
Propositional Dynamic Logic of Context-Free

Programs and Fixpoint Logic with Chop

Martin Lange

University of Munich, Institut für Informatik, Oettingenstr. 67, D-80538
München, Germany

RafaÃl Somla

University of Uppsala, IT Department, Box 337, SE-751 05 Uppsala, Sweden

Abstract

This paper compares Propositional Dynamic Logic of Non-Regular Programs and
Fixpoint Logic with Chop. It identifies a fragment of the latter which is equi-
expressive to the former. This relationship transfers several decidability and com-
plexity results between the two logics.

Key words: Program Logics, Context-Free Languages, µ-Calculi

1 Introduction

Propositional Dynamic Logic (PDL) extends multi-modal logic with an infinite
set of modal relations. In ordinary PDL – as defined by Fischer and Ladner
[1] and building on a proposal by Pratt [10] – these relations form a Kleene
Algebra. PDL can therefore be used to reason about programs involving non-
deterministic choice, concatenation and iteration.

An extension of PDL is Propositional Dynamic Logic of Non-Regular Programs
(PDL[CFG]) as defined by Harel, Pnueli and Stavi [2]. There, modal relations
are constructed using the full power of context-free grammars rather than
regular expressions only.

Let P = {p, q, . . .} be a set of propositional constants and Σ be a finite alpha-
bet. PDL[CFG] formulas in positive normal form are defined by

ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈G〉ϕ | [G]ϕ

Preprint submitted to Elsevier Science 9 February 2006

where q ∈ P and G is a context-free grammar (N,Σ, S, P) with N a finite set
of non-terminals, Σ a finite alphabet, S ∈ N a designated starting symbol, and
P ⊆ N × (N ∪Σ)∗ a finite set of production rules [4]. The language generated
by grammar G is L(G) = {w ∈ Σ∗ | S ⇒∗ w}.

A Kripke structure is a tuple T = (S, { a−→ | a ∈ Σ}, λ) where S is a set of
states, each a−→ : S × S a binary relation between states, and λ : S → 2P a
function that assigns to each state the set of propositions that hold true in it.

The accessibility relations a−→ can naturally be extended to finite words over
Σ via ε−→ := {(s, s) | s ∈ S} and aw−−→ := a−→◦ w−→ for any w ∈ Σ∗.

The semantics of PDL[CFG] w.r.t. a Kripke structure T is explained induc-
tively. Let s, t ∈ S.

T , s |= q iff s ∈ λ(q)

T , s |= ¬q iff s 6∈ λ(q)

T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ

T , s |= ϕ ∧ ψ iff T , s |= ϕ and T , s |= ψ

T , s |= 〈G〉ϕ iff ∃w ∈ L(G),∃t ∈ S s.t. s w−→ t and T , t |= ϕ

T , s |= [G]ϕ iff ∀w ∈ L(G),∀t ∈ S : s w−→ t implies T , t |= ϕ

It was shown that PDL[CFG] does not retain nice model-theoretic properties
of PDL. It is undecidable and does not have the finite model property. It is
also strictly more expressive than PDL, it can even express properties that
are not definable by finite Rabin tree automata, e.g. 〈anbn〉tt.

Another modal logic that is capable of expressing non-regular properties is
Müller-Olm’s Fixpoint Logic with Chop [9]. It extends Kozen’s modal µ-calculus
[6] with a sequential composition operator.

Let P and Σ be as introduced above, V = {Z, Y, . . .} be a set of propositional
variables. Formulas of FLC are given by the following grammar.

ϕ ::= q | ¬q | Z | τ | 〈a〉 | [a] | ϕ ∨ ϕ | ϕ ∧ ϕ | µZ.ϕ | νZ.ϕ | ϕ;ϕ

where q ∈ P , Z ∈ V , and a ∈ Σ. We will write σ for µ or ν, and use the
following abbreviations: tt := q ∨ ¬q, ff := q ∧ ¬q for some q ∈ P .

The function space 2S → 2S together with the partial order given by

f v g iff ∀X ⊆ S : f(X) ⊆ g(X)

forms a complete lattice with joins t and meets u. By the Knaster-Tarski

Theorem [11] the least and greatest fixpoints of monotonic functionals F :
(2S → 2S) → (2S → 2S) exist. They are used to interpret fixpoint formulas
of FLC. We call an element of 2S → 2S a predicate transformer. A function
f : 2S → 2S that is constant, i.e. f(X) = f(Y) for all X, Y ⊆ S, is called a
predicate. The next lemma is straight-forward.

