Model Checking Games for CTL*

Martin Lange and Colin Stirling

LFCS, Division of Informatics
The University of Edinburgh

email: {martin,cps}@dcs.ed.ac.uk

August 2000

Abstract

We define model checking games for the temporal logic CTL* and prove their
correctness. They provide a technique for using model checking interactively in a ver-
ification/specification process. Their main feature is to construct paths in a transition
system stepwise. That enables them to be the basis for a local model checking algo-
rithm with a natural notion of justification. However, this requires configurations of
a game to contain sets of formulas. Moreover, an additional structure on these sets,
called focus, has to be used to guarantee correctness.

1 Introduction

Model checking is a useful and broadly accepted technique for verifying parallel processes.
The system to be examined is abstracted into a mathematical interpretation for a logical
formula which formalises a property the system is expected to have or to lack. A model
checking algorithm decides whether the system’s abstraction fulfils the formula and thus
whether the system meets its specification given by the formula, provided that the ab-
straction is correct. We will not discuss the finding of good abstractions at all, instead we
are interested in checking properties of the abstraction only. Hence, in the following, the
term “system” will denote the abstraction as well.

However, verification of concurrent systems is often combined with specification in the
framework of developing them. For such a process a simple yes/no answer to the question
whether a system is correct w.r.t. a certain property is not sufficient. Moreover, techniques
that show why or where the property is violated are required.

Model checking games being played by two players on the system and the formula provide
such features. Answering the question about the property being fulfilled turns out to
be equivalent to finding a winning strategy for one of the players. Once such a strategy
is found, i.e. computed by a verification tool for example, it can be used to enable an
interactive play between the tool and the developer.

There are various classes of interpretations which are suitable for modelling a temporal
behaviour. We will deal with transition systems only.

Furthermore, there also are various logics that allow the formalisation of temporal prop-
erties over transition systems. CTL* (cf. [4]) is not just one of them but probably the
most appropriate one for expressing temporal properties. The linear time logic LTL (cf.
[7]) and the branching time logic CTL (cf. [1]) for example can be found as genuine syn-
tactic fragments of CTL*. A lot of interesting properties, like “something holds infinitely
often”, cannot be expressed in CTL but in CTL*. LTL is capable of doing this, but
cannot formalise the existence of a certain sequence of states in the system.

On the other hand, CTL* can be translated into the modal p-calculus £,, (cf. [5]), for
which such model checking games already exist (cf. [8, 3]). However, the alternation depth
of the resulting p-calculus formulas is bounded by two (cf. [2]). Since model checking for
CTL* is PSPACE-complete (cf. [6]), whereas there exists a polynomial time algorithm
solving the model checking problem for that fragment of £,, the translation procedure
must enlarge the formulas or the transition systems exponentially, unless P=PSPACE.
Although this is not necessarily bad since formulas can be assumed to be small, it is
undesirable for the mentioned specification and verification process because it lacks the
subformula property for an interactive play: All formulas occurring in the game should be
subformulas of the formalised property. This enables the user of a verification tool best
to understand the diagnosis of the underlying system that is provided by the interactive
play.

In the remaining sections we will recall the syntax and semantics of CTL*, define the
model checking games and prove their correctness. There is a fairly simple way of defining
games for CTL* which follows exactly the semantics. I.e. whenever a path formula is
reached the corresponding player names a whole path on which the formula is examined.
However, it is easy to give examples in which the length of a shortest path to be chosen is
at least as great as the size of the transition system. Moreover, since an algorithm might
have to examine all the possible choices the players can take, this feature would contradict
the idea of a local algorithm. Therefore we require paths in the transition system to be
constructed stepwise throughout the game.

2 Syntax and Semantics

Let Prop be a set of propositional constants including true and false, which is closed under
complementary propositions, i.e. Prop = {tt,ff,Q1,Q1,...}. A transition system T is a
triple (S, T, L) with (S,T) being a directed graph. L : S — 277 labels the states, s.t. for
all s € S: tt € L(s), ff ¢ L(s) and Q € L(s) iff Q & L(s). We write s — t for s,¢ € S and
(s,t) € T, and assume that every state in the graph has at least one successor.

