
When Not Losing Is Better than Winning:

Abstraction and Refinement for the Full

µ-Calculus

Orna Grumberg a Martin Lange b Martin Leucker c

Sharon Shoham a

a Computer Science Department, The Technion, Haifa, Israel

b Department of Computer Science, Aarhus University, Denmark

c Institut für Informatik, Technical University of Munich, Germany

Abstract

This work presents a novel game-based approach to abstraction-refinement for
the full µ-calculus, interpreted over 3-valued semantics.

A novel notion of non-losing strategy is introduced and exploited for refinement.
Previous works on refinement in the context of 3-valued semantics require a direct
algorithm for solving a 3-valued model checking game. This was necessary in order
to have the information needed for refinement available on one game board. In
contrast, while still considering a 3-valued model checking game, here we reduce
the problem of solving the game to solving two 2-valued model checking (parity)
games. In case the result is indefinite (don’t know), the corresponding non-losing
strategies, when combined, hold all the information needed for refinement. This
approach is beneficial since it can use any solver for 2-valued parity games. Thus, it
can take advantage of newly developed such algorithms with improved complexity.

1 Introduction

Abstraction is one of the most successful techniques for fighting the state ex-
plosion problem in model checking [1]. Abstractions hide some of the details of
the verified system, thus result in a smaller model. Usually, they are designed
to be conservative for true, meaning that if a formula is true of the abstract
model then it is also true of the concrete (precise) model of the system. How-
ever, if it is false in the abstract model then nothing can be deduced of the
concrete one.

Preprint submitted to Elsevier Science 26 December 2006

In order to obtain more precise results, temporal logics can be interpreted over
abstract models with respect to the 3-valued semantics [2–4]. This semantics
evaluates a formula to either true, false, or indefinite. Abstract models can
then be designed to be conservative for both true and false. Only if the value
of a formula in the abstract model is indefinite, its value in the concrete model
is unknown. In this case, a refinement is needed in order to make the abstract
model more precise.

Refinement of indefinite results has been suggested for CTL in [5] and for the
µ-calculus in [6]. In both cases, the refinement is based on finding a cause
for the indefinite result by following the run of an algorithm that solves a
corresponding 3-valued model checking game. Being based on an especially
tailored algorithm, a similar approach is not applicable when the 3-valued
model checking game is solved via a reduction to two 2-valued model checking
games.

In this work we present a novel approach, which shows that refinement infor-
mation can be extracted from two 2-valued model checking games, provided
that they are defined over the full game board of the 3-valued game. Our refine-
ment is based on the new notion of non-losing rather then winning strategies.
This approach is beneficial since it can take advantage of any game-based
model checking algorithm for the µ-calculus with respect to the 2-valued se-
mantics [7,8].

We will now explain our new approach in more detail. We consider the µ-
calculus [9], which is a powerful formalism for expressing properties of tran-
sition systems using fixpoint operators. Many verification procedures can be
solved by translating them into µ-calculus model checking [10]. Such prob-
lems include (fair) CTL model checking, LTL model checking, bisimulation
equivalence and language containment of ω-regular automata.

Many algorithms for µ-calculus model checking with respect to the 2-valued
semantics have been suggested [11–15]. An elegant solution to this problem is
the game-based approach [16], in which two players, the verifier ∃loise (denoted
∃) and the refuter ∀belard (denoted ∀), try to win a game. A formula ϕ is true
in a model M iff the verifier has a winning strategy, meaning that she can
win any play, no matter what the refuter does. The game is played on a game
board, consisting of configurations s ⊢ ψ, where s is a state of the model M
and ψ is a subformula of ϕ. The players make moves between configurations
in which they try to verify or refute ψ in s. These games can also be seen and
studied as parity games [7,8] and we follow this approach as well.

In model checking games for the 2-valued semantics, exactly one of the players
has a winning strategy, thus the model checking result is either true or false.
For the 3-valued semantics, a third value should also be possible. Following [5],

2

we change the definition of a game for µ-calculus so that a tie is also possible.
We can now consider for each player, in addition to a winning strategy also
a non-losing strategy, which guarantees that each play will end with either a
win for this player or a tie, no matter what the other player does.

To simplify the presentation, we transform the 3-valued model checking game
into an equivalent 3-valued parity game with players 0 and 1. In order to
determine the winner, if there is one, we then reduce this game to two 2-valued
parity games,G0 andG1. Player 0 has a winning strategy on gameG0 iff Player
0 has a winning strategy on the original 3-valued game G. Furthermore, Player
0 has a winning strategy on G1 iff she has a non-losing strategy on G. The
dual facts hold for Player 1.

When the game G results in a tie, and a refinement is needed, non-losing
strategies become extremely helpful. In this case none of the players have a
winning strategy, which means that considering winning strategies does not
provide a witness for the tie result. Non-losing strategies, however, take ex-
actly this role: when the result is a tie, each player has a non-losing strategy
(which corresponds to a winning strategy on one of the 2-valued games). These
strategies can be combined to one play along which a cause for the tie can be
found. A refinement criterion is then suggested and abstract states are refined
(split) accordingly. The refinement is applied only to parts of the model from
which a tie is possible. Vertices from which there is a winning strategy for one
of the players are not changed. Thus, the refined abstract models do not grow
unnecessarily. If the concrete model is finite then our abstraction-refinement
is guaranteed to terminate with a definite result.

We note that the 3-valued model checking game still has an important role.
Namely, a similar approach for refinement is not applicable when the 3-valued
model checking problem itself is reduced to two 2-valued model checking prob-
lems (e.g. [4]), each solved by a separate 2-valued game. This is because then
each of the 2-valued games considers a different part of the game board: one
considers the part required for proving the formula, while the other consid-
ers the part required for proving its negation. This is whereas for refinement
purposes it is important to consider the full game board of the 3-valued game
(see Section 6 for more details).

Organization of the paper Abstract models are defined in the next sec-
tion. The µ-calculus with its 3-valued semantics is introduced in Section 3.
In Section 4, a 3-valued model checking game for µ-calculus is shown and is
proved to be correct with respect to the 3-valued semantics. Section 5 presents
3-valued parity games and translates 3-valued model checking games into such
games. It also suggests an algorithm for solving these games by reducing them
to two 2-valued parity games. Section 6 then presents our new refinement

3

algorithm. We conclude in Section 7.

2 Abstraction

Let P be a set of propositional constants, and A be a set of action names.
Every a ∈ A is associated with a so-called must-action a! and a may-action
a?. Let A! = {a! | a ∈ A} and A? = {a? | a ∈ A}.

We use Kripke Modal Transition Systems (KMTS) [3,17] as abstract models
that preserve satisfaction and falsification of three-valued µ-calculus formulae.
A KMTS is a tuple T = (S, { x−→ | x ∈ A!∪A?}, L) where S is a set of states,
and x−→ ⊆ S × S for each x ∈ A! ∪ A? is a binary relation on states, s.t.
for all a ∈ A: a!−→ ⊆ a?−−→. L : S → P → M for some complete lattice M
assigns to each pair of states and propositions a truth value. Here we use the
lattice B3 consisting of elements {⊥, ?,⊤} denoting falsity, uncertainty and
truth respectively. They are partially ordered by ⊥ ≤ ? ≤ ⊤.

A Kripke structure in the usual sense can be regarded as a KMTS by setting
a!−→ = a?−−→ for all a ∈ A and not distinguishing them anymore. Furthermore,

its states labelling is over {⊥,⊤}.

Let TC = (SC , {
a−→C | a ∈ A}, LC) be a (concrete) Kripke structure. Let SA

be a set of abstract states and γ : SA → 2SC a total concretization function
that maps each abstract state to the set of concrete states it represents. An
abstract model, in the form of a KMTS TA = (SA, {

x−→A | x ∈ A! ∪A?}, LA),
can then be defined as follows.

The labelling of an abstract state is defined in accordance with the labelling
of all the concrete states it represents. For p ∈ P : LA(sa)(p) = ⊤ (⊥) only if
∀sc ∈ γ(sa) : LC(sc)(p) = ⊤ (⊥). In the remaining cases LA(sa)(p) = ?.

