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Abstract

Fixpoint Logic with Chop extends the modal p-calculus with a sequential com-
position operator which results in an increase in expressive power. We develop a
game-theoretic characterisation of its model checking problem and use these games
to show that the alternation hierarchy in this logic is strict. The structure of this
result follows the lines of Arnold’s proof showing that the alternation hierarchy in
the modal p-calculus is strict over the class of binary trees.
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1 Introduction

In 1996, Bradfield [3] and Lenzi [16] independently showed that the alternation
hierarchy in the modal p-calculus — multi-modal logic with extremal fixpoint
quantifiers — is strict. L.e. there are certain formulas with nested alternating
fixpoint quantifiers of depth n that are not equivalent to any formula with
less than n alternating nested fixpoint quantifiers. Much earlier, Niwinski [18]
already showed that there is a strict hierarchy w.r.t. expressiveness among
formulas of the modal p-calculus that do not contain the intersection operator.

The importance of these results is motivated by the model checking problem
for the modal p-calculus. The best known algorithms are polynomial in the
size of the structure and the size of the formula but still exponential in its
alternation depth [7, 20, 9, 19, 6]. Furthermore, syntactic alternation makes
formulas hard to read. Hence, a collapse of the alternation hierarchy could
have led to simpler formulas that are easier to model check.
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Equivalence of formulas and, thus, the issue of an expressive hierarchy, is only
meaningful on a given class of structures. In the case of the modal p-calculus,
these are primarily transition systems. Note that the existence of such a hierar-
chy over a certain class of structures implies the existence over any superclass.
Hence, one would like to have such a result over the “smallest” possible class
of structures. In case of the modal p-calculus these are binary trees. Note that
because of invariance under bisimulation and the finite model property [11] it
does not matter whether finite or infinite structures are considered.

Lenzi’s proof originally works on n-ary trees for some fixed n. Since they
can be encoded using binary trees, his result implies the existence of the
alternation hierarchy over binary trees. Bradfield subsequently extended his
proof to binary trees as well [4, 5]. Note that the alternation hierarchy collapses
over the class of linear structures [22, 10, 12].

Without a doubt the nicest proof establishing the hierarchy over binary trees
was, however, given by Arnold [1]. First of all he shows the existence of a hier-
archy w.r.t. expressiveness among parity tree automata, a special case of Rabin
tree automata. Second, he uses the equivalence between the model checking
problem for the modal p-calculus and parity games: there are formulas of the
modal p-calculus which describe exactly those games that are won by either
of the players. Finally, he uses Banach’s fixpoint theorem on the metric space
of binary trees to show that those formulas are hard for each level of the
hierarchy, i.e. they are not equivalent to any formula on lower levels.

Those formulas are the so-called Walukiewicz formulas [23] that are simply a
generalisation of the Emerson-Jutla [8] formulas and are very similar to the
formulas that are shown to be hard in Bradfield’s proof [4].

In 1999, Miiller-Olm introduced Fizpoint Logic with Chop (FLC), which ex-
tends the modal p-calculus with a sequential composition operator [17]. He
showed that the expressive power of FLC reaches far beyond that of the modal
p-calculus. Despite this, its model checking problem remains decidable in de-
terministic, singly exponential time [15]. Again, the known model checking al-
gorithms are exponential in the syntactic nesting depth of alternating fixpoint
quantifiers [15, 14]. Thus, it is fair to ask whether the alternation hierarchy
within FLC is strict, too.

In the following we will answer this question to the affirmative. In order to
do so, we adapt Arnold’s proof for the strictness of the modal pu-calculus
hierarchy over binary trees. In Section 2 we recall the syntax and semantics
of FLC as well as its fragments of bounded alternation. Since there is no well-
known correspondence to an automaton model we show the hierarchy result
directly for the logic. This, however, requires a game-based characterisation of
the model checking problem for FLC which we introduce and prove correct in



Section 3. A preliminary version of these games with a misleading definition
of winning condition has been published before [14]. Section 4 starts with
another crucial ingredient to the hierarchy theorem: complementation closure.
Given that the semantics of an FLC formula is a predicate transformer, it is
not obvious that for every formula there is a complement. Yet the games of
Section 3 provide a simple explanation that this is indeed the case. The hard
part that follows proves the existence of formulas in FL.C that describe exactly
those FLC games that are won by one of the players. The rest of Section 4
finishes the hierarchy result by putting everything together just like it is done
by Arnold. Finally, Section 5 contains a short discussion of this result.

2 Preliminaries

2.1 Syntar and Semantics

Let P be a countably infinite set of propositions, and V be a countably infinite
set of variable names. Formulas of FL.C over P and V are given by the following
grammar.

o = q|Z 7O [O]eVe|ohp | pZe | vZe | oo

where ¢ € P, and Z € V. We will write o for either y or v, and & for
the quantifier that is not o. To save brackets we introduce the convention
that ; binds stronger than A which binds stronger than V. We also use the
abbreviations tt := vX. X, ff := pX. X and, if P is finite, 7 := V4, ¢, and
q—@:=qVe.

The set Sub(y) of subformulas of ¢ is defined as usual, with Sub(cZ.¢)) =
{0 Z.4} U Sub(v).

Formulas are assumed to be well-named in the sense that no variable in it is
bound by a p or a ¥ more than once. Our main interest is with formulas that
do not have free variables, in which case there is a function fp, : VN Sub(p) —
Sub(y) that maps each variable X to its unique defining fixpoint formula o X .¢)

in .

Given two variables X,Y € Sub(yp) for some ¢, we write X <, Y if Y occurs
free in fp,(X). A variable X is called outermost among a set of variables
V C VN Sub(yp) if it is the greatest in V' w.r.t. <.

An infinite binary tree over P is a function ¢ : {0,1}* — P. The root of a
tree is denoted €. For a tree t we write left(t), resp. right(t), to denote its left,
resp. right, subtree. Let 7p be the set of all infinite binary trees over P. In



la], = AT {w € {0,1}" | t(w) = ¢}

[O], = AT {w € {0,1}* | wi € T for some i € {0,1}}

[3]), = AT {w € {0,1}* | wi € T for both i € {0,1}}
[1Z¢l, =T{f:D—=D | f monotone, [¢l,, ., C f}
[vZ.¢), = U{f D —D | fmonotone, f C [¢], .}

[e; 91, = [el, o [¥];,

Fig. 1. The semantics of FLC formulas.

the following we will abbreviate the power set 2{%1}" of the domain of infinite,
binary trees simply as D.