Lemma 1 If f and g are predicates then so are f t g and f u g. If g is a
predicate and f is any predicate transformer then f ◦ g is a predicate.

An environment is a ρ : V → (2S → 2S) that maps variables to predicate
transformers. The environment ρ[Z 7→ f] maps Z to f and agrees with ρ on
all other arguments. Given a Kripke structure T = (S, { a−→ | a ∈ Σ}, λ),
the semantics [[·]]Tρ : 2S → 2S of an FLC formula, relative to T and ρ, is a
monotone predicate transformer w.r.t. ⊆.

[[q]]Tρ := λT.{t | q ∈ L(t)}
[[Z]]Tρ := ρ(Z)

[[τ]]Tρ := λT.T

[[ϕ ∨ ψ]]Tρ := [[ϕ]]Tρ t [[ψ]]Tρ

[[ϕ ∧ ψ]]Tρ := [[ϕ]]Tρ u [[ψ]]Tρ

[[〈a〉]]Tρ := λT.{s ∈ S | ∃t ∈ T, s.t. s a−→ t}
[[[a]]]Tρ := λT.{s ∈ S | ∀t ∈ S, if s a−→ t then t ∈ T}

[[µZ.ϕ]]Tρ :=
d{f : 2S → 2S | f monotone, [[ϕ]]Tρ[Z 7→f] v f}

[[νZ.ϕ]]Tρ :=
⊔{f : 2S → 2S | f monotone, f v [[ϕ]]Tρ[Z 7→f]}

[[ϕ;ψ]]Tρ := [[ϕ]]Tρ ◦ [[ψ]]Tρ

A state s of a Kripke structure T satisfies a formula ϕ under ρ, written T , s |=ρ

ϕ, iff s ∈ [[ϕ]]Tρ (S). If ϕ is a closed formula then ρ can be omitted and we write

[[ϕ]]T (S) as well as T , s |= ϕ. Given a ϕ ∈ PDL[CFG] and a closed ψ ∈ FLC,
we write ϕ ≡ ψ iff for any Kripke structure T with state s: T , s |= ϕ iff
T , s |= ψ.

In order to simplify notation we will extend the syntax of FLC by simultaneous
fixpoint definitions: if X1, . . . , Xn are variables and ϕ1, . . . , ϕn are FLC for-
mulas then σi(X1, . . . , Xn), (ϕ1, . . . , ϕn) is also an FLC formula. Its semantics
is the simultaneously defined fixpoint of the corresponding system of equa-
tions projected onto the solution for Xi. According to the Békic̀ principle, this
formula simply abbreviates an iterative nesting, e.g.

σ1(X1, . . . , Xn).(ϕ1, . . . , ϕn) ≡ σX1.ϕ1(X1, σX2.ϕ2(X1, X2, . . .) . . .)

A formula is called disjunctive if it only consists of variables, the atoms τ
and 〈a〉, disjunctions, sequential compositions, and the µ-operator. It is called
conjunctive if it only consists of variables, the atoms τ and 〈a〉, conjunctions,
sequential compositions, and the ν-operator.

Homogenous FLC, HFLC, is the least fragment that contains atomic propo-
sitions, and is closed under the boolean operators and left-composition with
closed disjunctive or conjunctive formulas. For instance, the following is an
HFLC-formula: (µX.τ ∨ 〈a〉;X; 〈b〉); (νY.τ ∧ [c];Y); q. It says that there is a
path leading – under a word of the form anbn – to some state from which no
other state is reachable via an arbitrary number of c-relations that does not
satisfy q.

We define the complement ϕ of an FLC formula ϕ inductively as q := ¬q,
¬q := q, τ := τ , 〈a〉 := [a], [a] := 〈a〉, ϕ ∨ ψ := ϕ ∧ ψ, ϕ ∧ ψ := ϕ ∨ ψ,
ϕ;ψ := ϕ;ψ, X := X, µX.ϕ := νX.ϕ, and νX.ϕ := µX.ϕ.

The following lemma is then easy to prove by a straight-forward induction on
the formula structure.

Lemma 2 Let T be a Kripke structure with state set S. For all T ⊆ S, all
ϕ ∈ FLC and all environments ρ we have: [[ϕ]]ρ(T) = S \ [[ϕ]]ρ(S \ T).