The may-transitions in an abstract model are computed such that every con-
crete transition between two states is represented by them: for every action
a ∈ A, if ∃sc ∈ γ(sa) and ∃s′c ∈ γ(s′a) such that sc

a−→C s
′
c, then there exists

a may transition sa
a?−−→A s

′
a. Note that it is possible that there are additional

may transitions as well. The must-transitions, on the other hand, represent
concrete transitions that are common to all the concrete states that are repre-
sented by the source abstract state: a must-transition sa

a!−→A s
′
a exists only if

∀sc ∈ γ(sa) ∃s
′
c ∈ γ(s′a) such that sc

a−→C s
′
c. Note that it is possible that there

are less must transitions than allowed by this rule. That is, the may and must
transitions do not have to be exact, as long as they maintain these conditions.

Example 1 Consider the concrete system shown in Figure 1(a), employing a

4

s00 s01

s10 s11

p = ⊤

p = ⊤

p = ⊤

p = ⊥

a

a

a a

a

(a)

s0 s1

p = ⊤ p =?

a

a a

(b)

Fig. 1. (a) A concrete Kripke structure, and (b) an abstract KMTS for it

single action a and a single proposition p. Joining s00 and s10 and respectively
s01 and s11 yields the KMTS shown in Figure 1(b), where may-transitions are
shown as dotted arrows only when no must-transitions are present.

Other constructions of abstract models can be used as well. For example, if
γ is a part of a Galois Connection [18] (γ : SA → 2SC , α : 2SC → SA) from
(2SC ,⊆) to (SA,⊑), then an abstract model can be constructed as described
in [19] within the framework of Abstract Interpretation [18,20,19]. It is then
not guaranteed that the must transitions are a subset of the may transitions,
which complicates our further development.

3 The 3-Valued µ-Calculus

Syntax We present our logic in positive normal form. Let V be a set of
propositional variables. Formulae of the 3-valued modal µ-calculus in positive
normal form are given by

ϕ ::= q | ¬q | Z | ϕ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µZ.ϕ | νZ.ϕ

where q ∈ P, a ∈ A, and Z ∈ V. Let 3−Lµ denote the set of closed formulae
generated by the above grammar, where the fixpoint quantifiers µ and ν are
variable binders. We will also write η for either µ or ν. Furthermore we assume
that formulae are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variable Z identifies a unique subformula fp(Z) = ηZ.ψ

of ϕ, where the set Sub(ϕ) of subformulae of ϕ is defined in the usual way.

Given variables Y, Z we write Y ≺ϕ Z if Z occurs freely in fp(Y) in ϕ, and
Y <ϕ Z if (Y, Z) is in the transitive closure of ≺ϕ. The alternation depth ad(ϕ)
of ϕ is the length of a maximal <ϕ-chain of variables in ϕ s.t. adjacent variables
in this chain have different fixpoint types. A variable is called outermost if it
is maximal w.r.t. <ϕ.

5

Semantics Let B3 be the complete lattice consisting of elements {⊥, ?,⊤}
denoting falsity, uncertainty and truth respectively, ordered by ⊥ ≤ ? ≤ ⊤.
We use B3 not only to interpret the meaning of propositional constants in
states of a KMTS but also for the semantics of formulae of the three-valued
µ-calculus. Negation in B3 is defined such that ⊤ and ⊥ are complementary
to each other (as usual), while ?̄ =? (i.e., the complement of “don’t know” is
also a “don’t know”).

Note that B3 is not a boolean lattice since every finite boolean lattice is iso-
morphic to the subset lattice of some finite set. Hence, the size of a boolean
lattice must be a power of 2. But having only 2 values deprives us of uncer-
tainty while having at least 4 elements would ultimately force us to introduce
multiple types of uncertainty. But then uncertainty would carry more infor-
mation than simply “don’t know”. Instead, B3 forms a DeMorgan lattice 1 .

With logical conjunctions interpreted as meets in this lattice we obtain a
seemingly strange effect: if you do not know whether q holds you also do not
know whether ¬q holds. Hence, you do not know whether or not q∧¬q holds.
This is desired though. The formula q ∧ ¬q having truth value ? can simply
be read as: we do not know whether everything inside of an abstract state is
labelled with q nor whether everything is labelled with ¬q.

Remember that the conventional µ-calculus interprets formulae over the
boolean lattice (BS ,⊆) of sets of states of a transition system. Similarly, the
semantics of a 3−Lµ formula is an element of B

S
3 – the functions from S to B3

– which forms a complete (but not boolean) lattice when equipped with the
following partial order: let f, g : S → B3. f ⊑ g iff ∀s ∈ S : f(s) ≤ g(s). Joins
and meets in this lattice are denoted by f ⊔ g and f ⊓ g. Since we introduce
formulae in positive normal form directly, we do not need to define a general
negation symbol. Instead, the definition of the complement on a ground level
suffices.

Then the semantics [[ϕ]]Tρ of a 3−Lµ formula ϕ w.r.t. a KMTS T = (S, { x−→ |

x ∈ A!∪A?}, L) and an environment ρ : V → B
S
3 , which explains the meaning

of free variables in ϕ, is an element of B
S
3 , defined as follows. We assume T

to be fixed and do not mention it explicitly anymore. With ρ[Z 7→ f] we
denote the environment that maps Z to f and agrees with ρ on all other
arguments. Later, when only closed formulae are considered, we will also drop
the environment from the semantic brackets.

[[q]]ρ := λs.L(s)(q)

[[¬q]]ρ := λs.L(s)(q)

1 In a DeMorgan lattice every element x has a unique complement ¬x in the lattice
such that ¬¬x = x, DeMorgan’s laws hold, and x ≤ y implies ¬y ≤ ¬x.

6

[[Z]]ρ := ρ(Z)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ ⊔ [[ψ]]ρ

[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ ⊓ [[ψ]]ρ

[[〈a〉ϕ]]ρ := λs.



























⊤ , if ∃t ∈ S, s.t. s a!−→ t and [[ϕ]]ρ(t) = ⊤

⊥ , if ∀t ∈ S, if s a?−−→ t then [[ϕ]]ρ(t) = ⊥

? , otherwise

[[[a]ϕ]]ρ := λs.



























⊤ , if ∀t ∈ S, if s a?−−→ t then [[ϕ]]ρ(t) = ⊤

⊥ , if ∃t ∈ S, s.t. s a!−→ t and [[ϕ]]ρ(t) = ⊥

? , otherwise

[[µZ.ϕ]]ρ :=

⊔

{f | [[ϕ]]ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]ρ :=
⊔

{f | f ⊑ [[ϕ]]ρ[Z 7→f]}

Note that s a!−→ t implies s a?−−→ t.

The functionals λf.[[ϕ]]ρ[Z 7→f] : B
S
3 → B

S
3 are monotone w.r.t. ⊑ for any Z, ϕ

and S. According to [21], least and greatest fixpoints of these functionals exist.

Approximants of 3−Lµ formulae are defined w.r.t. an environment ρ in the
usual way: if fp(Z) = µZ.ϕ then Z0

ρ := λs.⊥, Zα+1
ρ := [[ϕ]]ρ[Z 7→Zα

ρ] for any

ordinal α, and Zλ
ρ :=

⊔α<λ Z
α
ρ for any limit ordinal λ. Dually, if fp(Z) = νZ.ϕ

then Z0
ρ := λs.⊤, Zα+1

ρ := [[ϕ]]ρ[Z 7→Zα
ρ], and Zλ

ρ :=
⊔

α<λ Zα
ρ .

The next theorem is a standard consequence of the Knaster-Tarski Theorem
[21].

Theorem 2 For all KMTS T with state set S, and all environments ρ there
is an ordinal α s.t. for all s ∈ S we have:

if [[ηZ.ϕ]]ρ(s) = x then Zα
ρ (s) = x.

The following theorem relates the three-valued semantics of the µ-calculus
over an abstract KMTS with the conventional semantics over the concrete
Kripke structure it represents.

Theorem 3 [17] Let T be a Kripke structure and let T ′ be a KMTS obtained
from T with the abstraction process described in Section 2. Let s be a state of

7

s ⊢ ψ0 ∨ ψ1

s ⊢ ψi

∃ : i ∈ {0, 1}
s ⊢ ψ0 ∧ ψ1

s ⊢ ψi

∀ : i ∈ {0, 1}

s ⊢ ηZ.ϕ

s ⊢ Z
∃

s ⊢ Z

s ⊢ ϕ
∃ : if fp(Z) = ηZ.ϕ

s ⊢ 〈a〉ϕ

t ⊢ ϕ
∃ : s a!−→ t or s a?−−→ t

s ⊢ [a]ϕ

t ⊢ ϕ
∀ : s a!−→ t or s a?−−→ t

Fig. 2. The model checking game rules for 3−Lµ.