An environment p : V — (D — D) assigns to each variable a function from sets
of positions to sets of positions in a tree; p[Z +— f] is the function that maps
Z to f and agrees with p on all other arguments. The semantics [[]]2 :D—D
of an FLC formula, relative to a tree t is such a function. It is monotone
with respect to the inclusion ordering on ID. These functions together with the
partial order given by

fCg iff VT eD: f(T)Cg(T)

form a complete lattice with joins Ll and meets M — defined as the pointwise
intersection, resp. union. By the Knaster-Tarski Theorem [21] the least and
greatest fixpoints of functionals F' : (D — D) — (D — D) exist. They are
used to interpret fixpoint formulas of FL.C. The semantics is given in Fig. 1.

For any FLC formula ¢ and any environment p let an”i) = [¢],({0,1}7). We
call this the set of positions in ¢ defined by ¢ and p. We also write t |=, ¢ if
€€ ||<,0||Z If ¢ is closed we may omit p in both kinds of notation.

Two formulas ¢ and v are equivalent, written ¢ = 1, iff their semantics are

the same, i.e. for every environment p and every t € 7p: [[np]]; = [[¢ﬂ;. Two

formulas ¢ and ¥ are weakly equivalent, written ¢ ~ ¢, iff they define the



same set of positions in a tree, i.e. for every p and every t € 7p: ||<p\|; = HwHtp
The following is immediate.

Lemma 1 For all ¢, € FLC: if p = then p = 1.

Let g be a closed FLC formula and Xi,...,X,, all g-variables occurring in
@o s.t. for all 4,5 € {1,...,n}: X; <, X; implies j < 4. Note that it is
always possible to order variables in such a way since two variables cannot
both occur unquantified in each other’s fixpoint definition — provided that g
is well-named.

A p-signature (for ¢g) is a tuple n = (ay, . .., @;) of ordinal numbers such that
0 <i <n.If k=0 then the signature is the empty tuple. Such p-signatures,
regardless of their actual length, are ordered lexicographically. It is well-known
that this ordering is well-founded since the standard ordering on the ordinal
numbers is well-founded.

Let puX;(Xq,...,X;) € Sub(po). Note that 1 may contain free v-variables
other than X,...,X;. We do not mention them explicitly here in order to
avoid notational overkill. Approximants of such a formula are defined for every
p-signature of length ¢ as follows. Let p be the environment that maps every
v-variable to the constant function \7.{0,1}*, and t € 7p.

X'(ozl,...,ozi,hl)) — \T @
i = .
ey @i—1,00+1) t
X(alv yQg— 1, = , e
i W]]p[xwxi(”‘l""‘“H’“), X; X](.al’ “Dior all j=1,...,i—1]
X'(al,...7ai,1,n) — I_l X'(al,...,ozifl,oc)
7 . )
a<k

where k is a limit ordinal.

A v-signature is defined in just the same way. It interprets possible free pu-
variables by the constant function A7T.(). We will not distinguish p- and v-
signatures syntactically.

The next result is a standard result about approximants that follows from
the Knaster-Tarski Theorem [21]. Since we interpret free v-variables inside an
approximant for a p-variable as the maximal element in the function lattice
D — D and also vice-versa, its proof also needs monotonicity.

Lemma 2 For all treest € Tp, all T C {0,1}*, and all p(X) € FLC with at
most one free variable X we have:

(1) if t € [uX.©]"(T) then there is a successor ordinal a s.t. t € X(@)(T).
(2) if t & [vX.0]'(T) then there is a successor ordinal a s.t. t & X @(T).

We note that this easily carries over to formulas with more than one free



variable (X7, ..., X,) and n-ary p-, resp. v-signatures. If t € [[uX.gp]];(T) s.t.

p interprets Xy,..., X,y by X{*,..., X)”"7' then there is an n s.t. t € X"(T).
The p-signature n is obtained by extending the pointwise infimum of the n;
fori=1,...,n— 1 with an o whose existence is guaranteed by Lemma 2.

2.2 Syntactic Alternation

The Niwinski hierarchy categorises formulas of a fixpoint calculus according

to the nesting structure of their fixpoint subformulas. Let 33" = II§™ consist

of all fixpoint-quantifier-free FL.C formulas. Higher levels are built inductively
syn

in the following way. X7}, is the least set of FLC formulas that contains
Y UILY™ and satisfies the following constraints.

(1) If p € X" then pX.p € ¥ for any variable X.

(2) Ifp(Xy,...,X;n) € Z2mand ¢y, ..., ¢y, € X9 then (¢, ..., ¢y) € X"
for any m € N, provided that no free variable of any 1; gets bound by a
quantifier in .

11777, is built in the same way with v instead of p.

From this hierarchy we derive two semantical alternation hierarchies, reflecting
the weak and strong equivalence in FLC. For all n € N we define

Yy o= {peFLC | e X" st. o =9}
IIv = {p e FLC | W € I s.t. ¢ = ¢}
¥ = {peFLC| I e X" st. o =1}
I, = {p e FLC | W € I s.t. ¢ = ¢}

It is not hard to see that the syntactic hierarchy is the finest, the weak se-
mantical hierarchy is the coarsest, and the strong equivalence hierarchy lies in
between.

Lemma 3 For all n € N we have X" C ¥: C X,

Later we will have to build a fixed formule ®,, that reflects the alternation
structure of any ¢ € X%". Note that a formula of X" can contain fixpoint
subformulas of 2n — 1 different sets ;" and II7". The straightforward trick
of mapping each subformula in ¥ to the odd 2i — 1 and every subformula in
I to the even 2i is not applicable here for the resulting formula would be
in 35" ;. Hence, we assign levels in a more succint way, depicted in Fig. 2 for
some even n. Formally, let ¢ € X3 for some n € N. For all Y € Sub(py) NV
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Fig. 2. Slicing the hierarchy succinctly into levels for an odd n.

let

Wl (Y) == min { k | fp, (V)€ X" \I[", and Kk =n mod 2, or
fpo,(Y) € II" \ 53" and k #Zn mod 2 }

3 Model Checking Games

3.1 The Rules and Winning Conditions

The model checking game G(t, ¢) is played between players 3and Von at € Tp
and an FLC formula ¢. Configurations of the game are of the form w,d - ¢
where w € {0,1}*, ¢ € Sub(p) and § € Sub(p)*. The latter is interpreted as
a stack with the top on the left and the sequential composition operator as
a separator. For two stacks 0 and 0’ we write § < ¢’ if there is a (possibly
empty) stack v € Sub(p)* s.t. &' = 7; 4, i.e. ¢ is an extension of ¢.

A play of G(t, ) starts in the configuration Cy = €,tt F ¢, and proceeds
according to the rules presented in Fig. 3. The premisses of a rule are written
below the hypothesis. The annotation to the right determines the player whose
turn it is to choose one of the premisses.