(00

{Q} {Q}

Figure 1: A transition system.

Definition 2.1 Let @ € Prop. The logic CTL* is defined by

o = QloNp | Ve | Xe | oUp | Ry | Ep | Ap

The set of subformulas Sub(p) for a given ¢ is defined as follows:

= {Q}
{ip A &} U Sub(p) U Subly)
{0V 6} U Sub(p) U Sub(y)
{E} U Sub(p)

= {Ag} U Sub(p)

wn
I
S
—~
S5
S

S e e e N N N
I

Sub(A

Sub(XZ = {X¢}USub(p)

Sub(pUv) = {pUt, X(pUt), 0 A X(0U9), 9V (¢ A X(0U1p))} U Sub(p) U Sub(¥)
Sub(pRY) = {pRo) X(9R), 0V X (9RE). 9 A (9 V X (o)} U Sub(i) U Sub(s)

Not surprisingly, we set Sub(®) := |J Sub(yp).
ped

Definition 2.2 The semantics of a CTL* formula is explained using paths m = s¢s7 ...
Sp ... of a transition system. With 7(we denote the suffix of = beginning with the state
S;.

e T, mEQiff Q € L(sp)

e T rEpoNYiIT T, nlEpand 7,7 =9

e T rEeVYiIll T, nlEpor T,m =Y

e 7,7 = Agp iff for all paths o = sp0’: T,0 E ¢

e 7,7 = Ey iff there exists a path 0 = sg0’ and 7,0 E ¢

o T.il=Xpif T,7M) =

o T, = @Uq iff there exists i € Ns.t. 7,7 =4 and for all j <i: 7,70 = ¢
o T,ml= Ry iff forall i € N: 7,70 = or there exists a j <is.t. T,70) =

¢ and ¢ are logically equivalent, ¢ = 1), if for all transition systems and paths 7,7 = ¢ iff
7,7 1 is true. A CTL* formula ¢ is called a state formula if ¢ = Ap holds. Clearly,
every formula of the form Ay or Ey is a state formula, and every state formula can be
brought into one of these forms, too. In the following we will regard state formulas only.
Hence we may write 7, sg = ¢ if we mean 7,7 = ¢. Formulas not being state formulas
are called path formulas. They will still occur as subformulas of state formulas. For the
rest of the paper we fix a transition system 7 = (5,7, L) and take the freedom to write

sEpandrmlE@for 7,s Eyand 7,7 = ¢.

3 Model Checking Games

In order to introduce games we need two players, namely player I and player IL' If p is
one of them then p denotes the other one. It is player II's task to show that a formula is
satisfied whereas player I tries to show the converse.

The set of configurations for a transition system 7 and a formula ¢ is Conf(7,p) C
{LLII} x S x Sub(y) x 25%(¥) A configuration is written p, s - [1)], ® where p is a player
called the path player, s € S, 1 € Sub(p) and ® C Sub(p).2 In this case 1 is said to be in
focus. The main idea is to build a path stepwise from transitions, and the path player is
the one who will take the choice of the next transition. Her opponent is in control of the
focus and thus also called the focus player.

A play between player I and player II is a sequence of configurations. There are nineteen
rules of the form

p,S l_ [‘PLCI) p//
p/,s/ l— [(pqu)/

for transforming configurations. They are to be read as: If the actual configuration is
p,s =[], ® then player p” has to perform a choice and the next configuration is p',s' b
'], @".

In the following “he” will stand for player I whereas “she” will be a synonym for either player II or
both.

2We may write p,s - ® if we speak about a configuration without explicitly referring to the focus
formula.

The side formulas, i.e. those that are not in focus, can be seen as an insurance for the path
player’s opponent to redo a move that she has done before. This is necessary because the
path player chooses the path stepwise along which a formula is examined.

At each configuration the set of side formulas together with the formula in focus can be
understood as a disjunction (resp. conjunction) of formulas in case the path player is player
I (resp. II).

