
A Purely Model-Theoretic Proof of the

Exponential Succinctness Gap Between CTL+

and CTL

Martin Lange

Institut für Informatik, Ludwig-Maximilians-Universität München

Abstract

We provide a conceptually simple and elementary proof of the exponential suc-
cinctness gap between the two branching time temporal logics CTL+ and CTL. It
only uses CTL’s small model property instead of automata- or game-theory and
combinatorics as in previous proofs by Wilke and Adler/Immerman.

Key words: specification languages, temporal logics, small model property

1 Introduction

CTL is the branching time temporal logic in which every path operator like
U (until), F (finally), etc. is immediately preceded by a path quantifier E or
A. It is, for instance, straight-forward to say in CTL that “there is a path
on which the atomic proposition q holds at some point”: EFq. CTL+ is the
extension of CTL that allows boolean combinations of path operators under
a path quantifier. For example, ϕ = E(Fq1 ∧ Fq2) says that “there is a path
on which q1 holds somewhere and q2 holds somewhere”. Syntactically, this is
not a CTL formula anymore. However, Emerson and Halpern have shown that
for every CTL+ formula there is an equivalent CTL formula [2]. The trick, in
general, is to consider all possibilities of orders in which events occur along a
path. For example, ϕ is equivalent to EF(q1 ∧ EFq2) ∨ EF(q2 ∧ EFq1) which is
in CTL again and says: “there is a path on which q1 occurs and from there,
there is another path on which q2 occurs, or vice-versa”. Note that this is just
a complicated way of expressing that both q1 and q2 must occur on some path.
It is easy to imagine that a generalisation with n propositions qi leads to an

Email address: martin.lange@ifi.lmu.de (Martin Lange).

Preprint submitted to Elsevier Science 12 June 2008

O(n)!-blow-up in formula size. Emerson and Halpern have indeed shown that
every CTL+ formula of size m can be translated into a CTL formula of size
at most O(m)! [2].

It is known that this cannot be improved. Wilke [4] has shown that there is a
family Φn of simple CTL+ formulas such that every equivalent family Ψn of
CTL formulas must be of size

√
3
|Φn| · 2|Φn|/3. The proof uses automata-theory

and is combinatorially involved. Later, Adler and Immerman [1] have shown
using Ehrenfeucht-Fräıssé games that every family of CTL formulas equivalent
to these must indeed have size (|Φn|/3)!. Finally, Johannsen and Lange [3]
have obtained a weaker bound but a stronger statement about the kind of
equivalence between the two logics: they presented a family of CTL+ formulas
Φn s.t. every family of CTL-formulas which are equivalent w.r.t. satisfiability

only must be of size 2Ω(
√
|Φn|).

Here we provide another proof of the exponential succinctness gap. It matches
Wilke’s bound asymptotically (albeit having worse constants). Hence, it is
not optimal. However, it is an elementary and conceptually simple proof that
does not rely on “external machinery” like automata- or game-theory. It uses
CTL’s small model property – every satisfiable CTL formula of size m has a
model of size at most exponential in m proved by Emerson and Halpern [2].
We then construct a series of CTL+ formulas that are satisfiable but whose
smallest models are of doubly exponential size. It follows by a simple compari-
son of these two terms that all equivalent CTL-formulas must be exponentially
bigger.

This technique is not restricted to CTL and CTL+. The essence of such a
proof is presented in the following general lemma which may yield succinctness
results for other logics as well. For two logics L and L′ interpreted over the
same class of structures we write L ≤ L′ if for every Φ ∈ L there is a Ψ ∈ L′
such that Φ ≡ Ψ, i.e. every L-property is also L′-definable. We write |Φ| to
denote the syntactic size of a formula Φ. We say that a logic L has the small
model property of size f : R → R if every satisfiable Φ ∈ L has a model of
size at most f(|Φ|). L has the large model property of size g : R→ R if there
are satisfiable Φn ∈ L, n ∈ N, such that every model of Φn must be of size
at least g(|Φn|) for all n ∈ N. Clearly, the large model property of a logic
must provide a lower bound to the small model property of the same logic.
However, this need not be the case for different logics. There is a succinctness
gap of size h : R→ R between L and L′ if there are satisfiable L-formulas Φn,
n ∈ N, such that for every family Ψn of L′-formulas we have: if Φn ≡ Ψn then
|Ψn| ≥ h(|Φn|), for all n ∈ N.

Lemma 1 (Gap-Lemma) Let L,L′ be two logics such that L ≤ L′. If

(1) L′ has the small model property of size f for some invertible f : R→ R,

2

and
(2) L has the large model property of size g for some g : R→ R.

then there is an (f−1 ◦ g)-succinctness gap between L and L′.

PROOF. Because of (2) there are satisfiable L-formulas Φn such that for all
their smallest models Mn we have: |Mn| ≥ g(|Φn|). Now suppose that Ψn,
n ∈ N, is a family of equivalent L′-formulas. Thus, each Mn is also a model
of Ψn, and because of (1) we have |Mn| ≤ f(|Ψn|). Since f is invertible we
obtain: |Ψn| ≥ f−1(g(|Φn|)). 2

In Sect. 2 we introduce CTL and CTL+ formally. In Sect. 3 we apply the
Gap-Lemma to these two logics. Since the small model property for CTL has
already been proved we only need to show the large model property for CTL+.