Let Cy, 4, ... be an infinite play of the game G(t, ¢) s.t. for all i € N: C; =
w;, 0; = 1; for some wy, d; and ;. We call a variable X stack-increasing if there
are infinitely many ¢, 1,... € N, s.t. for all j € N:

o C;, = wj,0; = X for some w; and some §; € Sub(p)*,
e for all k > iji 5ij = (Sk

In other words, a stack-increasing variable defines an infinite set of configura-
tions s.t. the stack contents of each of these configurations do not get popped.

Player 3 wins the play Cy, C1, ... of G(t, ¢) if
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Fig. 3. The model checking game rules for FLC.

(1) there is an n € N s.t. C,, = w, 0 b p for some w and §, s.t. t(w) = p, or
(2) it is infinite and its outermost stack-increasing variable is of type v.

Player V wins the play if

(3) there is an n € N s.t. C,, = w, 0 F p for some w and 4, s.t. t(w) # p, or
(4) it is infinite and its outermost stack-increasing variable is of type pu.

3.2 Correctness

Take any o € FLC. An unfolding tree of g is a ranked tree T" with nodes
labeled by subformulas of ¢y which satisfies the following.

(1) The root of T is labeled with .

(2) If a node is labeled 11 V 15 or 11 A 1)y then it has one successor labeled
Yy or Ps.

(3) If a node is labeled puX.p or vX. then it has one successor labeled X.

(4) If a node is labeled X and fp, (X) = 0X.¢ then it has one successor
labeled .

(5) If a node is labeled 91; 12 then it has two successors: the left one is labeled
11 and the right one is labeled 5.

A partial unfolding tree allows the right son of a node labeled ;15 to be a
leaf provided that the same holds for all such nodes above this one. A (partial)
unfolding tree is called tagged if some of its nodes are tagged with a natural
number. In the following we will simply speak of an unfolding tree instead of
a tagged partial unfolding tree.



Every play m = Cp, C1, ... in a game G(t, @) defines an unfolding tree 77 it is
constructed in a left-depth-first manner using a control stack of nodes in 7.
Starting with the actual configuration Cj, the root of T} as the actual node,
and the empty control stack, proceed as follows.

Let C; = w;, 0; F 1; be the actual configuration. Label the actual node n of T,
with 1); and give it the tag i. For as long as there is a successor configuration
Ci+1 continue with it and

e the son of n if the rule that applies in C; is (V), (A), (FP), or (V).

e the left son of n if the rule that applies in C; is (; ); push the right son onto
the stack.

e the node popped from the top of the stack in any other case.

The following facts about an unfolding tree T, are easy to see.

Fact 4

(a) No two nodes in T, have the same tag.
(b) T, has at most one tagged infinite branch.
(c) A node with tag m is below or right of a node with tag n iff n < m.

Because of (a) we write T (i) for any ¢ € N to denote the unique node with
the tag 7. The parts (b) and (c) are due to the fact that 7} is obtained in a
left-depth-first manner.

Example 5 Take the infinite binary tree ¢ whose root is labeled b and all of
whose other nodes are labeled a. Take the 33" formula ¢ = pY.(a A ) Vv
O; (vX.Y; X;Y) and consider the game G(¢, ). In order to avoid defeat by
reaching a, player 3 first chooses the right disjunct. Note that player V’s choices
with rule (O) are irrelevant since no node in ¢ has two different subtrees. Also,
he immediately loses when he chooses the conjunct a anywhere other than at
the root of ¢. An infinite play of G(¢, ) is sketched in Fig. 4. The left column
contains a symbolic name and a label for the respective configuration. The
need for the latter will be explained in Section 3.3.

In this play, both X and Y occur infinitely often in the principal position.
Note that neither fp,(X) nor fp,(Y') occur infinitely often. Furthermore, we
have X <, Y. Thus, the outermost variable occurring infinitely often in this
play is Y which is of type u. But the outermost stack-increasing variable is
X which is of type v. Therefore, player 3 wins this play. In fact, ¢ = ¢ and
the strategy described above is a winning strategy for player 3 in the game

Gt p).

The fact that here it is X rather than Y that determines the winner — unlike
in the case of the model checking games for the modal p-calculus — can be



Co, €7 : e, tt b pY.(anO)VvO (wXY;(X;Y))
Ci, ey : €, &t Y

Cy, €1 : e, tt F (anO)VO WXY;(X;Y))
Cs, e, tt F OwXY;(X;Y))

Cy, a e, WXY;(X;Y));tt B O

Cs, er : 0, tt F vX.Y;(X;Y)

Ce, €1 : 0, &t F X

Cr, d 0, &t F Y;(X;Y)

Cy, es : 0, (X;Y)tt F Y

Cy, e : 0, (X5Y)tt B (anO)VvO(vX.Y;(X;Y))
Cho, ay : 0, (X5Y)tt F an<

Ch, e : 0, (X;Y)tt F <

Cha, d - 00, &t + XY

Cis, €1 : 00, Vit - X

Cua, d - 00, Vit F Yi(X;Y)

Cis, €3 : 00, (X;Y);Y;tt Y

Cie, €1 : 00, (X;Y);V;tt F (an<O)VvOwX.Y;(X;Y))
Ciz, aq : 00, (X;Y);Vitt B an<

Cig, € 00, (X;Y); Y5t H <

Cho, d - 000, V:tt F X:Y

Coo, €1 : 000, V;YV;t&t H X

Fig. 4. An infinite play of Example 5.

explained as follows. The semantics of both Y and X are functions of type
D — D. Each unfolding in the play creates an approximant to this function
which, in turn, is also such a function. Consider the second occurrence of Y in
principal position. This can be seen as a query asking whether 0 is included in
the value of Y at the argument [X;Y; tt]]z for some appropriate p. Although
Y is defined recursively, the next occurrence of it in principal position simply
asks for the value of the same approximant but at another argument.

X, however, is stack-increasing. Consider also the difference to Y in the un-
folding tree in Fig. 5: there is no branch on which Y occurs infinitely often.
X, however, does occur infinitely often on the branch that is abbreviated at
the bottom. It shows that every corresponding occurrence of X in principal
position represents another approximation to the value of X relative to the
same value for Y.

Lemma 6 Let m = Cy,Ch,... be a play of G(t,p) with C; = w;, 6; = 1; for all
i € N. For alln,m € N with n < m we have: §,, < 0 for all k withn <k <m

10



Y. (an<O)Vv O (vXY;(X;Y)) 0
Yy @1
(anO) VO (vX.Y;(X;Y)) 2
O, (vX.Y;(X;Y)) @ 3
O : 4 vXY;(X;Y) 5
X 6
V;(X;Y) « 7
Y @ 8 X;Y 12
(anO)VO(vX.Y;(X5Y)) 9 X @ 13 Y
an< 10 YV;(X;Y) : 14
S - 11 Y . 15 XY . 19
(anO) VO (vX.Y;(X5Y)) 16 X @ 20 Y
aNo o 17 :
SO 18

Fig. 5. The unfolding tree for the play in Figure 4.

iff T.(m) is a successor of Tr(n).