A play for a transition system 7 with starting state s and a formula ¢ begins with the
configuration I, s - [¢].3 From then on, the play proceeds according to the following rules.
Once the focus is on a quantified formula a new path has to be chosen. Thus, all current
side formulas do not matter anymore. Furthermore, the next path player is determined.

p, st [Ag], @ p. st [Ep], @
(1) I sk [¢] (2) IT, s F [¢]

An explicit state formula can also be discarded in case the focus player does not want to
prove (resp. refute) it in the actual state.

p, st [p], A, @ _ p, st [pl, By, ® p, st [p],Q, P
O =sre P Woarge P O T

The four rules for a boolean connective in focus are almost straightforward. Note that it
is not necessary to keep both disjuncts for example if the path player is player II because
apparently she knows which path she is going to choose.

LSF[QPO/\SOl]a‘b LSl_[‘POV‘PlL(I)

(©) Lst[p], @ ! @) Lst (@il p1-:, @ .
ILSl_[(pO\/QOl]?q) ILS}_[@O/\@l]a(b
® Tarple O TWeFlelene |
The temporal operators U and R simply are unfolded.
(10) p, st [pUy], @ (11) p, s [pRy], @

p,s b [V (A X(eUY))], @ ps [A eV X(eRy))], @

Now, applying those rules might generate an X1t formula in focus. Before a play can
proceed with that all side formulas have to be brought into this form, too. The rules for
this are very similar to the ones above.

I,Sl_[X’l/J],(po/\gth) I,Sl_[X’l/J],(po\/gth)

12 13
() LSl— [Xw]a%a‘b () LSI_ [X¢]7(p07@017q)
II’Sl_ [XQ;Z)]’SDO\/SDI’(I) II?Sl_ [XT/)]’SDO/\SDM‘I)
W sl ene | U5 5T X, g0, 01, @
p,s = | Xx|, pUt, P p,s = [Xx], pRp, @
(16) XX, ¢ (17) (XX, ¢

p, s [XX, ¥V (p A X(0UY)), p, s [XX, YA (pV X(pRY)), @

Once a configuration is reached in which every formula begins with an X, it is possible to
go over to the next state on the path currently being examined.

3Note that ¢ is a state formula, i.e., either atomic in which case the play is finished immediately, or
it can be assumed to begin with a path quantifier A or E in which case the right path player will be
determined in the next step.

I,st [Ey]

I, s l—lgo] 2) (10)

ILsE [V(QAXep)] (8)
I, s - [QA X¢]

= = (9)
E,s:: E}(],Xf (19) IL s+ [X¢],Q (5)
S ¢l Q (5) IL s - [X¢]
IL, s - [X o] :
— 5 {18)
IT, 51 I—_[<p] 10)
ILtE [V (QAXp)] (8)
IT, t F [¢] (11)
ILtF[QA (£ff vV X)) (9)
ILtH[Q], £f VvV Xv (19) It + [£ff V X)), Q (5)
ILtF [£ff vV XY],Q (5) IT, ¢t F [£f V X)) (8)
IL ¢t F [£ff V X (8) IL ¢t F [X)) (18)
II,t F [X (18) IT, ¢t F [¢]
IL ¢t = [¢]

Figure 2: The game tree of example 3.1.

b,s - [X@O]’X@l,"' aXSDk

18
() PJ"[SDO],SDI,--W@I@

p, s—1

Finally, there is a special rule that enables the focus player to react appropriately to the
path player’s moves.

p, st [p], 1, @
19) = S F il o,

A move in a play consists of two steps. First, the path player and the focus determine
which of the rules (1) — (18) applies,* and hence which player takes the next choice.® After
that the path player’s opponent has the chance to reset the focus using rule (19).

A play is finished after a full move if it has reached a configuration

1. p,sk[Q], P, or else

2. C=1I,st [pUv],® (resp. C =1, s+ [pRy], ®) after the play already went through
C' and player p never applied rule (19) in between, or else

3. p,st [¢], @ for the second time possibly using rule (19) in between.

In the first case player II wins if @ € L(s), otherwise player I wins. In the second case
player I wins if the formula in focus is U1, and player 11 if it is @ R. In the third case
p wins.

