α) | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | α� ϕ | Yϕ | ϕ S ϕ | α−−−� ϕ ,

where p ∈ P and α is an SERE over P . The semantics of RTL is given in Figure 1.
A word w ∈ (2P)ω is a model of an RTL formula ϕ if w, 0 |= ϕ. The language of
an RTL formula ϕ is L(ϕ) := {w ∈ (2P)ω | w, 0 |= ϕ}. The RTL formulas ϕ and
ψ are initially equivalent if L(ϕ) = L(ψ). They are logically equivalent, written
as ϕ ≡ ψ, if w, i |= ϕ ⇔ w, i |= ψ, for all i ∈ N and w ∈ (2P)ω. As for SEREs,
we define the size ||ϕ|| of an RTL formula ϕ as its syntactic length.

We define the following fragments of RTL. We call an RTL formula a PSL
formula if it does not contain the operators Y, S, and −−−�. An LTL formula is a
PSL formula that does not contain the operators cl and�. An SVA formula is
a PSL formula that does not contain the operators cl, X, and U. The fragments
PLTL and PSVA, which extend LTL and SVA, respectively, with past opera-
tors, are defined as expected. Note that RTL and PSL extended with the past
operators Y, S, and −−−� coincide.

We use standard syntactic sugar, like the Boolean constants and connectives
ff, tt, ∨, →, and we define ϕ R ψ := ¬(¬ϕ U ¬ψ), ϕ T ψ := ¬(¬ϕ S ¬ψ), Zϕ :=
Ytt → Yϕ. Moreover, for an RTL formula ϕ and an SERE α, we write α�ϕ for
¬(α�¬ϕ) and α−−−�ϕ for ¬(α−−−�¬ϕ). Note that the standard unary temporal
operators can easily be defined in the respective fragment. For instance, for PSVA
we define Gϕ := tt∗� ϕ, Fϕ := tt∗� ϕ, Hϕ := tt∗ −−−� ϕ, and Oϕ := tt∗ −−−� ϕ.

Remark 1. In the PSL standard [1], we also have atomic formulas of the form
ended(α) and prev(α), where α is an SERE. For instance, the word w satis-
fies ended(α) at position i iff there is a subword u of w that ends at i and
u ∈ L(α). The operators ended and prev can be seen as restricted variants of
the past operator −−−�. For instance, in RTL, if ε �∈ L(α), ended(α) is syntactic

180 C. Dax, F. Klaedtke, and M. Lange

sugar for α−−−� tt, and tt otherwise. Observe that ended and prev can only be
applied to SEREs, and in contrast to −−−�, it is not possible to define the classical
past operators Y, H, and O with them. We also remark that the literature,
e.g. [5, 9, 17, 24, 7] usually considers the essential core of the PSL standard to
which the operators ended and prev do not belong. We follow this convention,
i.e., the formulas in our fragment PSL of RTL do not contain ended(α) and
prev(α). Finally, we remark that the automata constructions [5, 7] for PSL and
SVA cannot cope with the operators ended and prev, which are handled by our
construction in Section 4 for RTL.

Example 2. A standard example for showing that the past operators of PLTL
can lead to more intuitive specifications is G(grant → Orequest), i.e., every grant
is preceded by a request [20]. An initially equivalent LTL formula is request R
(¬grant ∨ request). Let us now illustrate the beneficial use of SEREs and past
operators. Suppose that a request is not a single event but a sequence of events,
e.g., a request consists of a start event followed eventually by an end event and
no cancel event happens between the start and the end event. Such sequences
are naturally described by the SERE (start ; tt∗ ; end) ∩ (¬cancel)∗. Using this
SERE and the new past operator −−−�, we can easily express in RTL the property
that every grant is preceded by a request:

G
(
grant → (

((start ; tt∗ ; end) ∩ (¬cancel)∗) ; tt∗ −−−� tt
))
. (1)

Note that according to the semantics of the operator −−−�, the end event has
to happen before or at the same time as the grant event. Alternatively, we can
express the property in PLTL as

G
(
grant → O

(
end ∧ ¬cancel ∧ Y(¬cancel S (start ∧ ¬cancel))

))
. (2)

Although debatable, we consider that the RTL formula (1) is easier to understand
than the PLTL formula (2). In SVA, we can express the property as norequest�
¬grant , where the SERE norequest describes the complement of the language
L

(
tt∗ ; ((start ; tt∗ ; end) ∩ (¬cancel)∗) ; tt∗

)
, that is, norequest := (a ∪ b ; d∗ ;

c)∗ ; (c∗ ∪ b ; d), where a, b, c, and d are the Boolean formulas ¬start ∨ cancel ,
start ∧ ¬cancel , cancel , and ¬cancel ∧ ¬end , respectively. Note that in general,
complementation of SEREs is difficult and can result in an exponential blowup
with respect to the size of the given SERE.