PROOF. (=) by contradiction. Suppose T.(m) is not a successor of T, (n).
Since m > n, and in fact m > n in this case, T (m) must be right of T, (n)
in T;. Remember that T, is built in a left-depth-first fashion. But then there
must be a predecessor of T, (n) with a right son that is a predecessor of T, (m).
Moreover, this node must have a tag k'. Now, since T, (k') is right of T, (n)
but above T (m) we have n < k" < m.

Finally, since 75 (k") is right of T;(n) it was pushed onto the control stack
before T(n). Hence, it could only be tagged after the top element of the
control stack present at the moment that Ty (n) got tagged was popped. Now
note that a node with tag ¢ gets pushed onto, resp. popped from the control
stack iff the label of this node gets pushed onto, resp. popped from the game
stack d; in configuration C;. Hence, the construction of T} has reached a node
with tag k, s.t. n < k <k’ and d;, < 6, i.e. 0, & Op.

Thus, if T; (m) is not a successor of T (n) then there must bea ks.t.n <k <m
and d,, A 0y, which proves half of the claim.

(<) Now suppose that T,(m) is below T, (n) but that there is a k' with
n < k' <msdt. 0, £ 0. Asin the first part, there must be a k s.t. n < k <k’
and O < 0,. But then T, (k) is right of T (n) and, since k < m, T,(m) is
right or below of T, (k). This contradicts the assumption that 75 (m) is below
T.(n). O

11



A simple consequence of this lemma is the following.

Corollary 7 X is stack-increasing in the play 7 iff X occurs infinitely often
on a tagged branch in T.

Lemma 8 FEvery play has a unique winner.

PROOF. A play 7 can either be finite or infinite. It is only finite if no further
rule applies to a configuration, but then either winning condition (1) or (3)
applies. Note that they are mutually exclusive.

Now let 7 be of infinite length. For each ¢ € N there is a node with tag i
in its corresponding unfolding tree T). This tree is finitely branching and,
by Konig’s Lemma, has an infinite branch. This branch must have infinitely
many labels that are variables for otherwise the labels would eventually shrink
in size and become atomic propositions. However, those cannot occur on an
infinite branch. Since the underlying formula ¢, only contains finitely many
variables, there must be at least one variable that occurs infinitely often on
this branch.

Now note that if two variables X and Y occur on one branch then we have
X < YorY <, X for some input formula ¢y. Hence, there is an out-
ermost variable X that occurs infinitely often on this branch. According to
Corollary 7, X is stack-increasing in 7. Fact 4 says that there is at most one
tagged infinite branch in 7T;. Hence, any other stack-increasing variable in 7 is
smaller than X w.r.t. <,,. But then the fixpoint type of the unique outermost
stack-increasing variable uniquely determines the winner of 7. O

Theorem 9 For allt € Tp and all closed ¢ € FLC: player 3 wins the game
Gt e) iff t = .

PROOF. (<) Suppose t = . We need to describe a winning strategy for
player 3 in the game G(t, ). Intuitively, she preserves truth along each play.
Since configurations in this game can contain free variables in principal posi-
tion or on the stack, we need to define a notion of truth that interprets free
variables. We let player 3 use p-signatures for their interpretation and, at the
same time, to guide her choices in a truth-preserving way.

Note that each play starts with the configuration C' = €,tt F ¢ and, by
assumption, we have ¢ |= ¢ which entails ¢ = @;tt. In general, let C' =
w,d F 1 be a configuration, in which each free occurrence of a u-variable
X in ¢ or 9 is annotated with a p-signature n. We will call C' true, if w €
|1; 6| where each such X is interpreted by the approximant X”. We will also
use p to denote such an interpretation, and write w € [¢;4 ||tp for example.

12



Note that such a p interprets occurrences of variables. Hence, the term p(X)
can be ambiguous since the variable X can occur several times in C. For
example, it could be put onto the stack and into principal position. The former
remains whereas the latter gets unfolded. Then these two occurrences represent
different approximants. Nevertheless we will use this notation as well as the
update p[X +— X"] since the relevant occurrence of variable X will easily be
derivable from the context.

First we observe that player 3 can indeed preserve truth in each play, and that
player V must preserve truth with his choices.

e The starting configuration €, tt - ¢ contains no free variables and is true
under any p by assumption.

e If the actual configuration is w, d F 11 Vb and w € |(¢1 V 19); 5H; for some
p then there is an i € {1, 2} s.t. the successor configuration is w, d - 1; with
w € | 5||; for the same p.

e If the actual configuration is w, § - 11 Ahg and w € ||(¢1 A 1h9); 5Htp for some
p then for both possible successor configurations w,d F ;, i € {1,2} we
have w € |i; 5||; for the same p.

o If the actual configuration is w, ;0 F & with w € ||<>;¢;5||; for some p

then there is an i € {0,1} s.t. wi € |¢; 5H;. Le. the corresponding successor
configuration wi, d - 1 is true under the same p.

e If the actual configuration is w, ;6 - O and w € |O;; 5||; then wi € |; )7
for both i € {0, 1}. Le. both successor configurations are true under the same
p-

e The rules (7), and (;) trivially preserve truth under the same environment
p-

e Consider rule (FP) which is to be applied to a configuration w,d F vX.¢

st.ow € H(I/X.w);(SHZ. Hence, w € HX;(SHf/ where p' updates p for the new

occurrence of a free variable X: p[X +— [vX wﬂtp] Note that [[VX.’Q/)]]Z C
AT.{0,1}*, and, by monotonicity, the successor configuration w,d F X is
true under p[X — AT.{0, 1}*].

e Consider rule (FP) in a configuration w,d F pX.¢) which is true under
the environment p, i.e. w € [(uX .¢);5||;. The following configuration is
C'" = w, 0 F X which contains a new occurrence of a free variable. According
to Lemma 2 and the remark following it, there is a p-signature n s.t. C” is
true under the interpretation p[X +— X"]. Note that this new interpretation
leaves the other occurrences of the variable X in ¢ untouched. Furthermore,
pu-signatures are well-founded and by monotonicity we can assume 7 to be
the lexicographically smallest that makes C’ true.

e Finally, consider rule (V) which is applied to a configuration w,d F X,
st w € ||X;(5”tp. Let fp,(X) = o X.¢ for some 9. If 0 = v then p(X) =
AT.{0,1}* and, by monotonicity, the following configuration C' = w, § - 9
is true under p as well.
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Assume therefore o = y, and let p(X) = X (@1~22) for this occurrence of
X. By the definition of approximants, «, cannot be a limit ordinal. Hence,
it must be a successor ordinal a,, = 8+ 1. Let p' := p[X > X(@1--0)], But
then the following configuration C’ is true under p'.