T and s′ its corresponding abstract state in T ′. For all closed ϕ ∈ 3−Lµ:

[[ϕ]]T
′

(s′) 6= ? implies [[ϕ]]T (s) = [[ϕ]]T
′

(s′).

4 Model Checking Games for 3−L
µ

The model checking game ΓT (s0, ϕ0) on a KMTS T with state set S, initial
state s0 ∈ S and a 3−Lµ formula ϕ0 is played by players ∃ and ∀ in order to
determine the truth value of ϕ0 in s0, cf. [22]. Configurations are elements of
C ⊆ S × Sub(ϕ0), and written t ⊢ ψ. Each play of ΓT (s0, ϕ0) is a maximal se-
quence of configurations that starts with s0 ⊢ ϕ0. The game rules are presented
in Figure 2. Each rule is marked by ∃ / ∀ to indicate which player makes the
move. A rule is applied when the player is in configuration Ci, which is of the
form of the upper part of the rule. Ci+1 is then the configuration in the lower
part of the rule. The rules shown in the first and third lines present a choice
which the player can make. Since no choice is possible when applying the rules
shown in the second line, we arbitrarily assign one player, let us say ∃, and
call the rules deterministic. If no rule can be applied, the play terminates.

Definition 4 A player is said to play eagerly 2 if she or he never chooses a
transition of type a?−−→\ a!−−→ for some a ∈ A. A play is called ∃-eager, resp.
∀-eager, if Player ∃, resp. Player ∀, plays eagerly.

Player ∃ wins an ∃-eager play C0, C1, . . . iff

(1) there is an n ∈ N, s.t. Cn = t ⊢ q with L(t)(q) = ⊤ or Cn = t ⊢ ¬q with
L(t)(q) = ⊥, or

(2) there is an n ∈ N, s.t. Cn = t ⊢ [a]ψ and there is no t′ ∈ S s.t. t a?−−→ t′, or
(3) the outermost variable that occurs infinitely often is of type ν.

2 The notion of ‘eagerness’ replaces the notion of ‘consistency’ from [5,6].

8

s0 ⊢ νZ.(〈a〉(µY.((Z ∧ p) ∨ 〈a〉Y)))

s0 ⊢ Z

s0 ⊢ 〈a〉(µY.((Z ∧ p) ∨ 〈a〉Y))

s0 ⊢ µY.((Z ∧ p) ∨ 〈a〉Y)

s0 ⊢ Y

s0 ⊢ (Z ∧ p) ∨ 〈a〉Y

s0 ⊢ Z ∧ p s0 ⊢ 〈a〉Y

s0 ⊢ p

s1 ⊢ Z

s1 ⊢ 〈a〉(µY.((Z ∧ p) ∨ 〈a〉Y))

s1 ⊢ µY.((Z ∧ p) ∨ 〈a〉Y)

s1 ⊢ Y

s1 ⊢ (Z ∧ p) ∨ 〈a〉Y

s1 ⊢ Z ∧ ps1 ⊢ 〈a〉Y

s1 ⊢ p

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

Fig. 3. All possible moves in the game over the KMTS from Figure 1(b)

Player ∀ wins a ∀-eager play C0, C1 . . . iff

(4) there is an n ∈ N, s.t. Cn = t ⊢ q with L(t)(q) = ⊥ or Cn = t ⊢ ¬q with
L(t)(q) = ⊤, or

(5) there is an n ∈ N, s.t. Cn = t ⊢ 〈a〉ψ and there is no t′ ∈ S s.t. t a?−−→ t′,
or

(6) the outermost variable that occurs infinitely often is of type µ.

In all other cases, the result of the play is a tie.

Example 5 For the model checking problem of the formula

νZ.(〈a〉(µY.((Z ∧ p) ∨ 〈a〉Y)))

in the state s0 of the abstract KMTS from Figure 1(b) all possible moves are
shown in Figure 3. Configurations in which ∃ is to choose are drawn as circles
while ∀-configurations are shown as squares. Moves based on may-transitions
are not shown when the same move is possible using a must-transition.

The result of the play v00v01v02v03v04v05v06v08 is a tie: while the play ends in
a configuration in which p evaluates to ⊤, ∃ does not win since choosing the
edge from v02 to v03 violates ∃-eagerness. v00v01v02v13v14v15v16v11v12v13 . . . , on
the other hand, is an ∃-eager play in which the outermost variable occurring
infinitely often is of type ν. Thus, it is won by ∃.

Definition 6 The truth value of a configuration t ⊢ ψ in the context of ρ is
the value of [[ψ]]ρ(t). The value ⊤ improves both ? and ⊥, while ? only improves
⊥. On the other hand, x worsens y iff y improves x. A configuration with truth
value x under the environment ρ will also be called an xρ-configuration. We
say that a move, i.e. an application of a game rule between configurations

9

C and C ′ is a xρ-yρ′-improvement if C is an xρ-configuration, C ′ is an yρ′-
configuration and y improves x. Similarly we define a xρ-yρ′-worsening and a
xρ-yρ′-preservation. In the latter case we obviously have x = y.

An inspection of the game rules and the semantics together with Theorem 2
proves the following.

Lemma 7 For all environments ρ, and all truth values x, y we have:

a) Player ∃ cannot eagerly make a move that is a xρ-yρ-improvement, but can
always eagerly make a ⊤ρ-⊤ρ-preservation.

b) Player ∀ cannot eagerly make a move that is a xρ-yρ-worsening, but can
always eagerly make a ⊥ρ-⊥ρ-preservation.

c) There is an ordinal α s.t. the deterministic rule for a fixpoint formula ηZ.ϕ
is a xρ-xρ′-preservation when ρ′ := ρ[Z 7→ Zα

ρ].
d) Let Z be a η-variable and ρ(Z) = Zα

ρi
for some environment ρi and some

ordinal α > 0. There is an ordinal β < α s.t. the deterministic rule for
unfolding Z is an xρ-xρ′-preservation when ρ′ := ρ[Z 7→ Zβ

ρi
].

(1)TODO: ML:
add viability
requirement.
Please check and
kill(1)A strategy for player p is a partial function ζ : C → C, such that its domain

is the set of configurations where player p moves and for all configurations C
and C ′: ζ(C) = C ′ implies that there is a move from C to C ′. Player p plays
a game according to a strategy ζ if all his choices agree with ζ . A strategy for
player p is called a winning strategy if player p wins every play where he plays
according to this strategy.

Lemma 8 Let ϕ ∈ 3−Lµ be closed. Player ∃ does not have a winning strategy

for the game ΓT (s, ϕ) if [[ϕ]]T (s) 6= ⊤.

PROOF. Suppose that on one hand [[ϕ]]T (s) 6= ⊤ but Player ∃ has a winning
strategy ζ for ΓT (s, ϕ). Take the partial game tree induced by this strategy,
i.e. the tree of all plays in which all of Player ∀’s choices are preserved but
only those of Player ∃’s choices which agree with ζ .

First we show that this tree contains at least one play C0, C1, . . . for which
there is a corresponding sequence of environments ρ0, ρ1, . . . s.t. for all i ∈
N, Ci is not a ⊤ρi

-configuration. Let ρ0 be the empty environment. Since
ϕ is closed, the root of this tree is not a ⊤ρ0-configuration. According to
Lemma 7, deterministic rules preserve the truth value of a configuration –
possibly extending the environments – and Player ∃’s choices do not improve
the truth value when considering the same environment, as she is playing
eagerly (being that ζ is a winning strategy for her). This can only be done
by Player ∀. However, suppose there is a configuration Ci in which Player ∀
makes a choice and which has a truth value other than ⊤ under ρi. Then Ci

10

is of the form t ⊢ ψ0 ∧ ψ1 or t ⊢ [a]ψ. For the former case note that the truth
value of Ci under ρi is the infimum in B3 of its two successor’s truth values
under ρi. Thus, it is not ⊤ only if there is a successor which has a truth value
other than ⊤ under the same environment ρi – which will also define ρi+1

(that is, ρi+1 = ρi). For the latter case consider [[[a]ψ]]ρi
(t). It can only differ

from ⊤ if there is a t′ s.t. t a?−−→ t′ and [[ψ]]ρi
(t′) 6= ⊤. But t′ ⊢ ψ is a possible

successor configuration of Ci. Thus, it is included in the tree and has a truth
value which is not ⊤ under ρi – which will again define ρi+1 (i.e., ρi+1 = ρi).