Example 3. Let us give another example to illustrate the usefulness of past oper-
ators, in particular, the operator −−−�. For N ≥ 1 and i ∈ {0, . . . , N−1}, consider
the RTL formula ΦN,i := G

(
send i →

(
switchi ∩ (init ; (¬init)∗)−−−� tt

))
, where

switchi counts the number of switch events modulo N , i.e.,

switchi :=
(
(¬switch)∗ ; switch ; . . . ; (¬switch)∗ ; switch
︸ ︷︷ ︸

N times

)∗ ;

(¬switch)∗ ; switch ; . . . ; (¬switch)∗ ; switch
︸ ︷︷ ︸

i times

; (¬switch)∗ .
(3)

On Regular Temporal Logics with Past 181

Intuitively, ΦN,i expresses the property that the process i is only allowed to send
a data item if it possesses the token. The process i possesses the token iff i ≡ 0
mod N switch events occurred previously since the last init event. Note that
this property is not expressible in LTL since it is not star-free.

The negation of the PSL formula
(
(¬init)∗� send i

) ∨ F
(
init ∧ (

(tt ; (¬init)∗) ∩ (
⋃
j �=i switchj)� send i

))
(4)

is initially equivalent to ΦN,i. Note that the size of the formula (4) is quadratic
in N , whereas the size of the formula (3) is only linear in N . In Section 5, we
prove that PSVA is exponentially more succinct than PSL.

In general, for writing specifications, RTL possesses the advantage of PLTL over
LTL and the advantage of PSL/SVA over LTL, namely, additional operators for
referring to the past and SEREs for describing sequences of events.

4 From RTL to Nondeterministic Automata

In this section, we present a translation from RTL formulas into language-equiv-
alent NBAs. Similar to the well-known translation for LTL formulas into NBAs,
our translation comprises two steps: for a given RTL formula, we first construct
an alternating automaton, which we then translate into an NBA. Throughout
this section, we fix a finite set P of propositions.

4.1 From RTL to Loop-Free and Locally 1-Way 2ABAs

In this subsection, we assume that ϕ is an RTL formula over P and ϕ is in
negation normal form, i.e., the negation symbol ¬ only occurs directly in front
of the atomic subformulas of ϕ. Note that every RTL formula ψ can be rewritten
into a logically equivalent RTL formula in negation normal form over an extended
language, where we use the additional Boolean connective ∨ and the additional
operators R, T, Z, �, and −−−� as primitives. The size of the resulting formula
is at most 2||ψ||. For rewriting a formula into negation normal form, we use the
logical equivalences ¬¬γ ≡ γ, ¬Xγ ≡ X¬γ, ¬Yγ ≡ Z¬γ, and ¬Zγ ≡ Y¬γ.

Due to space limitations, we do not provide the construction of the 2ABA Aϕ

for the RTL formula ϕ here. Instead, we only briefly highlight the similarities
and the differences to the standard constructions for LTL, PLTL, SVA, and
PSL [26,14, 5, 7]. The construction in [7] additionally handles SEREs with local
variables. Our construction can easily be extended by this feature. However, for
the ease of exposition, we focus here on how to handle the temporal past and
future operators of RTL efficiently. As the standard construction for PSL [5],
the state space of the 2ABA Aϕ consists of the subformulas of the given RTL
formula and the states of the automata for the SEREs. We introduce a special
symbol # to mark the beginning of the input word. With this symbol, Aϕ checks
in a run whether the read-only head is at the first position of the input word. We
need some auxiliary states for such a check. The new operators −−−� and −−−� are
then easily handled since Aϕ is alternating and 2-way. From the construction,
we obtain the following lemmas.