This defines a simple strategy for player 3: whenever a subformula of the form
uX 1) occurs in principal position, she takes the least p-signature n according
to Lemma 2 and annotates this occurrence of X with 7. If a u-variable is in
principal position then it must have an annotation n. When it is unfolded she
decreases the last component of . If this creates a limit ordinal she can replace
it by a smaller successor ordinal. Whenever she has to perform a choice with
rule (V) or (<) she simply preserves truth under the interpretation given by
her annotations.

It remains to be shown that this is indeed a winning strategy. For the sake of
contradiction suppose that player V plays with his best strategy against this
strategy. The result is a single play 7. Remember that every configuration in
7 is true under the interpretation that is given by the annotations at each
occurrence of a variable.

But then player V cannot win 7 with his winning condition (3) because this
would require him to reach a configuration that is blatantly false under any
interpretation of the free variables. Suppose therefore that his winning con-
dition (4) applies, i.e. the outermost stack-increasing variable X in 7 is of
type p. Take the last configuration C;, after which no outer variable than X
occurs in a stack-increasing fashion. Remember that it has been annotated
with some 7. Since X is stack-increasing there are further C;,, C,, ... with X
in their principal position. According to Corollary 7 they induce an infinite
branch in the unfolding tree 7. If there was another stack-increasing variable
Y then it would induce the same branch. Since by assumption there is no
such Y, this branch in the unfolding tree witnesses an infinite unfolding of a
least fixpoint variable. Hence, by the well-foundedness of the ordinals, there
would be a configuration C;, = w;,,d;, = X for some £ that is true under the
interpretation that maps X to some (a4, ...,0) which is impossible.

Lemma 8 says that the play is won by player 7 if it is not won by player V.
We conclude that player 3’s strategy must in fact be a winning strategy.

(=) This can be proved analogously to the completeness part above. Suppose
t i~ ¢. Now player V has a strategy which consists of preserving falsity as well
as annotating the occurrences of v-variables with v-signatures.

As above, player 3 cannot win against this strategy for it would contradict the

preservation of falsity or Lemma 2. But by the definition of winning strategy,
player 3 cannot have one for the game G(¢, ). O
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3.8 Games as Binary Trees

For any n € N let P, := {e,a,aq,t, f,d} U{e; | i € {1,...,n}}. Next we will
modify the rules and winning conditions of the model checking games s.t. the
representation of a game G(t, ) on any t € 7p and any ¢ € ¥ is again an
infinite binary tree in 7p, .

Note that G(t,p) is a tree, namely the tree of its configurations with the
starting configurations as the root and successor configurations as sons in the
tree. In order to make it an infinite binary tree we replace the rules for fixpoint
quantifiers, variables, sequential compositions and the atomic formula 7 by the
following ones. They simply duplicate premisses and make player 3 choose one
of the identical copies.

w,0 oz w, 0+ Z
3 3, if fp,(Z) =0Z3
w, 02 w, 0+ Z w,0 w,0 -
w75|_w0;w1 3 wa¢,5'_7
ijlﬂﬂ_lbo W,¢13(5|_¢0 w75|_¢ waél_w

Furthermore, the following rule is added to the game. It ensures that G(¢, )
becomes an infinite tree.

w,0 Fq
w,0 Fq w,0 Fq

It should be clear that Theorem 9 is still valid under the amended interpre-
tation of G(t, ). Finally, we define the labeling of the trees’ nodes as follows.
Let t' = G(t, ¢) for some t and ¢. Assume n still to be fixed through the choice
of P,.

t ift"(e) =q

t'(w,0Fq) =
f ow.
t'(w,0 - X) = e  wherei=ll,(X)
t'(w,0 <) = e
t(w,6-0) = a
t'(w,6F7) = e
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t(w,0 F P V) = e
t(w,0 =1 Ahy) 1= ay
Hw,bF oXp) = e
t'(w, 0 F i) = d

Hence, e and a mark those configurations in which player 3, resp. V makes a
choice and a formula is popped; t and f mark configurations that are true, resp.
false; e; and a; mark choices by either of the players that continue without
popping a formula from the stack; and d marks configurations in which a
formula gets pushed onto the stack.

Fact 10 For anyt € Tp and any ¢ € X" we have G(t, ) € Tp,.

With games being trees themselves, we can interpret FLC formulas over them,
i.e. play the model checking game on such trees. This bears some notational
difficulties. In order to simplify this we introduce the following convention. Let
t':= G(t, ) be the game tree for some other tree ¢t and some ¢ € FLC. Let ¢/
be another FLC formula. Configurations of the game G(#', ') are, of course,
of the form w, d - 1. Note that w determines a configuration C' of the game
G(t,¢), namely the unique configuration at position w in ¢’. Since C' will often
be more meaningful than w in such a context, we will allow ourselves to write
C,d 1) for a configuration in G(G(t, ), ¢’) instead.

4 The Alternation Hierarchy
4.1 Game Formulas

The proof of the hierarchy theorem relies on the fact that FLC is closed
under complementation. This is not true w.r.t. the strong equivalence relation.
Clearly there is no formula ¢ whose semantics is the complement of the identity
function [7]" because it is not monotone.

However, FLC is closed under complementation w.r.t. weak equivalence. It
is possible to find, for any ¢, a dual counterpart that defines exactly the
complement of the tree models of .

Lemma 11 For every n € N and every ¢ € IV there is a p € ¥V, s.t. for
dlteTp:tlE=qifft - .
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PROOF. First we define for each ¢ € FLC an auxiliary formula ¢ as

¢ = VP (o Vi) = vy A
T =7 (Yo A1) = Vi
X = X (Yo ¢1) = ;e
O = O (WX) = vX
o o= O (v Xap) = pXy/

For every T € D we use T to denote {0,1}*\ T. A straight-forward induction

on the formula structure then shows that we have [[(p]]Z(T) = [[go’]]i(T) for all
te€Tp,all T €D, all p € FLC and all environments p.

Hence, the complement of ¢ w.r.t. weak equivalence can be defined as @ :=
s £ff. Then we have ¢t = ¢ iff t £ @ for all ¢ € Tp. Note that p ~ ¢;tt. O

We note that it is also possible to prove Lemma 11 using Theorem 9. The game
G(t,p) is the dual game of G(¢, ) in which the players’ choices and winning
conditions are swapped. Hence, player 3 wins the game G(t, ) iff player V
wins the game G(t, ) from which the claim follows, too.

Next we will introduce formulas that later we will show to be complete for
each X%-level of the alternation hierarchy. These describe exactly those game
trees that are winning for player 4 on appropriate formulas.