2 Equi-Expressiveness of HFLC and PDL[CFG]

Let G = (N,Σ, S, P) be a CFG with N := {A1, . . . , An}, S = A1 and Ai →
αi,1 | . . . | αi,mi

for each i = 1, . . . , n. We define two FLC formulas ||G||∃ and
||G||∀ in the following way.

||G||∃ := µ1(A1, . . . , An).(
m1∨

i=1

||α1,i||∃, . . . ,
mn∨

i=1

||αn,i||∃)

||G||∀ := ν1(A1, . . . , An).(
m1∧

i=1

||α1,i||∀, . . . ,
mn∧

i=1

||αn,i||∀)

where ||ε||∃ = ||ε||∀ := τ , ||Ai||∃ = ||Ai||∀ := Ai, ||aw||∃ := 〈a〉; ||w||∃, and ||aw||∀ :=
[a]; ||w||∀.

Lemma 3 Let T = (S, { a−→ | a ∈ Σ}, λ) be a Kripke structure, and G be a
CFG. For all s ∈ S and all T ⊆ S we have

a) s ∈ [[||G||∃]](T) iff ∃t ∈ T with s G−→ t;

b) s ∈ [[||G||∀]](T) iff ∀t ∈ S: s G−→ t implies t ∈ T .

PROOF. (a) Let G = (N,Σ, P, S). Note that P defines a system of equations
for each A ∈ N , and it is well-known that L(G) is the simultaneously defined
least fixpoint of this system, projected onto S. This is what ||G||∃ defines
explicitly, from which the claim follows immediately.

(b) This follows immediately from part (a) and Lemma 2. Note that ||G||∀ ≡
||G||∃. 2

Theorem 4 For any ϕ ∈ PDL[CFG] there is a ϕ′ ∈ HFLC s.t. ϕ ≡ ϕ′.

PROOF. Let ϕ ∈ PDL[CFG]. Define a ϕ′ ∈ FLC inductively as follows.

q′ := q

(ψ0 ∨ ψ1)
′ := ψ′0 ∨ ψ′1

(〈G〉ψ)′ := ||G||∃;ψ′

(¬q)′ := ¬q
(ψ0 ∧ ψ1)

′ := ψ′0 ∧ ψ′1
([G]ϕ)′ := ||G||∀;ψ′

A straight-forward induction on the structure of ϕ shows ϕ ≡ ϕ′. The cases
of modal formulas follow from Lemma 3. Note that ψ′ is a predicate for
any ψ ∈ PDL[CFG] according to Lemma 1. Furthermore, for any CFG G,
||G||∃ is disjunctive and ||G||∀ is conjunctive. Hence, ϕ′ ∈ HFLC for any ϕ ∈
PDL[CFG]. 2

This shows PDL[CFG] ≤ HFLC. As an example, take the CFG G given by
S → b | aTS, T → b | aTT . Note that L(G) = {w ∈ {a, b}∗ | there is a prefix
v of w s.t. |v|b > |v|a}. Consequently, the PDL[CFG] formula [G]ff as well as
the HFLC formula (νS.[b]∧ [a]; (νT.[b]∧ [a];T ;T);S); ff both express: “on all
paths the number of b-actions never exceeds the number of a-actions”.

For the converse translation from HFLC to PDL[CFG] we first observe that,
with the help of simultaneous fixpoint formulas, it is possible to normalise
every HFLC formula.

A disjunctive FLC formula is said to be normalised if it is of the form µi(X1,
. . . , Xn).(ϕ1, . . . , ϕn) s.t. for all i = 1, . . . , n: ϕi is a disjunction of sequential
compositions of the variables Xi and atomic formulas τ and 〈a〉. A conjunctive
formula is said to be normalised if it is of the form νi(X1, . . . , Xn).(ϕ1, . . . , ϕn)
s.t. for all i = 1, . . . , n: ϕi is a conjunction of sequential compositions of
the variables Xi and atomic formulas τ and [a]. For instance, the formulas
produced by the translations || · ||∃ and || · ||∀ are normalised.

Lemma 5 Every disjunctive and every conjunctive formula ϕ ∈ FLC is equiv-
alent to a normalised ϕ′.

PROOF. Let ϕ be disjunctive. W.l.o.g. we can assume ϕ to start with a µ-
operator because of the equivalence ϕ ≡ µX.ϕ where X does not occur in ϕ.
Since ϕ does not contain greatest fixpoint quantifiers we can apply the Békic̀
principle and rewrite it into the form µi(X1, . . . , Xn).(ϕ1, . . . , ϕn). However,
each ϕi may still contain disjunctions under the scope of sequential composi-
tions.