1A situation in which two different rules are applicable is possible. However, the order in which they
are used does not effect the outcome of the game.

SRemember that first the formula in focus has to be brought into the form X1 before the players work
on the side formulas.

Example 3.1 To illustrate the game rules we give an example. Let 7 be the transition
system of figure 1. The formula to be examined is E(QU (£ RQ)).® Obviously, 7 with
starting state s satisfies it. The tree showing a winning strategy for player II with the rule
numbers annotated is given in figure 2. The dots indicate a branch of the gametree that
occurs twice. We use the abbreviations 1 := ffRQ and ¢ := QU4. Player II wins the
play of the leftmost branch because of winning condition three, and the one right beside
it because of condition two.

4 Correctness

We will show that player II has a winning strategy for a game if and only if the transition
system and the starting state is a model for the formula. In order to do this we need a
few technical lemmas.

Lemma 4.1 Let Cy,... ,C,C4,... ,Cy,C be a play with C = p, s = ®. Then all interme-
diate configurations C1,... ,C} are also of the form p,s; - ®; fori =1,... k.

Proof: For simplicity reasons we assume p = I. Suppose there is an i € {1,... ,k} with
C; =11, s; = ®;. Take the least such 7. All formulas in ®; must have been subformulas of
formulas in ®. One of them must have been of the form Fy which caused the pathplayer
to become player II with rule (2). From this follows ®; = {¢}. As C is also a configuration
following C; all formulas in ® must have been generated by ¢ only, in particular F¢y. This
would cause Fy to be a proper subformula of itself. The p = II case is dual. O

Proposition 4.2 Every play has a uniquely determined winner.

Proof: Every play is finite because the number of states of the transition system is finite,
and so is the number of subformulas of a given . Therefore, the number of configurations
is finite and every play will eventually reach a configuration that has been visited before
and the third winning condition will apply. The first or the second could apply beforehand.
If the play ended with an atomic proposition in focus then the winner is uniquely deter-
mined because {Q,Q} C L(s) is by definition excluded for each state s. If a configuration
is visited twice then the path player, who is unique according to Lemma 4.1, wins. It may
happen that a configuration p, s = ® with U1, ¢’ Ry’ € ® occurs twice, but only one of
these formulas can stay in focus permanently. Hence, the winner is unique in this case,
too. O

The game I'r (s, ¢) for a transition system 7 with starting state s and a formula ¢ consists
of all possible plays for 7, s and . Since the number of configurations for a game is finite,
the game can be viewed as a finite directed graph. This structure will be called the game
graph. A path in a game graph can have a loop and thus be of infinite length. The play
that is represented by that path ends when a configuration is visited for the second time,
such that winning condition two or three applies.

We say p wins I'r(s,¢) or has a winning strategy for 'z (s, ¢) if she can force every play
into a configuration that makes her win the play.

Lemma 4.3 a) For every game one of the players has a winning strategy.
b) Player IT wins the game 'z (s, o) iff player I does not win I'z (s, ¢).

5The expressed property is “There exists a path with a finite prefix and an infinite suffix. On the prefix
Q@ never holds, on the suffix it always does.”

Proof: a) Consider the tree of all possible plays in a given game. At each leaf one of the
players has a winning strategy by doing nothing. Let C' be a configuration with successors
Ci,...,Ck. By induction hypothesis, there is a winning strategy for either of the players
in each game beginning with C;. The branching in C' can only be caused by one of the
rules that require a choice to be made by, say, p. Now p also has a winning strategy for the
game beginning in C' if there exists an ¢ such that p has a winning strategy in C;, because
she may choose to play on with C;. If there is no such one, p has a winning strategy in
C, because he will win no matter which C; she chooses.

b) The “only if” part is obvious. The “if” part follows from part a). 0

Corollary 4.4 The game graph for a game I'7 (s, ¢) can be partitioned into blocks. These
blocks can be ordered, such that every play

a) never leaves a block ¢ into a block j with j < 4, and

b) finally stays in one block.