Definition 12 For any n € N let

O, = puX,vX, 1.uXn_o. . ... cXi. tV
(f AN e—=<C A a—0 AN d— (X)X A

ap —0;Xy A /\ei—><>§Xz‘)
i=0

Fact 13 For alln € N we have ®,, € X"

Consider the model checking game played on any tree ' and ®,. Note that
because of ®,,’s structure, any play of G(t', ®,,) proceeds as follows.

(1) Depending on which variable occurred last, the play enters the fixpoint
prefix somewhere and proceeds through all the fixpoint quantifiers further
inside.

(2) Player 3 can choose the proposition ¢ or the big conjunction. In the former
case the play finishes immediately.
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Co, 8t F puXovXy.... Cu, Xyttt " X1

Co, Bt F e VvorX, Cn, Xite B O
: Ch, &t F X,
Cl, tt F X,
013, Xl,tt I_ X1
Ci, &t F &aVvo X, :
: Cu, Xt B Xy

Cy, &t F X, :
: Ci5, Xiitt X,
07, tt l_ Xl
Clﬁa Xl,Xl,tt F X2
Cr, 6 F (O3 X1); X, :
Cr, Xpte B O Xy Ci7, Xy;Xq;tt l— X,
X Xttt H O :
o C’thjtt X Cis, X X;t60 O
v B ' Clga Xl;tt I_ Xl
087 lett H <>,X2 :
Xt B (O X)) X
Cy, Xo; X138 B O Cho, Xi; : (O X1): Xy
Cy, Xi;tt l— X5 Coo. Xi:Xpitt F X,

Fig. 6. Excerpts of a play involving the game formula ®,.

(3) Player V chooses one of the conjuncts. The play is finished only if it is
the first.

(4) Player 3 chooses one of the disjuncts presented as implications. Again,
the play is either finished or continues in the same manner. The latter
might involve a choice through a modal formula, and a pushing onto or
a popping from the stack.

Our goal is to show that ®,, describes exactly those trees that are winning
games for player 3. In order to lead up to this we recall Example 5.

Example 14 Let ¢ and ¢ be as defined in Example 5. In particular, ¢ =
pwY.(a ANO) VO wXY; X;Y). Let @ = Cop,C4,... be the play of G(t, )
that is presented in Fig. 4. Note that ¢ € 35", Fig. 6 sketches a play m of
G(G(t,p), Ps) that corresponds to 7’ in the sense that the projection of 7 onto
its first component yields 7’. In 7, both players avoid sudden defeat by never
choosing an atomic proposition.

Recall that the outermost stack-increasing variable in 7 is X, not Y. Further-

more, [vl,(X) =1 and wl,(Y) = 2. The excerpts of 7 presented in Figure 6
show that, consequently, X is stack-increasing whereas X5 is not.
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Suppose that ¢ € 32" and that player 3 has a winning strategy ¢’ for the game
G(t, ) on some tree t. Now consider the game G(G(t, ), ®,). We describe a
strategy ( for player 3 in this game. It simply makes player 3 choose, resp.
avoid those disjuncts that are obviously true, resp. false, and appeals to ¢’ in
case of O-formulas.

Let ¢’ be a strategy for player 3 in the game t' := G(t,¢) with ¢ € X9
Note that ¢’ maps positions w in t’, s.t. player 3 has to perform a choice in
the corresponding configuration C, to successor positions wi, i € {0,1}. A
position in ¢ uniquely defines a configuration. Hence, we simply regard the
strategy (' as a function that maps configurations to configurations.

Definition 15 Let (' be a strategy for player 3 in the game t' := G(t, ) with
p € X2, Define a strategy ¢ for player 3 in the game G(G(t, ), ;) as follows.

w,0bkq , ift'(w)=q
w,0 v, o.w.

C(w,0FqVy) =

w,otq , ift'(w) #q
w, oY , o.w.

C(w, ;0 0) == ((w), 01

C(w, 0 V) =

For the last case note that a configuration of the form w,v;é F < with con-
figuration C' = t',§’ F ¢’ at position w is only reachable in G(G(t, ¢), ®,,) if ¥’
requires player 3 to make a choice in C in G(¢, ). Otherwise, ('(w) would be
undefined.

Lemma 16 Let ¢ € X" and t € Tp. For every play © of G(G(t,v), P,)
there is a unique play 7 of G(t, ), s.t. m conforms to  iff ©’ conforms to ('.
Moreover, the mapping -' is injective.

PROOF. Let 7 be a play of G(G(t,¢),P,). The projection onto its first
component yields a sequence of configurations of G(t, ¢). Collapsing adjacent
and equal configurations in this sequence yields a play 7" of G(¢, ¢). The play
7 conforms to ( iff the play «’ conforms to ¢’ simply by the definition of (.

What remains to be shown is that 7 can be reconstructed from 7’. Remem-
ber the description of how a play in G(¢', ®,,) proceeds for any ¢'. Note that
there is only one possibility to obtain an infinite play and this is done if
both players avoid defeat by never choosing an atomic proposition that is cur-
rently false. Clearly, the projection onto the first component and collapsing
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yields the play n’ again. Hence, every 7’ also uniquely determines a play = of

G(G(t, @), Pn). O

In the following we will assume 7’ and 7 both to be infinite plays that corre-
spond to each other in the described way.

Next we consider a binary relation R between configurations in 7" and config-
urations in 7 defined as

R(C', (C,6Fv)) iff C=C"

For every configuration C’ let Ist(C") denote the last configuration C' (in the
natural occurrence order) in 7 s.t. R(C’,C). Note that there need not nec-
essarily be a last one because of the added game rules that simply replicate
configurations. This, however, is only possible if eventually all configurations
are the same. In this case let Ist(C”) be this unique configuration. Similarly,
let fst(C") be the first configuration C' s.t. R(C’,C). Note that fst(C”") and
Ist(C") always exist if 7 is an infinite play.

Lemma 17 For any C’, let 61,...,0,, be all the stacks occurring in configu-
rations between and including fst(C") and Ist(C"). Then for alli =1,...,m:
01 = 6.

PROOF. Remember the above description of how a play in G(G(t, ¢), D,)
proceeds. The configuration fst(C”) has in its principal position either ®,, itself
or a variable Xj. From then on, rules (FP) and (V) are played possibly several
times, then (V), then (A), (V) again, and finally (;) once, twice or not at all.
Then, Ist(C") is reached. Note that the stack remains unchanged until, in the
end, something possibly gets pushed onto it with rule (;). Popping an element
from the stack is only possible in the transition from a [st(C") to a fst(C”)
where C” is the successor configuration of C’. Hence, between fst(C’) and
Ist(C") the stack always is an extension of the stack in fst(C’). O

Let C' = w,d - 9 be a configuration in a play = of some game G(t, ¢). We
write |C| for the size of its stack, i.e. [C| = 1+ n —m where n is the number
of rules that push something and m is the number of rules that pop something
played in 7 upto C.