182 C. Dax, F. Klaedtke, and M. Lange

Lemma 4. The 2ABA Aϕ accepts the language {#w | w ∈ L(ϕ)}.
Lemma 5. The 2ABA Aϕ has size at most 4 + 2||ϕ||.

The 2ABA Aϕ has some additional properties, which we exploit in Section 4.2
for constructing the NBA. Namely, Aϕ is loop-free [14, 12] and locally 1-way.

Intuitively speaking, loop-freeness means that an automaton cannot visit a
configuration twice on the same computation branch. Formally, it is defined as
follows for a 2ABA B = (S,Σ, η, sI , E). Let Π(B) be the set of words of the
form (s0, j0)(s1, j1) . . . ∈ (S × N)ω such that (s0, j0) = (sI , 0) and for all i ∈ N,
there is some a ∈ Σ and a set M ⊆ S ×Z with (si+1, ji+1 − ji) ∈M and M is a
minimal model of η(si, a), i.e, M � η(si, a) and M \ {c} �� η(si, a), for all c ∈M .
The automaton B is loop-free if for all words π ∈ Π(B), there are no integers
i, j ∈ N with i �= j such that πi = πj . Recall that πi and πj are configurations,
which consist of the current state and the current position of the read-only head.

Lemma 6. The 2ABA Aϕ is loop-free.

A 2ABA B = (S,Σ, η, sI , E) is locally 1-way if η(s, b) ∈ B+(S×{0, 1})∪B+(S×
{−1, 0}), for every s ∈ S and b ∈ Σ. We remark that any 2ABA can be trans-
formed into a language-equivalent 2ABA that is locally 1-way by doubling the
state space. However, such a transformation is not needed for Aϕ, since Aϕ is
already constructed in such a way that it is locally 1-way.

Lemma 7. The 2ABA Aϕ is locally 1-way.

4.2 From Loop-Free and Locally 1-Way 2ABAs to NBAs

In the following, we show how the alternating automaton from the previous sub-
section for an RTL formula in negation normal form can be translated into an
NBA. The presented construction is based on an improvement of an alternation-
elimination construction from [12]. Here, we additionally exploit the fact that
the given 2ABA is locally 1-way. Overall, for an RTL formula ψ, the resulting
language-equivalent NBA has size O(23·22||ψ||

). With the construction in [12], we
would obtain an NBA of size O(24·22||ψ||

). Another advantage of the new con-
struction is that it avoids the explicit representation of an extended alphabet,
which is used in one of the intermediate construction steps in [12] and which is
of exponential size. The presented construction also allows for a symbolic imple-
mentation [11], which can be used in tools like NuSMV [8] for satisfiability and
finite-state model checking. See [6] for such implementations and an evaluation
of constructions for the special case of 1-way alternating Büchi automata.

Theorem 8. For a loop-free and locally 1-way 2ABA A, there is a language-
equivalent NBA B of size O(|Σ| · 22||A||), where Σ is the alphabet of A.

The intuition for the construction of Theorem 8 is as follows. For an input word
w, the NBA B guesses a run r of A = (Q,Σ, δ, qI , F) on w and checks whether
this run is accepting. For this, as in [25,12], B represents r as a sequence of state
sets R0R1 . . . ∈ (2Q)ω, where each Ri contains the state q iff there is a path in

On Regular Temporal Logics with Past 183

r that visits (q, i). In the case where A is 1-way, each Ri consists of the states
that occur in the ith level of the run r. Note that in the general case where A is
2-way, Ri might contain states that occur in different levels of r. For instance, Ri
contains the states q and q′ from different levels if r contains a path of the form
(qI , 0) . . . (q, i) . . . (q′, i) Since A is locally 1-way, we can locally check whether
such a sequence R0R1 . . . represents a run of A on w. For doing so, B stores the
set Ri+1 and the letter wi+2 after reading the ith letter of w. For a state q ∈ Ri
with δ(q, wi) ∈ B+(Q×{0, 1}), the set (Ri×{0})∪(Ri+1×{1}) must be a model of
δ(q, wi). B checks this when reading the letter wi. For δ(q, wi) ∈ B+(Q×{−1, 0})
and i > 0, (Ri−1 × {−1}) ∪ (Ri × {0}) must be a model of δ(q, wi). B already
checks this when it reads the (i − 1)th input letter by using the guessed letter
wi. Additionally, B must check that every path in r visits configurations with an
accepting state infinitely often. Since A is loop-free the run r is accepting iff there
are indexes i0 < i1 < . . . such that each path in r that visits a configuration
(q, ij) visits a configuration with an accepting state before visiting (q′, ij+1), for
every j ∈ N. Similar to the alternation-elimination construction by Miyano and
Hayashi [22] for 1-way alternating Büchi automata, B checks this property with
an additional component in the state space and its set of accepting states.