Proof: This follows from Lemma 4.1 if one also considers changes from a path player p to
p herself by using game rule (1) or (2). The order on the blocks can be found in a breadth-
first-search that labels the reachable configurations with natural numbers, beginning with
1. A new number is assigned to a configuration whenever game rule (1) or (2) is applied.
Part b) follows from this and the finiteness of the game graph. O

The game tree of a game I'7(s,p) is specified in the following way. Every path in the
tree is a play of the game. Furthermore, if p is the winner of I'r (s,), then at every
configuration C' that gives p the choice all but one successor C’ are eliminated, such that
p still wins if she chooses C’. If P has the choice in C' then all successors from the game
graph are preserved in the game tree. Abusing notation I'z (s, ¢) should stand for both
the game and the game tree.”

A game tree representing a winning strategy for player p will also be called a successful
game tree for player p.

Lemma 4.5 Let I'y = Cp... and I's = C{... be two games with Cy = p,s - ® and
C}, = p,s B U. Assume that they both stay in one block only according to Lemma 4.4.
Consider the game I's = C{ ... with C =p,s+ ®U ¥.

a) If p =T and player II wins I'; or I'y then she also wins I's.

b) If p = I and she wins I'y and T's then she also wins I's.

Proof: a) Say she wins I';. She will win I's by setting the focus as she would have done
in I'y1. Thus, she will also do the same moves. Since the set of side formulas in I's is larger
than in I'y, rules (3) — (5) or (12) — (17) might have to be invoked. However, the set is
still finite such that only a finite number of new moves in I'g can occur between two moves
from I'y. If she wins I'y with winning condition one then she obviously does so in I's, too.
Assume she wins with condition two. The finiteness of the number of new side formulas
from I's ensures that every play in I's performs a loop as well. Since formulas from I's do
not occur in focus in this play the winner is the same as the one in I';.

It is possible to create new branchings by using rule (12) for example. But the new plays
only differ in the set of the side formulas which have no effect on the winner at all. Thus,
every play in I's corresponds to a play in I'y with the same winner.

b) Here, player I is in charge of the focus. Similar arguments as in the preceeding case
hold for the use of the rules (3) — (5) or (12) — (17), as well as for the loops in I';. Player
I can ignore side formulas, but he will lose because the plays correspond to similar plays
in I'1 or I's where he would lose, too. Thus, his only chance is to reset the focus from a

"Thus, the game tree is a minimal finite unfolding of the game graph.

formula of, say, I'y to a formula of I's before he loses like he would in I';. Again, he will
lose there as he would in I'y, or he resets the focus back to a formula from I'y again. Since
|Sub(®UW)| < oo he will eventually create a loop such that he used rule (19) on this loop.
Thus, player II also wins every possible play in I's. O

Theorem 4.6 Player II wins I'7 (s, ¢o) iff 7, s |= ¢o.

Proof: Because of Lemma 4.3 it is enough to show one direction only. We will do the
“if”-part by constructing a (possibly infinite) game tree for player II out of the model of
po. This will later become a successful game tree by cutting infinite paths at appropriate
positions. Furthermore, because of Corollary 4.4 it suffices to consider games on formulas
with one path quantifier only. Nested Ay or EF¢ formulas can be seen as entirely new
games and, hence, can be considered as atomic propositions. An induction on the number
of the blocks finally proves the theorem for arbitrary CTL* formulas. Therefore, we may
assume the path player to stay the same throughout a whole game.

There are two distinguishable cases depending on the path quantifier of ¢g. First, let
wo = Ap and Il = {rr | 7 = s7/,7 is a path in 7}. Assuming that the path formula ¢
holds on all paths in II, we will construct a successful game tree for player II by induction
on the syntactical structure of ¢. This construction may add new side formulas to existing
subtrees. Lemma 4.5 a) shows that the resulting subtrees remain successful. The path set
IT may differ depending on the case of the induction, but it can always be decomposed
into “smaller” sets for the induction hypothesis.

Remember the following facts for this case: Every configuration is of the form I,¢ - @,
thus it is always player II who is allowed to reset the focus. The third winning condition
cannot apply.