Lemma 18 Let 7’ = Cy,C,.... For all i € N we have: |Ciq| — |Ci] =
[fst(Cisa) || — [ fst(C3)].-

PROOF. By case distinction on the rule that transforms C; into C;, ;. Sup-
pose it is rule (V), (A), (FP) or (V). Then C; is labeled with some e; or a1, and
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ICis1] — [|Ci| = 0. Remember that both players are assumed to avoid defeat
in 7 that contains fst(C;) and fst(Cii1). Let fst(C;) = C;,0 F 1 for some 0
and ¥. If i = 0 then ¢ = ®,,, otherwise ¥ = X} for some k. But then the
play proceeds with the application of rules (V) or (FP) possibly repeatedly,
followed by rules (V), (A), and (V) again to a configuration Cj,d - <5 X or
C;,0 F 0; X;. Note that none of these rules changes the stack. Subsequently,
after applying rule (; ) and then (<) or (O) it reaches Cit1,0 = X; = fst(Ciiq).
Hence, | fst(Cit1)| — [ fst(C3)] = 0.

Similarly, if the rule that applies in C; is (<), (O), or (1), then |Ci 1| — |Ci| =
—1. Moreover, let fst(C;) = C;,1'; 6 = 1b. Because the label of C; is a or e we
have fst(Ciy1) = Ciy1, 0 9" and, thus, |fst(Ci)| — |fst(Cy)| = —1.

Finally, the last remaining case is that of rule (; ) which yields |Ciy1|—|Ci| = 1.
Here, the label of C; is d, and if fst(C;) = C;,0 F 1 then 7 contains the

fragment

Ci,0 ik = [st(Ci)

Ci,0 Fd— (0;X1); Xy
Ci, 0 F (€, X7); X3
Ci, X1;0 F <O Xy
Ci, X1; X1;0 = Ist(Cy)
Ciy1, X150 E Xy = fst(Cis1)

Hence, |fst(Cipa)| = |fst(Ci)| = 1. O

Theorem 19 For every n € N, every ¢ € X" and every t € Tp for some P
we have: if t |= ¢ then G(t, @) E ..

PROOF. Suppose ¢ € X" and t |= ¢. According to Theorem 9, player 3
has a winning strategy ¢’ for the game G(¢, ¢). By Fact 10, this forms a binary
tree in 7p, itself, and we abbreviate ¢’ := G (¢, ¢). Now consider the strategy ¢
for player 3 in the game G(G(t, @), ®,) as constructed in Def. 15. It remains
to be seen that this strategy is winning.

Assume therefore that player V plays against ¢ with his best strategy. As said
above, the result is a single play 7 in G(G(t, ¢), ®,) which defines — by a
projection — the single play 7’ in G(¢, ). According to Fact 16, n’' conforms
to ¢’ and is thus winning for player 3. There are two possibilities depending
on the winning condition that applies.

If she wins 7" with her winning condition (1), i.e. by reaching an atomic propo-
sitions which is true then she does so in 7, namely the proposition ¢. Suppose
therefore that she wins with her winning condition (2), i.e. the outermost
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stack-increasing variable X is of type v. Then ll,(X) = k for some k # n
mod 2.

Now let C’Z'O,C” . be all the positions in n’ witnessing that X is stack-
increasing, i.e. X is the principal formula in Cj, for all j € N. Then ¢'(C7)) = ey,
and, hence, X}, is the principal formula in the successor of Ist(CY). However
the successor of Ist(C; ) is fst(Cj 4,). Since the rule that is played between
each Cj and Cj i, is (V) for every j € N we have [C} | = [C} 1,]. Applying
Lemma 18 ylelds [fst(C) = |fst(Cf, 1) for every j € N. Since (G5 I
|Ci .|| for every j € N we also get ||fst( L)l < 1 fst(C . )l These
however, are configurations with Xj in prmmpal position. Flnally, Fact 17
shows that between these configurations, the stack content of each fst( g i 11)

never gets popped. Hence, X}, is stack-increasing, too.

What remains to be shown is that X is outermost among the stack-increasing
variables in 7. Suppose it is not. Then there must be another Xj that is
outermost and stack-increasing in 7 s.t. k' > k. Since X} is outermost, there
are only finitely many configurations with X/ in principal position that result
from an application of rule (FP). But there are infinitely many positions with
X} in principal position. Hence, there are infinitely many C;,, C,, ... s.t. for
all j € N: Oy = €, 6;; B Xy for some C} and ;;. But then the rule that
put Xy into pr1n01pal pos1t10n must have been (<>) or (O) infinitely many
times. Hence, there are infinitely many configurations C; ,Cj ,... in 7’ that
are labeled e;s. Note that &' > 1 since k > 1, hence, ay is impossible. But then
the principal formula in each C} must be a variable Y;; with Wl,(Y;;) = &'.
Since there are only finitely many variables in Sub(p), there must be a Y with
Wl,(Y) = k'. According to Lemma 18, Y must be stack-increasing in 7" which
contradicts the assumption that X is the outermost stack-increasing variable

in 7.

We conclude that ( is indeed a winning strategy for player 3 in the game
G(G(t, ), P,), and according to Theorem 9 we have G(t,¢) = ®,. O

Theorem 20 For every n € N, every ¢ € X" and every t € Tp for some P
we have: if G(t,p) = @, thent = .

PROOF. Suppose G(t, ) = ®,, i.e. player 3 has a winning strategy ¢ for
the game G(G(t,¢), ®,). As above, we will define a strategy ¢’ for her in the

game G(t,p).

Suppose a ¥ € Sub(p) requires player 3 to make a genuine choice, i.e. ¥ is a
disjunction or a ©. Note that for every configuration C' = t”,§ F 1 that is
reachable in G(t, ) there is a unique configuration Ist(C") = C’,§ - < in the
corresponding play for some §. By assumption, strategy ( tells player 3 how
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to choose in Ist(C"). This is used to define a corresponding choice in C”:
gy = ¢" it ((st(C) =C", 5 ¢ for some 0,

Now suppose for the sake of contradiction that player V plays with his best
strategy against ¢’ and the resulting play 7’ is winning for player V. According
to Lemma 16, the corresponding play 7 of G(G(t, ¢), ®,,) conforms to ¢. Thus,
7 is winning for player 4.

Suppose player V wins 7’ with his winning condition (3), i.e. by reaching a
false atomic proposition. Then the path 7" in G(t, ) is eventually labeled with
f only, and player 3 cannot possibly win 7 because f does not occur positively
in ®,,.