We obtain the following result by putting the two constructions together.

Theorem 9. For any RTL formula ψ, there is a language-equivalent NBA C of
size O(23·22||ψ||

).

Proof. First, we transform ψ into a logically equivalent formula ψ′ that is in
negation normal of size 2||ψ||. Let Aψ′ be the 2ABA that we obtain from ψ′ by
the construction in Section 4.1. By the Lemmas 5, 6, and 7, Aψ′ is loop-free,
locally 1-way, and ||Aψ′ || ≤ 4 + 22||ψ||. By Lemma 4, Aψ′ accepts the language
{#w | w ∈ L(ψ)}. By Theorem 8, we translate Aψ′ into a language-equivalent
NBA B with O(23·22||ψ||

) states. From B, it is easy to obtain an NBA C with
L(C) = L(ψ) and ||C|| ∈ O(23·22||ψ||

). ��

We remark that the upper bound of the NBA in Theorem 9 can be improved by
taking the number of distinct subformulas into account instead of the syntactic
length of the given RTL formula. We omit such a refined analysis here.

4.3 Consequences of the Translation

We conclude this section by proving some facts that follow from Theorem 9.
Since SVA can already express all ω-regular languages, we have that RTL de-

scribes exactly the ω-regular languages. Moreover, SVA, PSL, and RTL share the
same computational complexity. In particular, the satisfiability and the model-
checking problem for RTL are EXPSPACE-complete in general and PSPACE-
complete for RTL formulas with a bounded number of intersection operators.
Another similarity between the logics is that they all have the small model prop-
erty of doubly exponential size. In particular, there is a constant c > 0 such that
a satisfiable RTL formula ϕ has a model of the form uvω with |uv| ≤ c · 23·22||ϕ||

.

184 C. Dax, F. Klaedtke, and M. Lange

Since PSL/SVA and RTL describe the same class of properties, the question
arises of their relative succinctness. The next theorem states an upper bound on
the translation from RTL to SVA. Roughly speaking, for the proof, we translate
an RTL formula into an NBA and then into an ω-regular expression, which we
finally translate into an SVA formula.

Theorem 10. For any RTL formula ϕ, there is an initially equivalent SVA

formula of size 2O(222||ϕ||+2
) and in which the intersection operator does not occur.

It is fair to ask whether the upper bound in Theorem 10 is optimal, i.e., whether
there is a family of RTL formulas such that every initially equivalent family of
PSL formulas must be triply exponentially larger. The result on the small model
property shows that such a lower bound cannot be proved by comparing the
model sizes (see, e.g., the Gap Lemma in [18]). We were only able to establish
an exponential lower bound. This result is presented in the next section.

5 Succinctness Gaps

In this section, we prove an exponential succinctness gap between RTL and
PSL/SVA, i.e., there is a family (Φn)n>0 of RTL formulas such that for every
family (Ψn)n>0 of PSL or SVA formulas, if Ψn is initially equivalent to Φn for all
n > 0, then ||Ψn|| is exponential in ||Φn||. In fact, our result is stronger since the
formulas Φn that we define are just PSVA formulas. The proof of this succinctness
result can easily be adapted to show that PSVA and, hence, RTL, is double
exponentially more succinct than PLTL.

Our proof for the succinctness gap between PSVA and SVA has a similar
flavor as the proof in [21], which shows that PLTL is exponentially more succinct
than LTL. However, our proof is more involved since we must take SEREs into
account. In fact, the formulas in the family of PLTL formulas that is used in [21]
are initially equivalent to SVA formulas of linear size. From this observation, we
conclude that SVA is exponentially more succinct than LTL.
Lemma 11. For every n > 0, there is an SVA formula Θn such that for any
LTL formula Ξn, if L(Ξn) = L(Θn) then ||Ξn|| ∈ Ω(2||Θn||).