Suppose there is a subformula of the form (ψ1∨ψ2);ψ3. This can equivalently
be replaced by ψ1;ψ3∨ψ2;ψ3. However, for subformulas of the form ψ3; (ψ1∨ψ2)
such a general equivalence does not hold. However, since ψ3 is disjunctive, the
following transformation can be applied. Replace this subformula by ψ3;Xn+1

where Xn+1 is a new variable, and rewrite ϕ to

µi(X1, . . . , Xn, Xn+1).(ϕ1[Xn+1/ψ1 ∨ ψ2], . . . , ϕn[Xn+1/ψ1 ∨ ψ2], ψ1 ∨ ψ2)

Iterating this process will eventually create a formula of the desired form.

The normalisation process for conjunctive formulas is entirely analogous. 2

Theorem 6 For every ϕ ∈ HFLC there is a ϕ′ ∈ PDL[CFG] s.t. ϕ′ ≡ ϕ.

PROOF. By induction on the structure of ϕ. Atomic propositions as well
as boolean connectives trivially translate into PDL[CFG]. The only interest-
ing cases are those of ϕ = ψ′;χ. By hypothesis, there is a χ′ ∈ PDL[CFG]
with χ′ ≡ χ. Furthermore, ψ′ is closed and either disjunctive or conjunctive.
According to Lemma 5, ψ′ is equivalent to a normalised ψ in FLC.

Now note that being normalised coincides with being of the form ||G||∃, resp.
||G||∀ for some CFG G. It is easy to reverse the translations of normalised FLC
formulas into CFGs. Correctness of these reversed translations is proved in the
same way as it is done in Thm. 4. Hence, there is a CFG Gψ s.t. ϕ ≡ 〈Gψ〉;χ
if ψ′ is disjunctive, and ϕ ≡ [Gψ];χ if ψ′ is conjunctive. 2

This shows HFLC ≤ PDL[CFG]. For example, take the HFLC formula (µX.τ∨
〈a〉;X; 〈b〉); (νY.τ∧ [c];Y); q mentioned above. It is already normalised. Hence,
it can directly be translated into PDL[CFG] and the result is 〈G1〉[G2]q where
G1 is given by X → ε | aXb, and G2 is given by Y → ε | cY .

3 Conclusions

Thms. 4 and 6 not only show that PDL[CFG] and HFLC are equi-expressive,
but also equi-succinct. Note that both translations are linear in the size of the

input formula, i.e. the number of its subformulas. This transfers several re-
sults from one logic to another. For example, satisfiability in HFLC is already
Σ1

1-complete in the analytical hierarchy since so is satisfiability for PDL[CFG]
[2]. So far, it was only known that FLC is undecidable [9], but the degree of
undecidability had not been measured. On the other hand, non-trivial frag-
ments of PDL[CFG] have been found to be decidable [5]. Hence, there also are
decidable and non-trivial fragments of FLC.

Related to the question of undecidability is the finite model property. It is
known that the full logic FLC does not have the finite model property. How-
ever, many fragments of PDL[CFG] with one non-regular program only do not
admit finite models [3]. Thus, already fragments of HFLC do not possess this
property.

It is known that the model checking problem for FLC is EXPTIME-hard
for certain fixed, alternation-free formulas already [8]. On the other hand,
PDL[CFG]’s model checking problem is in P [7]. Hence, the equivalence result
above reveals a non-trivial fragment of (alternation-free) FLC for which model
checking is tractable.

References

[1] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18(2):194–211, 1979.

[2] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular
programs. Journal of Computer and System Sciences, 26(2):222–243, 1983.

[3] D. Harel and E. Singerman. More on nonregular PDL: Finite models and
Fibonacci-like programs. Information and Computation, 128(2):109–118, 1996.

[4] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, N. Reading, MA, 1980.

[5] T. Koren and A. Pnueli. There exist decidable context free propositional
dynamic logics. In E. Clarke and D. Kozen, editors, Proc. of the Workshop
on Logics of Programs, volume 164 of LNCS, pages 290–312, Pittsburgh, PA,
1983. Springer.

[6] D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, December
1983.

[7] M. Lange. Model checking propositional dynamic logic with all extras. Journal
of Applied Logic, 4(1):39–49, 2005.

[8] M. Lange. Three notes on the complexity of model checking fixpoint logic with
chop, 2005. (submitted).

[9] M. Müller-Olm. A modal fixpoint logic with chop. In C. Meinel and
S. Tison, editors, Proc. 16th Symp. on Theoretical Aspects of Computer Science,
STACS’99, volume 1563 of LNCS, pages 510–520, Trier, Germany, 1999.
Springer.

[10] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th Annual
Symp. on Foundations of Computer Science, FOCS’76, pages 109–121, Houston,
Texas, 1976. IEEE.

[11] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific
Journal of Mathematics, 5:285–309, 1955.