Case p = Q: 7w Q iff Q € L(¢) for t being the first state in 7 and thus the first state
of all # € TI. The subtree of 'z (s, ¢g) is the leaf I, - [Q],® for any 7 € II and any ®
which can be ignored by player II.

Case ¢ = 9 A x: Here, 7 =1 and 7 |= x for any 7 € II. Thus, there are two subtrees for
the plays on ¢ and y, and the resulting subtree is

LtE[pAx],®
Ltk [0, Ltk [x],®

Case ¢ = X: For all 7 € II we have 7 = ¢ iff) = 1. No play can proceed with
© at the current stage before potentially present side formulas are stripped to the form
X, too. This is always feasible possibly dropping state formulas, but may create several
branches.

I so F [Xv], @

Lso - [X¢], Xx1,- -, Xxg, I so b [Xo], Xx7' ..., XX
1781}_[1/}]796%77)(]1;1 _ I7s/ll_|:w]7x11ﬂ/77xznm

However, all subtrees at these branches are successful by induction hypothesis because
they still all contain %) in focus.

Case ¢ = yRy: The constructed game tree may follow several paths m € Il because of
the Vv that is implicit in a y Ry formula.

There are two ways for YRy to be fulfilled on a particular path. Either ¢ holds on all
states of the path. Then by induction hypothesis all occurring subtrees on left sides are

successful. Also, there must be k,m € N, such that k& # m but 7*) = 7(™) and thus the
right branch of the tree is won by player II, too.

I, so F [xRY], ®
Lso[9A(xVX(xRY)), @
Lso - [¢], @ Lso =[x V X(xR)], @
I,s1 F [Xsz], @’
L5t P[zp], o' :
L, s, - [xR], @
I, s, F [XR¢], L\

The other possibility is for 1 to hold until finally ¢ and x are fulfilled in a #*). Then the
right branch of this tree can be substituted by

Lsg - [x], ¥

Again, by induction hypothesis all occurring subtrees are successful and so is the whole
tree.

Case p = xU1: This case is almost the same as the second part of the preceeding one.
The only difference lies in the boolean connectives.

Case p = ¢ V x: By induction hypothesis we have a successful game tree for either the
play on % or the play on x depending on what path player I chooses. As the path is
constructed stepwise he may do the choices according to player II's choices of the formula
in focus. Say, player II chooses v, as the game rules force her to do the first move at this
stage. The rules (12) — (17) ensure that both players have to play simultaneously on x,
too, if player I wants to proceed on a certain path.

There are two distinguishable cases. Either one of the formulas can be proved with an
atomic proposition @ in a state s; on a given path m € II. Then player II sets the focus
to @ once the play has reached that state.

LisoF[YVx],®
L S0 F [1/}]7X7(b

Lsp - [v],Q, 2
Lsp - [Q, 4, @

In the remaining case player II has to win with condition two. That means she must win
with a vRvy formula in focus whose first argument is irrelevant. It suffices to consider
formulas of the form yU(yRy) € ® % where ® is the set of all formulas in the actual
configuration.

8Note that aRB = #U(aRB) and aU(BU(yRS) = (aU(BUS))U(yRS). However, this is an argument
on the meta-level that reduces the effort to prove this case. It does not necessarily break the subformula
property that has been pointed out in the introduction.

Let ® O ® = {¢1,... ,¢x} be all those formulas, i.e. ¢; = ;U (v Ry;) for i = 1,... k.
Consider the set II(s) of all paths starting with state s as an infinite tree. As ® is to be
understood disjunctively, there must be a j € {1,... ,k} for every 7 € Il(s), s.t. 7 = ;.
II(s) can be partitioned by

I ={rell | m =y, andVj <i:m}p;}, fori=1,... .k
Now extend this partition with finite prefixes:
Il ;=1 U {a | i is the least j, s.t. 3r € I}, m = ac}, fori=1,... k

This is a partition on the set of all infinite and finite paths beginning with state s.