Let us now turn to the succinctness gap between PSVA and SVA. For this,
we first introduce so-called n-counting words, which can be defined in SVA by
formulas of size O(n). In the following, let n > 0, Pn be the set {c0, . . . , cn−1, p, q}
of propositions, and Σn the alphabet 2Pn . The n-value of the letter b ∈ Σn is
valn(b) :=

∑
0≤i<n 2c

′
i with c′i := 1 if ci ∈ b and c′i := 0, otherwise. In other

words, the n-value of b is obtained by reading c0, . . . , cn−1 as bits of a positive
integer in binary representation. A word w ∈ Σω

n is n-counting if valn(w0) = 0
and valn(wi+1) ≡ valn(wi) + 1 mod 2n, for all i ∈ N.
Lemma 12. For every n > 0, there is an SVA formula countn of size O(n)
such that L(countn) ⊆ Σω

n is the language of n-counting words.

An n-segment of a word w ∈ Σω
n is a subword v = wi . . . wi+2n−1 such that i ≡ 0

mod 2n, for some i ∈ N. The n-segment v is initial if i = 0. For a proposition

On Regular Temporal Logics with Past 185

r ∈ P , the words u, v ∈ Σ∗
n are r-equal if |u| = |v| and r ∈ ui ⇔ r ∈ vi, for all

i ∈ N with i < |v|. Let Ln and L′
n be the following languages:

– Ln consists of the n-counting words w ∈ Σω
n such that if an n-segment of w

is p-equal to the initial n-segment w then they are also q-equal.
– L′

n consists of the n-counting words w ∈ Σω
n such that if the n-segments u

and v of w are p-equal then they are also q-equal.

Lemma 13. For every n > 0, there is a PSVA formula Φn of size O(n) such
that L(Φn) = Ln.

Lemma 14. For every n > 0, if B is an NBA with L(B) = L′
n then ||B|| ≥ 222n

.

With the above lemmas we obtain our succinctness result for PSVA and SVA.

Theorem 15. For every n > 0, there is a PSVA formula Φn such that L(Φn) =
Ln and for every SVA formula Ψn, if L(Ψn) = Ln then ||Ψn|| ∈ Ω(2||Φn||).

Proof. For a given n > 0, take the PSVA formula Φn from Lemma 13. Suppose
that Ψn is an SVA formula that is initially equivalent to Φn. Let Ψ ′

n := countn ∧
G(¬c0 ∧ · · · ∧ ¬cn−1 → Ψn). Note that Ψ ′

n expresses that a model is n-counting
and each two p-equal n-segments in a model are also q-equal, i.e., L(Ψ ′

n) = L′
n.

By Theorem 9, there is an NBA B of size 22O(||Ψ′
n||)

and L(B) = L(Ψ ′
n). By

Lemma 14, we have that ||B|| ≥ 222n

. It follows that ||Ψ ′
n|| ∈ Ω(2||Φn||). Since Ψ ′

n

is linear in the size of Ψn, we conclude that ||Ψn|| ∈ Ω(2||Φn||). ��
Note that Ln is a star-free language, i.e., there is an LTL formula ϕn such that
L(ϕn) = Ln. We can easily adapt the proof of Theorem 15 to obtain a double
exponential succinctness gap between PSVA and PLTL.

Corollary 16. For every n > 0, there is a PSVA formula Φn such that L(Φn) =
Ln and for any PLTL formula Ξn, if L(Ξn) = Ln then ||Ξn|| ∈ Ω(22||Φn||

).

Remark 17. We conclude this section by stating some open problems related to
the presented succinctness gaps. First, it remains open whether the exponen-
tial succinctness gap still holds between RTL and extensions of PSL/SVA with
restricted variants of the past operators like the ones discussed in Remark 1.
We did not succeeded in proving such a gap, neither did we succeed in express-
ing the languages Ln concisely in such an extension. Second, it remains open
whether the succinctness gaps carry over to a fixed and finite proposition set.
Note that the proposition sets Pn over which the PSVA formulas Φn are defined
grow linearly in n. As shown in [13], we can encode any number of propositions
by a single proposition. However, the sizes of the adapted formulas for Φn are no
longer linear in n. In particular, the sizes of the adapted SEREs in Lemma 13
are quadratic in n. It is not obvious how to adapt these SEREs so that their
sizes remain linear in n. Therefore, for a fixed and finite proposition set, we only
obtain a superpolynomial succinctness gap between PSVA and SVA. Note that
for similar reasons, the adapted proof of the succinctness gap between PLTL and
LTL in [21, 19] for a fixed and finite proposition set also only shows that PLTL
is superpolynomially more succinct than LTL.