This argument can be iterated yielding a path C0, C1, . . . and a sequence
ρ0, ρ1, . . . in which ρi 6= ρi+1 only if the move from Ci to Ci+1 is determin-
istic. C0, C1, . . . is a path on which no ⊤-configuration under the according ρi

occurs. Now, this path can either be finite or infinite. The first case immedi-
ately leads to a contradiction since finite paths won by Player ∃ necessarily
end in a ⊤-configuration under any environment.

Suppose therefore that the path represents a play which is won by Player
∃’s winning condition 3. Then there is an outermost variable Z of fixpoint
type ν which occurs infinitely often in this play. Take the last occurrence of
a configuration t ⊢ νZ.ϕ and name it Ci. By assumption, [[νZ.ϕ]]ρi

(t) = x for
some x 6= ⊤ and ρi as constructed above.

According to Lemma 7, ρi+1 interprets Z as an approximant with some index
α 6= 0. That is, ρi+1(Z) = Zα

ρi
. Lemma 7 also shows that subsequent environ-

ments ρj , j > i interpret Z as approximants Zβ
ρi

with decreasing indices β.
But the ordinals are well founded. Hence, there is a j s.t. Cj = t ⊢ Z for some
t and ρj(Z) = Z0

ρi
, meaning that [[Z]]ρj

(t) = ⊤. But on the other hand, since
Cj appears on the above path, we know that Cj is not a ⊤ρj

-configuration.
This is a contradiction. We conclude that Player ∃ cannot have a winning
strategy. 2

Lemma 9 Let ϕ ∈ 3−Lµ be closed. Player ∃ has a winning strategy for the

game ΓT (s, ϕ) if [[ϕ]]T (s) = ⊤.

PROOF. Suppose [[ϕ]]T (s) = ⊤. According to Lemma 7, Player ∃ can play
eagerly in such a way that every reached configuration has truth value ⊤
under some environment which is constructed successively using Lemma 7 and
starting with the empty environment. Note that ϕ is assumed to be closed.

Player ∀ cannot help but to make moves that result in ⊤ρ-configurations under
the corresponding ρ as well. This defines a strategy for Player ∃. It remains
to be seen that this strategy guarantees her to win every resulting play. First,
by Lemma 7 again, every resulting play is ∃-eager. By preservation of the

11

truth value, a finite play must end in a ⊤-configuration under an irrelevant
environment. But then it is won by Player ∃ with winning condition 1 or 2.

Suppose therefore that the play C0, C1, . . . at hand is of infinite length. By
Player ∃’s strategy that uses the construction of environments in Lemma 7,
there are ρ0, ρ1, . . ., s.t. Ci is a ⊤ρi

-configuration for all i ∈ N.

Any infinite play has a unique outermost variable Z that occurs infinitely
often, cf. [22]. This variable has a unique fixpoint type η ∈ {µ, ν}. Assume
for the sake of contradiction that fp(Z) = µZ.ψ for some ψ. Then take the
last occurrence of a configuration Ci = t ⊢ µZ.ψ. Since Z is outermost, it
is guaranteed to exist, for otherwise there would be another fixpoint formula
that generated µZ.ψ infinitely often.

According to the construction of the strategy, there is an ordinal α s.t. ρi+1

interprets Z in the following configuration Ci+1 = t ⊢ Z by Zα
ρi

. Again, by
the construction of the strategy using Lemma 7, the next time Z occurs it is
interpreted as Zβ

ρi
for some β < α. By the well-foundedness of the ordinals,

there will eventually be a ⊤ρk
-configuration Ck = t′ ⊢ Z s.t. ρk(Z) = Z0

ρi

which is impossible since Z0
ρi

= λs.⊥, provided that the fixpoint type of Z is
µ. Thus, the fixpoint type of Z must have been ν which makes Player ∃ the
winner of the play at hand. 2

Lemma 10 Let ϕ ∈ 3−Lµ be closed. Player ∀ has a winning strategy for the

game ΓT (s, ϕ) iff [[ϕ]]T (s) = ⊥.

PROOF. This is the dual to Lemmas 8 and 9. Hence, it is proved in the
same way exchanging ⊤ and ⊥, “improve” and “worsen”, ν and µ, Player ∃
and ∀. 2

Theorem 11 Given a KMTS T = (S, { x−→ | x ∈ A! ∪ A?}, L), an s ∈ S,
and a closed ϕ ∈ 3−Lµ, we have:

(a) [[ϕ]]T (s) = ⊤ iff Player ∃ has a winning strategy for ΓT (s, ϕ),

(b) [[ϕ]]T (s) = ⊥ iff Player ∀ has a winning strategy for ΓT (s, ϕ),

(c) [[ϕ]]T (s) = ? iff neither Player ∃ nor Player ∀ has a winning strategy for
ΓT (s, ϕ).

PROOF. Parts (a) and (b) are proved in Lemmas 8, 9 and 10. For part (c)
suppose that [[ϕ]]T (s) = ?. Then none of the players can have a winning strat-
egy because using parts (a) and (b) one would immediately contradict the
assumption. Conversely, suppose that none of them has a winning strategy

12

but [[ϕ]]T (s) 6= ?. Again, using (a) or (b) one obtains an immediate contradic-
tion. 2

Theorem 12 Let T = (S, { x−→ | x ∈ A}, L) be a Kripke structure with
s ∈ S and T ′ = (S ′, { x−→ | x ∈ A! ∪ A?}, L′) be an abstraction of T with
concretization function γ. Let s′ ∈ S ′ with s ∈ γ(s′).

(a) If Player ∃ has a winning strategy for ΓT ′(s′, ϕ) then T , s |= ϕ.
(b) If Player ∀ has a winning strategy for ΓT ′(s′, ϕ) then T , s 6|= ϕ.

PROOF. Suppose Player ∃ wins ΓT ′(s′, ϕ). According to Theorem 11, we

have [[ϕ]]T
′

(s′) = ⊤. Applying Theorem 3 we get [[ϕ]]T (s) = ⊤, i.e. T , s |= ϕ.
Part (b) is proved analogously. 2

5 Deciding the Model Checking Problem for 3−L
µ

The previous section relates model checking games with the semantics of 3−Lµ.
An algorithm estimating the winner of the game and a winning strategy is yet
to be given. Note that the result of the previous section also holds for infinite-
state systems. From now on, however, we restrict to finite KMTS.

For the sake of readability we will deal with parity games. Instead of Player
∃ and ∀, we talk of Player 0 and Player 1, resp., and use σ to denote Player
0 or 1 and σ̄ = 1 − σ for the opponent. 3

Parity games are traditionally used to describe the model checking game for
µ-calculus [7]. For simplicity, we consider parity games with dead-end ver-
tices (see Remark 14). In order to describe our game for 3−Lµ, we need to
generalize them in the following ways: (1) we have two types of edges: must
edges and may edges, where every must edge is also a may edge, (2) terminal
configurations (dead-end) are classified as either winning for one player, or as
tie-configurations, and (3) an eagerness requirement is added to the winning
conditions.

5.1 Three-valued Parity Games

A three-valued parity gameG = (A, χ) has an arena A = (V0, V1, Vtie ,
must

−→,
may

−→)
s.t. V0, V1 and Vtie are disjoint sets of vertices. Let V := V0 ∪ V1 ∪ Vtie . Then

3 The numbers 0 and 1 have parities and this is more intuitive for this notion of
game.

13

must

−→⊆
may

−→⊆ (V \Vtie)×V , meaning that every v ∈ Vtie is a dead-end. χ : V → N

is a priority function that maps each vertex v ∈ V to a priority.

A play from v0 ∈ V is a maximal sequence of vertices v0, . . . , where Player σ
moves from vi to vi+1 when vi ∈ Vσ and (vi, vi+1) ∈

may

−→. It is called σ-eager iff
Player σ chooses only moves that are (also) in

must

−→. A σ-eager play is winning
for Player σ if

• it is finite and ends in Vσ̄, or
• it is infinite and the minimal priority occurring infinitely often is even when
σ = 0 or odd when σ = 1.

All other plays are a tie.

(2)TODO: ML:
Removed
history. Please
check and kill

(2)(3)A strategy for player σ in the 3-valued parity game G = (A, χ) is a
(3)TODO: ML:
add viability
requirement.
Please check and
kill

function ζ : Vσ → V such that for all v ∈ Vσ and v′ ∈ V : ζ(v) = v′ implies
that Player σ can move from v to v′. A play v0v1 . . . is said to conform to ζ if
for all k ∈ N, s.t. vk ∈ Vσ: vk+1 = ζ(vk).