Suppose therefore that player V wins 7’ with his winning condition (4), i.e.
the outermost stack-increasing variable is of type . Analogously to the proof
of Theorem 19, the outermost stack-increasing variable in 7 would have to be
of type p, too. But this contradicts the assumption that player 3 is the winner
of 7.

We conclude that ¢’ must be a winning strategy for player 3 in the game
G(t,¢) and, thus, t = ¢ because of Theorem 9. O

Merging Theorems 19 and 20 yields that ®,, describes exactly those game trees
that are winning for player 4.

Corollary 21 For every n € N, every ¢ € X" and every t € Tp for some P
we have: t |= @ iff G(t, @) E P,,.

4.2 Strict Formulas

Lemma 22 For every n € N and every closed ¢ € X there is a unique
t* € Tp, s.t. t* =G(t*, p).

PROOF. It is known [2] that 7p, forms a metric space with the metric
§(ty,te) :==1inf { 27F | for all m < k and all w € {0,1}™: t;(w) = ty(w)}. Fur-
thermore, this metric space is complete since every sequence of trees tg, t1, ...
s.t. t; and t;,1 have a bigger common tree prefix than ¢;_; and ¢; for all 4 > 1
has a limit.

A closed ¢ € ¥ induces a mapping At.G(t, ) of type Tp, — Tp,. This
mapping is contracting, i.e. there is a ¢ € R, s.t. 0 < ¢ < 1 and for all
t1,to € Tpni 5(g(t1,go),g(t2,g0)) <c- (5(t1,t2). Suppose 5(t17t2) = 2_k, ie.
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t; and t, do not differ on the first k£ levels. Note that if ¢ is atomic then
3(G(t1,¢),G(ta,)) = 0. If it is not atomic then the rules ensure that the
same is done on the formula part in both G(t1, ¢) and G(to, ) before the next
level of t;, resp. ty is seen. Hence, ¢ = 0.5 makes the contraction inequality
true.

Finally, according to Banach’s Fixpoint Theorem, every contracting mapping
on a complete metric space has a unique fixpoint which proves the claim. O

Theorem 23 For every n > 1 we have ®,, € ¥ \ T1%.

PROOF. By Fact 13 we have ¢, € ¥%". Lemma 3 immediately gives us
®,, € . Now suppose that also ®,, € II'. By definition, there is a ¢ € II»™
s.t. &, = ¢. By Lemma 11 there is a € ¥ s.t. for any P and all t € Tp
we have t | ¢ iff t £ @. According to Lemma 22, there is a t* € 7Tp,_ s.t.
t* =G(t*,»). Now,

tE=o, ff t"FEp iff Gt p) EQ, ff tTED,
by Theorems 19 and 20. Hence, the assumption ®,, € IV cannot be valid. O

Corollary 24 For alln € N: ¥ C v .

Corollary 25 For alln € N: ¥; C X» .

PROOF. For all n > 1 we have ®,, € X" by Fact 13. From Lemma 3 then
follows ®,, € ¥:. The goal is to show that ®, & II:. Suppose ®,, € II?, i.e.
there is a ¢ € II® s.t. @, = ¢. By Lemma 1 we have ®,, = ¢, hence ®,, € I}
which contradicts Theorem 23. O

5 Conclusion and Open Question

Clearly, the strictness of the alternation hierarchy over a class of structures £
implies its strictness over any superclass & O K. Suppose there is a ¢ € X"
for some n s.t. there is no ¢ € II¥™ with K | ¢ iff K | ¢ for all K € &.
Then this is certainly still the case for all K € R'.

Thus, the alternation hierarchy in FLC is strict over the class of all node-
labeled Kripke structures. For the class of trees with arbitrary but finite and
fixed degree this also follows from the fact that they can be encoded using bi-
nary trees. It then follows for graphs of such out-degree because FLC formulas
cannot distinguish bisimilar structures [17, 15].
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Finally, strictness of the alternation hierarchy holds for arbitrary node- and
edge-labeled structures K because they can be encoded by node-labeled struc-
tures K’ only. K’ is obtained from K by replacing every transition s - ¢ with
a pair of transitions s —(s, a,t) and (s, a,t) —t where (s, a,t) is a new state in
which the proposition a is true. Now take any formula ¢ of multi-modal FLC
— i.e. with modalities of the form (a) and [a] for some a. Let ¢’ result from ¢
by replacing every (a) with ©; (a A ) and every [a] with O; (@ VvV O). Then we
have K = ¢ iff K’ = ¢/. Furthermore, for all n € N: ¢ € X9 iff ¢ € ¥om,
This transfers the alternation hierarchy to node- and edge-labeled structures.

Three natural questions, however, arise. The first one is: is the hierarchy strict
over the class of finite models? For the modal p-calculus, this is a consequence
of the finite model property. If the hierarchy was strict over arbitrary structures
but collapsed over finite structures then there would be a formula that is
satisfiable but has no finite model. Clearly, this is excluded by the finite model
property. FLC however does not have the finite model property. Hence, such
a scenario could exist.

A second approach to show the strictness over finite models is to restrict the
class of models even further. Note that Theorem 23 shows that the hierarchy is
already strict over the class {t* € 7p, | n € N, t* = G(t*, ¢) for some ¢ € ¥}
of trees that are fixpoints according to Lemma 22. Unfortunately, these trees
do not necessarily have finite representations because each such t* basically is
the infinite game tree on its corresponding ¢ disregarding the trees’ nodes. If
there were finite representations of these t* then the strictness of the hierarchy
over finite models would follow from bisimulation invariance.

The second question concerns a class of structures that is important in com-
puter science but is not a superclass of the class of infinite, binary trees: infinite
words. Does the alternation hierarchy in FLC interpreted over infinite words
only collapse? This question has been answered for the modal p-calculus to
the affirmative [22, 10, 12]. It is known that FLC formulas on w-words are
equi-expressive to alternating context-free w-grammars with a parity condi-
tion [13]. A possible approach to show the collapse of the alternation hierarchy
is to translate these grammars into ones with a weak parity acceptance con-
dition. However, Kupferman and Vardi’s technique used for finite automata
does not seem amendable because the “run” of an FLC formula on an w-word
can be a DAG of unbounded width. Hence, it is not possible to assign finite
ranks to its nodes anymore.

The third question is: does the hierarchy of the modal p-calculus (£,) collapse
inside FLC? Note that £, is a fragment of FLC: a modal p-calculus subformula
O is read in FLC as ;. It is thinkable that any ¢ € X3 N L, for any
n is equivalent to some 1 in, say, X7%. A possible approach to this question
would be to extend Bradfield’s technique of expressing the semantics of a -

25



calculus formula in p-arithmetic to the whole of FLC. This could link the
three alternation hierarchies in p-arithmetic, the modal p-calculus and FLC
and show that the strict modal p-calculus formulas are strict in FLC, too.
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