186 C. Dax, F. Klaedtke, and M. Lange

6 Conclusion

In this paper, we have proposed the temporal logic RTL, which extends PSL
and SVA with past operators. We have analyzed its complexity and our results
show that RTL and PSL/SVA are similarly related as PLTL and LTL with
respect to expressiveness, succinctness, and the computational complexities of
the satisfiability and the model-checking problem. It remains to be seen whether
the advantages of RTL over PSL and SVA pay off in practice. The presented
translation for RTL into NBAs shows that the additional cost for handling past
operators is small and should not be a burden in implementing RTL in system
verification. Our preliminary experience with a prototype implementation for
the model checker NuSMV are promising.2

References

1. IEEE standard for Property Specification Language (PSL). IEEE Std 1850TM
(October 2005)

2. IEEE standard for SystemVerilog—unified hardware design, specification, and ver-
ification language. IEEE Std 1800TM (November 2005)

3. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A.,
Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec
temporal logic: A new temporal property-specification language. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg
(2002)

4. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B.,
Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 62–74. Springer, Heidelberg (1989)

5. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata
construction algorithms optimized for PSL. Technical report, The Prosyd Project
(2005), http://www.prosyd.org

6. Bloem, R., Cimatti, A., Pill, I., Roveri, M.: Symbolic implementation of alternating
automata. Int. J. Found. Comput. Sci. 18(4), 727–743 (2007)

7. Bustan, D., Havlicek, J.: Some complexity results for SytemVerilog assertions. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 205–218. Springer,
Heidelberg (2006)

8. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002)

9. Cimatti, A., Roveri, M., Semprini, S., Tonetta, S.: From PSL to NBA: A modular
symbolic encoding. In: FMCAD 2006, pp. 125–133. IEEE Computer Society Press,
Los Alamitos (2006)

10. Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of Past LTL. In: Hu,
A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 245–259. Springer,
Heidelberg (2004)

11. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
Form. Method. Syst. Des. 10(1), 47–71 (1997)

2 See www.inf.ethz.ch/~daxc/rtl2ba for the most recent version of our tool.

http://www.prosyd.org
www.inf.ethz.ch/~daxc/rtl2ba

On Regular Temporal Logics with Past 187

12. Dax, C., Klaedtke, F.: Alternation elimination by complementation. In: Cervesato,
I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp. 214–229.
Springer, Heidelberg (2008)

13. Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics
in simple cases. Inf. Comput. 174(1), 84–103 (2002)

14. Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating au-
tomata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 439–448.
Springer, Heidelberg (2003)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
16. Kupferman, O., Piterman, N., Vardi, M.Y.: Extended temporal logic revisited. In:

Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 519–535.
Springer, Heidelberg (2001)

17. Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little
bit of succinctness. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 90–104. Springer, Heidelberg (2007)

18. Lange, M.: A purely model-theoretic proof of the exponential succinctness gap
between CTL+ and CTL. Inform. Process. Lett. 108(5), 308–312 (2008)

19. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past.
In: LICS 2002, pp. 383–392. IEEE Computer Society Press, Los Alamitos (2002)

20. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

21. Markey, N.: Temporal logic with past is exponentially more succinct. Bulletin of
the EATCS 79, 122–128 (2003)

22. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoret. Comput.
Sci. 32(3), 321–330 (1984)

23. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE
Computer Society Press, Los Alamitos (1977)

24. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006)

25. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
Inform. Process. Lett. 30(5), 261–264 (1989)

26. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

27. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS 1986, pp. 332–344. IEEE Computer Society Press, Los Alami-
tos (1986)

28. Wolper, P.: Temporal logic can be more expressive. Information and Con-
trol 56(1/2), 72–99 (1983)

	On Regular Temporal Logics with Past
	Introduction
	Preliminaries
	Temporal Logics with Expressions and Past Operators
	From RTL to Nondeterministic Automata
	From RTL to Loop-Free and Locally 1-Way 2ABAs
	From Loop-Free and Locally 1-Way 2ABAs to NBAs
	Consequences of the Translation

	Succinctness Gaps
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