A strategy ζ for player σ is a winning strategy from V ′ ⊆ V if every play that
starts from a vertex in V ′ and conforms to ζ is won by player σ. It is called
a non-losing strategy from V ′ if every play from v ∈ V ′ conforming to ζ is
either won by player σ or a tie.

Note that we restrict ourselves to so-called memoryless strategies. For ordinary
parity games, it is well-known that the existence of winning strategies for one
of the players does not depend on considering histories or not [23]. In the
appendix, we will show that the result carries over to three-valued parity
games: The existence of winning strategies or non-loosing strategies for the
players does not depend on considering histories of plays or not. (4) Because

(4)TODO: ML:
Reword? Add
reference to
appendixof this, we restrict ourselves to memoryless strategies for both three-valued

and ordinary parity games in the following without mentioning this explicitly
every time.

5.2 Model Checking Games as Parity Games

Just as the model checking games for the modal µ-calculus can be seen as
ordinary parity games [7], the model checking games of the previous section
can be transformed into three-valued parity games.

Let T = {S, { x−→ | x ∈ A! ∪ A?}, L) be a KMTS with starting state s0 ∈ S
and let ϕ0 ∈ 3−Lµ. We associate with these a three-valued parity game whose
vertices are the configurations of the model checking game, and whose edges
are applications of the model checking game rules. The set V0 consists of

14

all configurations in which Player ∃ nominally makes a choice together with
configurations in which the play terminates and ∀ wins. Similarly, the set
V1 consists of all configurations in which Player ∀ nominally makes a choice
together with configurations in which the play terminates and ∃ wins. The
remaining configurations, i.e. the ones of the form t ⊢ q or t ⊢ ¬q with
L(t)(q) = ? are set to Vtie . An edge is a genuine may-edge if in its corresponding

model checking game rule, the player at hand chooses a transition s a?−−→ t

rather than s a!−→ t. All other game rule applications lead to must-edges.

Let X1, . . . , Xn be all the variables occurring in ϕ0. They are partially ordered
by the relation ≤ϕ0 . Note that it is possible to assign to each variable a number
χ(Xi) s.t. for all i, j = 1, . . . , n:

• χ(Xi) is even iff Xi is of type ν;
• χ(Xi) ≤ χ(Xj) whenever Xi ≤ϕ0 Xj .

Let m := max{χ(X1), . . . , χ(Xn)}. The priorities on the parity game vertices
are assigned as follows:

χ(s ⊢ ψ) :=







χ(X) if ψ = X

m o.w.

The following theorem then follows from the fact that the three-valued parity
game is simply a different view onto the model checking game.

Proposition 13 Player ∃, resp. ∀ wins the model checking game ΓT (s, ϕ) iff
Player 0, resp. 1 wins the associated three-valued parity game from the vertex
s ⊢ ϕ. Moreover, the strategies used in both games are the same.

Remark 14 Since the graph of a model checking game need not be total, the
corresponding three-valued parity game might have dead-end vertices. These
can be eliminated by applying the following simple transformations.

(1) For a dead-end vertex in Vσ (in which Vσ loses), set the priority to σ̄ and
add a must-edge back to itself.

(2) For a (dead-end) vertex v ∈ Vtie , arbitrarily choose σ ∈ {0, 1} and add v
to Vσ, setting its priority to σ and adding a may-edge back to itself.

Note that these changes make the parity game total, i.e. for every v ∈ V

there is a w ∈ V s.t. v
may

−→ w, and in particular there are no vertices in Vtie .
Moreover, a play looping in the additional edges is won by player σ iff the
corresponding play in the original game is won by the same player. In case (1)
this is because of the assigned priority; in case (2) this is because the assigned
priority which repeats infinitely often is associated with a player who is forced
to move along a may-edge. Hence, the play is going to be a tie.

15

Moreover, this construction preserves the set of vertices of the game. It also
preserves the winner (if any) from each vertex, and the same strategies can
be used in both games (with the exception that to get a strategy for Player σ
in the total game from a strategy in the original game, one has to add to the
strategy the self loops that were added to dead-end vertices of Player σ).

5.3 Model Checking by Solving Three-Valued Parity Games

Proposition 13, along with Theorem 11, implies that the model checking prob-
lem for a state s of a KMTS and a formula ϕ ∈ 3−Lµ reduces to determining
the winner (if any) in the corresponding three-valued parity game from s ⊢ ϕ.

In the remainder of this section we discuss solving three-valued parity games,
which means determining the winner (if any) from every vertex. Note that
there are three different outcomes for every vertex: either Player 0 or Player 1
or none of them has a winning strategy. By the definition of a winning strategy
it is obviously not possible for both players to have a winning strategy.

Therefore, solving the game amounts to partitioning its set of vertices into
three winning sets: W0,W1,Wtie , where for σ ∈ {0, 1}, the set Wσ consists
of all the vertices from which Player σ has a winning strategy and the set
Wtie consists of all the vertices from which none of the players has a winning
strategy.

It is not hard to see that solving a three-valued parity game can be reduced
to solving two ordinary parity games: first try to find a winning strategy for
Player 0 disregarding her genuine may-edges and treating dead-end vertices in
Vtie as losing for her. If the result is negative then try to find a winning strategy
for Player 1 disregarding his genuine may-edges and treating tie dead-ends as
losing for him. This is reminiscent of the approach of [2], where a 3-valued
interpretation of a formula in a partial model is computed by considering a
pessimistic and an optimistic interpretations.

More precisely, in order to find the winning set of Player σ, we reduce G into
an ordinary parity game denoted Gσ by (1) removing all the outgoing genuine
may-edges of vertices of Player σ, (2) ignoring the distinction between may
and must edges in the remaining edges, and (3) adding Vtie to Vσ (meaning
that Player σ̄ wins in these vertices). Note that we do not change the set of
vertices, nor the priority function. Formally, Gσ is defined as follows.

Definition 15 Let G = (A, χ) be a three-valued parity game with arena A =
(V0, V1, Vtie ,

must

−→,
may

−→). For σ ∈ {0, 1}, the σ-reduced game is an ordinary
parity game Gσ = (Aσ, χ) with arena Aσ = (V σ

0 , V
σ
1 ,−→), where V σ

σ = Vσ ∪
Vtie, V σ

σ̄ = Vσ̄, and −→ =
may

−→ \{(v, v′) | v ∈ Vσ and v 6
must

−→ v′}.

16

Gσ might contain dead-end vertices, some of which result from dead-end ver-
tices in G and some result from vertices of Vσ that had only genuine may-
edges in G. This means that they become dead-ends in Gσ. However, Gσ can
be transformed into a game whose underlying graph is total as described in
Remark 14.

Proposition 16 Let G be a three-valued parity game. Then Player σ has a
winning strategy from set V ′ ⊆ V in G iff she has a winning strategy from
V ′ in Gσ. Moreover, a winning strategy for Player σ from V ′ in Gσ is also a
winning strategy for her in G.

We conclude that for σ ∈ {0, 1}, the winning set of Player σ in G, Wσ, is
exactly the winning set of Player σ in Gσ and Wtie = V \(W0∪W1). Therefore,
solving the three-valued parity game reduces to solving the two ordinary parity
games G0 and G1:

Algorithm SolveThreeValuedGame (G)

(1) (W 0
0 , W 0

1) := SolveOrdinaryGame (G0);
(2) (W 1

0 , W 1
1) := SolveOrdinaryGame (G1);

(3) (W0, W1, Wtie) := (W 0
0 , W 1

1 , V \ (W 0
0 ∪W 1

1));
(4) return (W0, W1, Wtie);

Solving G0 and G1 can be done using any of the existing algorithms for solv-
ing ordinary parity games, maintaining their complexity. Moreover, winning
strategies in the three-valued game can be easily obtained from winning strate-
gies in the ordinary games, since a winning strategy for Player σ in Gσ is also
a winning strategy for Player σ in G.

Remark 17 Note that even if the graph of the original game G is connected,
the underlying graph of Gσ might not be connected. Thus, depending on
the algorithm for solving ordinary parity games, if we wish to classify all the
vertices of G, it might be necessary to invoke the algorithm for every connected
component in Gσ separately (for example, if the algorithm has an on-the-fly
nature and it considers only reachable vertices).

When applied to model checking whether s |= ϕ, then after solving the cor-
responding three-valued game we check whether v = s ⊢ ϕ is in W0, W1, or
Wtie and conclude true, false, or indefinite, respectively.