Now let a € II; be non-empty and finite. Then for all paths 7 = ao, © € II,, implies
m > 1. « € II; only if there is an infinite path # = ao € II;. Suppose there also is a
7’ = ao’ € Il,,, but m < [. Then a ¢ II; because | would not be the least index anymore.
This simple result gives a strategy for player II in the play with the set ®. She begins to
set the focus to the formula with the least index [, s.t. IT; # (). As player I chooses a path
 stepwise he will, at any stage in the play, have selected a finite prefix a of w. Once such
one a & II; she will reset the focus to the corresponding formula ¢,,, s.t. « € 11,,,. Since
m > [there are only |®| — 1 possibilities to reset the focus until player I cannot choose a
path anymore that does not fulfill the formula in focus. By induction hypothesis she will
win the game from then on.

Now, let g = Fy. Here, all winning conditions are possible. Unlike the first part, a single
path m = sgs1 ... satisfying ¢ is sufficient as opposed to a set of paths.

Case p = Q: The subtree is I, s F [Q], ®. Either ® = (), in which case player II wins. Or
player I drops @) and reduces the set of sideformulas. The game rules require at least one
formula to be present, and as {Q} U ® can be regarded as a conjunction all formulas are
satisfied by some suffix 7("). Thus, player II will eventually win.

Case ¢ = ¥ V x: Here, player II simply chooses the formula that is fulfilled along the
path she will choose later on.

Case ¢ =)Ax: By induction hypothesis, there are gametrees for both ¥ and x. According
to Lemma 4.5 b) the resulting subtree

ILtE[YAx],®
ILtE [, x,® 1Ltk [x],¢,®

is successful, too. If player I chooses to reset the focus in one of the subtrees the play
will continue in the other subtree. Either player II wins there by induction hypothesis or
she wins because of winning condition three as player I created a loop by resetting the
focus. Furthermore, as this is the only possibility for a new sideformula to be added we
can assume for the other cases that all sideformulas are fulfilled.

Case p = X: Again, potentially present sideformulas must be stripped to the form Xy,
too. Lemma 4.5 b) says that all subtrees at these branches are successful. We need not
take the resetting of the focus in the shown part into account because it has the same
effect as being done on the top level of this tree or after the stripping of the formulas.

IL, s; F [X)), @

ILs; - [X¢], Xx1,. .-, Xxg, IL s; = [Xo], XX, .., XX
11, Sj+1 H [¢]?X%a >X]1§1 11, Sj+1 H [ZZ)],XT, aX;gnm

10

Case ¢ = xRy or ¢ = xU1: These case are very similar to the ones in the previous part
of the proof. The only difference is that there is just one successor configuration whenever
rule (18) is applied.

To finish the proof of this part of the theorem every infinite branch of the constructed
gametree must be cut after the first position in which a configuration occured for the
second time. The resulting finite tree is exactly a successful gametree for player II.

The “only if”-part of the theorem follows immediately from Lemma 4.3 and the duality
of the games. a

References

[1] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Logics of Programs: Workshop, volume 131 of LNCS, Yorktown
Heights, New York, May 1981. Springer.

[2] M. Dam. CTL* and ECTL* as fragments of the modal p-calculus. T'CS, 126(1):77-96,
April 1994.

[3] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
IEEE, editor, Proc. 32nd Annual Symp. on Foundations of Computer Science, pages
368-377, San Juan, Porto Rico, October 1991. IEEE Computer Society Press.

[4] E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Information and
Control, 61(3):175-201, June 1984.

[5] D. Kozen. Results on the propositional mu-calculus. T'CS, 27:333-354, December 1983.

[6] F. Moller and G. M. Birtwistle. Logics for concurrency: structure versus automata,
volume 1043 of LNCS. Springer, New York, NY, USA, 1996.

[7] A.Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on the Founda-
tions of Computer Science, FOCS-77, pages 4657, Providence, Rhode Island, October
31-November 2 1977. IEEE, IEEE Computer Society Press.

[8] C. Stirling. Local model checking games. In I. Lee and S. A. Smolka, editors, Proc. 6th
Int. Conf. on Concurrency Theory, CONCUR’95, volume 962 of LNCS, pages 1-11,
Berlin, GER, August 1995. Springer.

11