Example 18 In terms of a parity game, the model checking game shown in
Figure 3 can be visualized as shown in Figure 4. Round vertices denote vertices
of Player 0, whereas square vertices are of Player 1. Vertex v18 is shaped as
a rotated square to denote that it is a (dead-end) tie vertex. The numbers
labelling the vertices denote their priorities.

17

1

0

1

1

1

1

1 1

1

0

1

1

1

1

11

1

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

Fig. 4. Game graph of the parity game corresponding to the game from Figure 3

1

0

1

1

1

1

1 1

1

0

1

1

1

1

11

1

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

(a) G0

1

0

1

1

1

1

1 1

1

0

1

1

1

1

11

1

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

(b) G1

Fig. 5. Game graphs of the reduced games of the parity game from Figure 4

The reduction to two games, G0 and G1 is shown in Figure 5. Note that gen-
uine may edges of Player 0 vertices are removed in G0 and that v18 is declared
as a Player 0 vertex in G0 (meaning that Player 1 wins in it) and a Player 1
vertex in G1 (meaning that Player 0 wins in it).

We see that the only vertex from which Player 0 has a winning strategy in G0

is v08. In G1, Player 1 has no winning strategy regardless in which vertex the
game starts. We conclude that W0 = {v08}, W1 = ∅, and that all remaining
vertices form the set Wtie.

18

6 Refinement

Assume we are interested in knowing whether a concrete state sc, described
by an abstract state sa, satisfies a given formula ϕ. Let (W0,W1,Wtie) be the
winning sets computed for the three-valued parity game obtained by the model
checking game ΓT (sa, ϕ) for sa and ϕ. By Theorems 12 and 13 if the vertex
v = sa ⊢ ϕ is in W0 or W1 then the answer to the model checking problem is
clear: sc |= ϕ if v ∈ W0 (meaning that Player 0 has a winning strategy from
v in the parity game, hence, Player ∃ is the winner of the underlying model
checking game). Similarly, sc 6|= ϕ if v ∈ W1. However, if v ∈ Wtie , the result
is don’t know and we have to refine the abstraction to get the answer.

This means that a refinement step is required if none of the players has a
winning strategy from v. Based on this property, it was stated in [5,6] that
rather than calling a two-valued parity games solver twice it is more helpful
for refinement purposes to combine the two runs. This is because combining
both runs carries more information about the cause for the lack of winning
strategies.

But even in a combined fashion of two ordinary runs, the above approach in
which the algorithm looks for winning strategies bears a significant disadvan-
tage: if the algorithm looks for winning strategies it produces witnesses for
its answer only in those cases in which no refinement is needed. Some notion
of witness to its answer is, however, needed if the answer is that none of the
players has a winning strategy. This is why we suggest to consider non-losing
strategies instead.

6.1 Using Non-Losing Strategies to Solve the Game

Lemma 19 Let G be a three-valued parity game. Player σ has a non-losing
strategy from v in G iff player σ̄ does not have a winning strategy from v in G.

The first direction of the lemma is quite clear as it is impossible that Player σ
has a non-losing strategy and at the same time Player σ̄ has a winning strategy.
For the other direction we use the following proposition that also provides a
construction of a non-losing strategy for Player σ̄ in case Player σ does not
have a winning strategy. Recall that in order to compute winning sets and
strategies in a three valued parity game G we considered in Section 5.3 the
reduced (ordinary) gamesG0 andG1. We now note that the same approach can
also be used to compute non-losing strategies for the players. This is formalized
by the following proposition, which is in a sense the dual of proposition 16.

Proposition 20 Let G be a three-valued parity game. Then Player σ has a

19

non-losing strategy from V ′ ⊆ V in G iff she has a winning strategy from V ′

in Gσ̄. Moreover, a winning strategy for Player σ from V ′ in Gσ̄ is in itself a
non-losing strategy for her in G.

We now return to the proof of Lemma 19.

PROOF. [Lemma 19] Proposition 20 states that Player σ has a non-losing
strategy from v in G iff she has a winning strategy from v in Gσ̄. By de-
terminacy of ordinary parity games this happens iff Player σ̄ does not have
a winning strategy from v in Gσ̄ and by Proposition 16 this is iff Player σ̄
does not have a winning strategy from v in G. This concludes the proof of
Lemma 19. 2

Lemma 19 implies that a non-losing strategy for a player can be used as a
witness to explain why the opponent does not win. Moreover, unlike winning
strategies, where it is possible that no player has one, the above lemma implies
that at least one player has a non-losing strategy, thus such an explanatory
information always exists (at least for one player). This is formalized in the
following lemma.

Lemma 21 Let G be a three-valued parity game and v a vertex in the game.
At least one of the players has a non-losing strategy from v in G.

PROOF. Suppose none of the players has a non-losing strategy from v in G.
According to Lemma 19 both players would have to have a winning strategy
in the game G which is clearly impossible. 2

Lemma 21 holds the key for refinement: if we use an algorithm that computes
non-losing strategies then we will always have a witness.

Furthermore, Lemmas 19 and 21 also provide an alternative approach for
solving the three-valued game by considering non-losing strategies rather than
winning strategies, as they imply that for a three-valued parity game:

(1) v ∈Wσ iff only Player σ has a non-losing strategy from v.
(2) v ∈Wtie iff both players have non-losing strategies from v.

In particular, Proposition 20 used in the proof of Lemma 19 provides a way
to compute non-losing strategies using the reduction approach: to compute
a strategy that is non-losing for Player σ from V \Wσ̄ in G we compute a
strategy that is winning for Player σ from V \Wσ̄ in the ordinary game Gσ̄.

20

1

0

1

1

1

1

1 1

1

0

1

1

1

1

11

1

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

(a) G0

1

0

1

1

1

1

1 1

1

0

1

1

1

1

11

1

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

(b) G1

Fig. 6. Winning strategies of the reduced games of the parity game from Figure 4

Thus, in comparison to the previous reduction approach (from Section 5.3),
we use here the same reduced ordinary parity games, but now in the reduced
game Gσ, we are interested in a winning strategy of Player σ̄ rather than of
σ. As stated earlier, this approach is particularly helpful when refinement is
needed. Here again it might be necessary to invoke the solver of each ordinary
parity game several times in case the resulting game graph is not connected
(see Remark 17).

Example 22 Let us reconsider the games shown in Figure 5, where we are
now interested in non-losing (rather than winning) strategies of the players
in the original game. In G0, Player 1 has a winning strategy from all the
vertices except v08, which is shown in Figure 6(a) by bold edges. This strategy
constitutes a non-losing strategy for him in the original game G from the same
vertices. Similarly, Player 0 has a strategy to win every play in G1, regardless
of where the play starts (see Figure 6(b)). Consequently, she also has a non-
losing strategy from every vertex in the original game G. We conclude that
v08, for which only Player 0 has a non-losing strategy in G, is in W0, whereas
the rest of the vertices are in Wtie since both players have non-losing strategies
from them. As can be expected, this is consistent with Example 18, where
winning strategies were considered.

6.2 Refinement with Non-Losing Strategies

When using an algorithm that solves the three-valued parity game by comput-
ing non-losing strategies, refinement is needed in the case where both players
have non-losing strategies from v = sa ⊢ ϕ (meaning that v ∈Wtie).

21

As in most cases, our refinement consists of two parts. First, we choose a
criterion that tells us how to split the abstract states. We then construct the
refined abstract model, using the refined abstract state space. In the rest of
this section we refer to the first part.

Given that v ∈Wtie , our goal in the refinement is to find and eliminate at least
one of the causes of the indefinite result. Thus, the criterion for splitting the
abstract states is obtained from a failure vertex. Intuitively, this is a vertex
vf = s′a ⊢ ϕ′ such that (1) vf ∈ Wtie ; (2) the classification of vf to Wtie

affects the indefinite result of v; and (3) the indefinite classification of vf can
be changed by splitting it. The latter requirement means that the vertex vf

itself is responsible for introducing (some) uncertainty. The other requirements
demand that this uncertainty is relevant to the result in v.

Recall that from each vertex in Wtie both players have non-losing strategies.
(5) They can be combined into one strategy for each player. Thus, each player

(5)TODO: ML:
Removed
comment on
‘memoryless’σ ∈ {0, 1} has a strategy that is non-losing for him from each vertex in V \Wσ̄

and in particular from Wtie . Let ζ0 and ζ1 be the corresponding strategies of
Player 0 and Player 1 respectively. These strategies can be computed using
the reduction approach, as explained in Section 6.1.

We use the non-losing strategies ζ0 and ζ1 for the failure search. Our failure
search basically follows the unique play obtained by letting the players play
against each other using their non-losing strategies until it identifies a fail-
ure vertex v′ and a cause for the failure. More specifically, the failure search
proceeds from one tie-vertex (i.e. vertex in Wtie) to the next along this play,
guided by the non-losing strategies: from v ∈ Vσ it proceeds to ζσ(v). This
continues until one of three possibilities occurs:

(1) The search reaches a (dead-end) vertex in Vtie .
(2) The search reaches a vertex in Wσ for σ ∈ {0, 1}.
(3) The search reaches a vertex that was already visited.

Note the following facts regarding the play:

• The play is uniquely determined by ζ0 and ζ1.
• The play is a tie, as it is non-losing for both players (conforms to a non-losing

strategy of each of them).
(6)TODO: ML:
Removed
reference to
‘memoryless’• (6) The play is a simple regular path if |G| = n <∞ is finite, and one of the

three possibilities occurs after at most n steps in this play.

Now, in the first possibility v ∈ Vtie is considered a failure vertex, since chang-
ing its classification to V0 or V1 (by splitting it) would make one of the players
closer to winning.

As for the second and third possibilities, in each of them there exists one player

22

that is “closer” to winning the play. In the second possibility this is Player σ,
for which the play reached a vertex in Wσ. In the third possibility this is the
player σ that corresponds to the parity of the minimal priority that appears
in the loop that results from the two occurrences of the same vertex. (7) Note

(7)TODO: ML:
Did some
reowordingthat having identified a loop in the play means that the rest of the play will be

an infinite unwinding of the loop. Thus, the minimal priority that will occur
infinitely often in the play will be the minimal priority that appears on the
loop, whose parity corresponds to σ.

Having that Player σ is “closer” to winning the play, and yet knowing that
the play is a tie, implies that there has to exist a genuine may-edge used by
Player σ in the prefix of the play (otherwise Player σ would win). All of these
genuine may-edges of player σ are candidates to be considered a failure cause
with their source vertex being the failure vertex. This is because changing
the may-edge into a must-edge (by splitting the source vertex) would make
Player σ closer to winning and on the other hand removing the edge altogether
would make Player σ̄ closer to winning. The choice of one failure vertex from
this set of candidates is a matter of heuristics.

To sum up, given a partition of the vertices of G to (W0,W1,Wtie) and
given non-losing strategies ζ0 and ζ1 for Player 0 and 1 resp., the algorithm
FindFailure(v) returns a failure vertex vf and cause for v ∈Wtie .

Algorithm FindFailure (v)

(1) if v ∈ Vtie then return (v, tie);
(2) else if v ∈Wσ then return choose(visited · v, σ);
(3) else if v ∈ visited then return choose(visited · v, parity(visited, v));
(4) else // continue with the search

add v to visited;
let σ be such that v ∈ Vσ;
let w := ζσ(v);
FindFailure(w);

where the function parity(sequence, v) returns 0 if the minimal priority that
appears in the sequence starting from the vertex v is even, and 1 if it is odd.
The function choose(sequence, σ) chooses a vertex from Vσ that appears in
the sequence and has a genuine may-edge to its successor in the sequence. It
returns the chosen vertex and the corresponding may-edge.

This concludes the description of how FindFailure looks for a failure vertex
and cause. A simple case analysis shows the following.

Theorem 23 Let vf be a vertex that is returned by FindFailure(v) as a
failure vertex. The failure cause can either be the fact that vf ∈ Vtie, or it can
be a genuine may-edge (vf , v

′) ∈
may

−→ \
must

−→.

23

Once we are given a failure vertex vf = s′a ⊢ ϕ′ and a corresponding reason
for failure, we guide the refinement to discard the cause for failure in the
hope for changing the model checking result to a definite one. This is done
as in [5], where the failure information is used to determine how the set of
concrete states represented by s′a should be split in order to eliminate the
failure cause. A criterion for splitting all abstract states can then be found by
known techniques, depending on the abstraction used (e.g. [24,25]).

After refinement, one has to re-run the model checking algorithm on the game
graph based on the refined KMTS to get a definite value for sc and ϕ. However,
we can restrict this process to the previous Wtie . When constructing the game
graph based on the refined KMTS, every vertex s2

a ⊢ ψ for which a vertex
sa ⊢ ψ (where s2

a results from splitting sa) exists in W0 or W1 in the previous
game graph can be considered a dead-end winning for Player 0 or Player 1,
respectively. This way we avoid unnecessary refinement.

Example 24 Reconsider the game shown in Figure 4, where v00 ∈ Wtie (see
Examples 18 and 22), and the non-losing strategies of the players discussed
in Example 22 (see Figure 6). Following both non-losing strategies in G will
guide the play starting in v00 to vertex v18 through non-winning vertices for
both players. Consequently, the state underlying v18 should be refined, which is
s1 (see Figure 3).

Now, assume that v18 is a Player 0 vertex (for example after refinement). This
means that v18 is now winning for Player 1 in G. As before, Player 1 has a
winning strategy in G0, and thus a non-losing strategy in G, by forcing the
play to v18. But also Player 0 can still win in G1, and thus not lose in G, by
choosing in v02 the edge leading to v03 (instead of the edge leading to v13). Now,
the combined non-losing strategies would give a loop v00v01v02v03v04v05v06v01,
which asks for refining the may edge from v02 to v03.

This also demonstrates the importance, in terms of the refinement, of not
limiting the computation of winning strategies in the reduced graphs G0 and
G1 to vertices that are reachable from the vertex of interest. Namely, v03 is
unreachable in G0 from v00. Yet, the non-losing strategy of Player 0 takes
the play to v03. Thus, the information about a non-losing strategy of Player 1
from v03 is essential in order to follow the tie play that guides the refinement.
This information is only available provided that v03 was considered during the
computation of a winning strategy for Player 1 in G0.

24

7 Conclusion

In this work we present a game-based model checking for abstract models with
respect to specifications in µ-calculus, interpreted over a 3-valued semantics.
We also suggest an automatic refinement, in case the model checking result is
indefinite.

In contrast to [6], model checking is determined by solving two model checking
games for µ-calculus with respect to the 2-valued semantics. However, these
games are based on the full board for the 3-valued game. This is particularly
important for refinement, for which the board for the 3-valued game holds
more information than the two boards of the 2-valued games.

The refinement is based on the novel notion of a non-losing strategy. In case
the model checking result is indefinite, both players have non-losing strategies.
Combining these strategies of the two players comprises a play, resulting with
a tie. From this play, a failure node and a cause are derived and exploited for
refinement.

A non-losing strategy for Player σ can easily be extracted by computing a
winning strategy for Player σ on the 2-valued game Gσ̄. This can be done
using any algorithm for solving 2-valued model checking games. Thus, our
approach can take advantage of efficient algorithms for this problem, such as
Jurdzinski’s algorithm for parity games [8].

Recently, there has been an active research on completeness and precision of
abstractions for branching time logics (e.g. [26–30]). Various abstract models
which are more expressive than KMTSs were suggested. These models add
some kind of disjunctiveness to the model: for example, [28] introduces fo-
cus operations, and [27,29] uses hyper-transitions (first introduced by [31])
to model the abstract transitions. Some of these models (e.g. [28,30]) also
consider fairness conditions. While fairness requires different techniques (e.g.
in order to determine how to refine the fairness conditions), disjunctiveness
can be handled by the approach suggested in this paper. This simply requires
to define a 3-valued model checking game for such models (see for exam-
ple [29] for hyper-transitions) and to encode the game as a 3-valued parity
game (e.g. [28,29] use 2-valued parity games).

References

[1] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT press, 1999.

[2] G. Bruns, P. Godefroid, Model checking partial state spaces with 3-valued

25

temporal logics., in: N. Halbwachs, D. Peled (Eds.), Computer Aided
Verification, 11th International Conference, CAV ’99, Vol. 1633 of Lecture Notes
in Computer Science, Springer, 1999, pp. 274–287.

[3] M. Huth, R. Jagadeesan, D. Schmidt, Modal transition systems: A foundation
for three-valued program analysis, in: European Symposium on Programming
(ESOP), Vol. 2028 of Lecture Notes in Computer Science, 2001, pp. 155–169.

[4] P. Godefroid, R. Jagadeesan, On the expressiveness of 3-valued models, in:
Verification, Model Checking and Abstract Interpretation (VMCAI), Vol. 2575
of Lecture Notes in Computer Science, 2003, pp. 206–222.

[5] S. Shoham, O. Grumberg, A game-based framework for CTL counterexamples
and 3-valued abstraction-refinemnet, in: Computer Aided Verification (CAV),
Vol. 2725 of Lecture Notes in Computer Science, 2003, pp. 275–287.

[6] O. Grumberg, M. Lange, M. Leucker, S. Shoham, Don’t know in the µ-calculus,
in: 6th international conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’05), Vol. 3385 of Lecture Notes in Computer Science,
Paris, France, 2005, pp. 233–249.

[7] E. A. Emerson, C. S. Jutla, A. P. Sistla, On model-checking for fragments
of mu-calculus, in: Computer-Aided Verification, Vol. 697 of Lecture Notes in
Computer Science, 1993, pp. 385–396.

[8] M. Jurdzinski, Small progress for solving parity games, in: STACS, Vol. 1770
of Lecture Notes in Computer Science, 2000, pp. 290–301.

[9] D. Kozen, Results on the propositional µ-calculus, Theoretical Computer
Science 27 (1983) 333–354.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic
model checking: 1020 states and beyond, Information and Computation 98 (2)
(1992) 142–170.

[11] E. Emerson, C. Lei, Efficient model checking in fragments of the propositional µ-
calculus, in: Symposion on Logic in Computer Science (LICS), IEEE Computer
Society Press, Washington, D.C., USA, 1986, pp. 267–278.

[12] C. Stirling, D. J. Walker, Local model checking in the modal mu-calculus, in:
TAPSOFT’89: Proceedings of the International Joint Conference on Theory
and Practice of Software Development, Vol. 351 of Lecture Notes in Computer
Science, 1989, pp. 369–383.

[13] G. Winskel, Model checking in the modal ν-calculus, in: International
Colloquium on Automata, Languages, and Programming (ICALP), Vol. 372
of Lecture Notes in Computer Science, 1989, pp. 761–772.

[14] R. Cleaveland, Tableau-based model checking in the propositional mu-calculus,
Acta Inf. 27 (1990) 725–747.

[15] D. Long, A. Browne, E. Clark, S. Jha, W. Marrero, An improved algorithm for
the evaluation of fixpoint expressions, in: Computer Aided Verification, (CAV),
Vol. 818 of Lecture Notes in Computer Science, 1994, pp. 338–350.

26

[16] C. Stirling, Modal and Temporal Properties of Processes, Springer, 2001.

[17] P. Godefroid, R. Jagadeesan, Automatic abstraction using generalized model
checking, in: Computer-Aided Verification (CAV), Vol. 2404 of Lecture Notes
in Computer Science, 2002, pp. 137–150.

[18] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points, in: ACM
Symposium on Principles of Programming Languages, 1977, pp. 238–252.

[19] D. Dams, R. Gerth, O. Grumberg, Abstract interpretation of reactive systems,
ACM Transactions on Programming Languages and Systems (TOPLAS) 19 (2).

[20] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem, Property preserving
abstractions for the verification of concurrent systems, Formal Methods in
System Design 6 (1995) 11–45.

[21] A. Tarski, A lattice-theoretical fixpoint theorem and its application, Pacific
J.Math. 5 (1955) 285–309.

[22] C. Stirling, Local model checking games, in: Concurrency Theory (CONCUR),
Vol. 962 of Lecture Notes in Computer Science, 1995, pp. 1–11.

[23] E. Emerson, C. Jutla, Tree automata, mu-calculus and determinacy, in:
Proc. 32th Symp. on Foundations of Computer Science (FOCS), IEEE
Computer Society Press, 1991, pp. 368–377.

[24] E. Clarke, A. Gupta, J. Kukula, O. Strichman, SAT based abstraction-
refinement using ILP and machine learning techniques, in: Computer-Aided
Verification (CAV), Vol. 2404 of Lecture Notes in Computer Science, 2002, pp.
265–279.

[25] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided
abstraction refinement, in: Computer Aided Verification (CAV), Vol. 1855 of
Lecture Notes in Computer Science, 2000, pp. 154–169.

[26] K. Namjoshi, Abstraction for branching time properties, in: Computer Aided
Verification (CAV’03), Vol. 2725 of LNCS, 2003, pp. 288–300.

[27] S. Shoham, O. Grumberg, Monotonic abstraction-refinement for CTL, in: Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), Vol.
2988 of LNCS, 2004, pp. 546–560.

[28] D. Dams, K. Namjoshi, The existence of finite abstractions for branching time
model checking, in: IEEE Symposium on Logic in Computer Science (LICS),
2004, pp. 335–344.

[29] L. de Alfaro, P. Godefroid, R. Jagadeesan, Three-valued abstractions of games:
Uncertainty, but with precision, in: IEEE Symposium on Logic in Computer
Science (LICS), 2004, pp. 170–179.

[30] D. Dams, K. S. Namjoshi, Automata as abstractions, in: Verification, Model
Checking and Abstract Interpretation (VMCAI’05), Vol. 3385 of Lecture Notes
in Computer Science, 2005, pp. 216–232.

27

[31] K. Larsen, L. Xinxin, Equation solving using modal transition systems, in: IEEE
Symp. on Logic in Computer Science (LICS), 1990, pp. 108–117.

A History-dependent versus Memoryless Strategies

We obtained all results in this paper using only so-called memoryless strate-
gies, for model-checking games as well as for three-valued and ordinary two-
valued parity games.

While in the setting of model-checking games and ordinary parity games the
notion of history-dependent strategies does not change results on existence of
winning strategies, the same result is a priori not clear for three-valued games.
Although this result can be obtained as a generalization from the according
result for ordinary parity games [23], we prefer to give a simple proof based
on [23] and the results of the previous sections.

(8)TODO: ML:
add viability
requirement.
Please check and
kill(8)A history-dependent strategy for Player σ in the 3-valued parity game G =

(A, χ) is a function ζ : V ∗Vσ → V such that for all w ∈ V ∗, v ∈ Vσ and
v′ ∈ V : ζ(wv) = v′ implies that Player σ can move from v to v′. It is called
memoryless if for all w,w′ ∈ V ∗, v ∈ Vσ: ζ(wv) = ζ(w′v). A play v0v1 . . . is
said to conform to ζ if for all k ∈ N, s.t. vk ∈ Vσ: vk+1 = ζ(v0 . . . vk).

Theorem 25 Player σ has a (history dependent) winning, resp. non-losing
strategy in a three-valued parity game G iff she has a memoryless winning,
resp. non-losing strategy.

PROOF. Let us first consider winning strategies. As a memoryless strategy
is also a history-dependent one, the implication from right to left is trivial.

Assume that Player σ has a (history-dependent) winning strategy ζ : V ∗Vσ →
V in G, which is not necessarily a memoryless one. As every play conforming
to ζ is winning for Player σ, it is necessarily σ-eager. In other words, for all
k ∈ N, s.t. vk ∈ Vσ and vk+1 = ζ(v0 . . . vk), there is (9) a must-edge from

(9)TODO:
sharon: removed
”only”vk to vk+1. Thus, ζ is a strategy for Gσ. Now observe that every play in Gσ

conforming to ζ is winning, meaning that ζ is a (history-dependent) winning
strategy for Gσ.

Thus, Player σ has a winning strategy for Gσ. By [23], this implies that Player
σ has a memoryless winning strategy for Gσ. Due to Proposition 16, this shows
the existence of a memoryless winning strategy for Player σ in G.

Similarly, for non-losing strategies, the implication from right to left is trivial.

28

Assume that Player σ has a history-dependent non-losing strategy ζ : V ∗Vσ →
V in G, which is not necessarily a memoryless one.

We show that ζ is a (history-dependent) winning strategy for Player σ in Gσ̄.
By [23], this implies that Player σ has a memoryless winning strategy for Gσ̄.
Due to Proposition 20, this shows the existence of a memoryless non-losing
strategy for Player σ in G.

As every play conforming to ζ is non-losing for Player σ, it is either (1) winning
for Player σ, (2) ending in a vertex from Vtie ,

(10) or (3) not σ̄-eager. This
(10)TODO:
sharon:added
case 2implies that every play of Gσ̄ conforming to ζ is either a play in G, in which

case it is one of (1) or (2) and thus winning for Player σ, or, a finite play
ending in a vertex of Player σ̄ and thus also winning for Player σ. Hence,
Player σ has a winning strategy in Gσ̄.

29