2 Preliminaries

A transition system is a tuple T = (S,−→, L) where S is a set of states,
−→ ⊆ S × S a transition relation and L : P → 2S a function that assigns
to each q in some non-empty set P of atomic propositions the set of states
L(q) in which q holds. Here we assume the transition relation to be total : for
all s ∈ S there is a t ∈ S such that s−→ t. A path is an infinite sequence
π = s0, s1, . . . ∈ Sω such that si−→ si+1 for all i ∈ N. With πk we denote the
k-th suffix of π, namely the path sk, sk+1,

Formulas of the branching time temporal logic CTL+ over P are given by the
following grammar. Let q ∈ P .

Φ ::= q | Φ ∨ Φ | ¬Φ | Eψ ψ ::= ψ ∨ ψ | ¬ψ | XΦ | ΦUΦ

Here we use capital Greek letters to denote state formulas and little ones for
path formulas. The latter only occur as genuine subformulas of the former. We
also use the usual abbreviations for ∧,→,↔, etc. from propositional logic, and
from temporal logic: Aψ := ¬E¬ψ, FΦ := ttUΦ where tt := q ∨ ¬q for some
q ∈ P , and GΦ := ¬F¬Φ. The logic CTL is obtained as a fragment of CTL+ by
removing the clauses for the boolean operators from the definition of ψ in the
grammar above. The set of subformulas Sub(ϕ) of a CTL+ formula is defined
in the usual way, and is used to measure the size of a formula: |ϕ| := |Sub(ϕ)|.
Note that |E(∧n

i=1 Fqi)| ≤ 3n for example. 1

1 . . . if we allow the binary ∧ as a first-class operator. If it counts as an abbreviation
the bound is 4n + 1.

3

Formulas of CTL+ are interpreted over states and paths of a transition system
T = (S,−→, L), reflecting the two types of formulas.

T , s |= q iff q ∈ L(s)

T , s |= Φ1 ∨ Φ2 iff T , s |= Φ1 or T , s |= Φ2

T , s |= ¬Φ iff T , s 6|= Φ

T , s |= Eψ iff there is a path π = s, . . . with T , π |= ψ

T , π |= ψ1 ∨ ψ2 iff T , π |= ψ1 or T , π |= ψ2

T , π |= ¬ψ iff T , π 6|= ψ

T , π |= XΦ iff π1 = s, . . . and T , s |= Φ

T , π |= Φ1UΦ2 iff π = s0, s1, . . . and there is a k ∈ N with T , sk |= Φ2

and for all j < k : T , sj |= Φ1

Two (state) formulas are equivalent, written Φ ≡ Ψ iff for all T and all states
s we have: T , s |= Φ iff T , s |= Ψ. Even though CTL is a strict syntactic
fragment of CTL+ the two logics are equi-expressive as shown by Emerson
and Halpern.

Theorem 2 ([2]) For every family Φn, n ∈ N, of CTL+ formulas there are
CTL formulas Ψn, n ∈ N, such that Ψn ≡ Φn and |Ψn| ≤ O(|Φn|)!.

3 Proof of the Succinctness Gap

As noted above, we proceed as follows. First we will show that there are
satisfiable CTL+ formulas Φn which do not have small models, i.e. all of their
models must have at least doubly-exponential size. These models must have
a path which is divided into sequences of some f(n) many states for some
suitable function f(n). Each such sequence will then be used to model the state
of a binary counter such that adjacent sequences model successive counter
values. In other words, Φn postulates the existence of a path with labels of
the form

000 . . . 0︸ ︷︷ ︸
f(n)

100 . . . 0︸ ︷︷ ︸
f(n)

010 . . . 0︸ ︷︷ ︸
f(n)

110 . . . 0︸ ︷︷ ︸
f(n)

. 111 . . . 1︸ ︷︷ ︸
f(n)

. . .

Of course this could easily be done using a formula of size O(f(n) · 2f(n)) but
it would be worthless for any meaningful function f . In order to achieve the
best possible succinctness gap result, f(n) must be as large as possible while
the formula Φn describing it should be as small as possible.

4

0 1 2 3 0 1
0 0 0 0 0 1 0 0

segment segment

bit :
1 1 1 1 1 0 0 0even :

0 0 0 1 1 0flip: 1 0

value of pi’s: 2n − 1 2n − 1

Fig. 1. A model of Φn.

It is possible to build a Φn of size linear in n that yields an f(n) = 2n.
Let Pn = {p0, . . . , pn−1, on, even, bit ,flip}. We use proposition on to mark a
certain path, propositions p0, . . . , pn−1 to model a counter that is increased
successively along that path, and even,bit and flip in order to model a second
counter with 2n many bits which can therefore count up to 22n

. Φn will ensure
that all counter values “occur” somewhere along that path which, hence, has
to be of doubly-exponential length.

Formulas Φn will consist of eight conjuncts, to be defined in the following.

Φn := Path ∧Minn ∧ Nextn ∧ Evenn ∧ Cachen ∧ Initn ∧ Flipn ∧ Incn

The first one describes the existence of the path mentioned above. We fur-
thermore require that every state on this path has a successor which is not on
this path. This successor will be called the cache of the corresponding state
on this path, see below for details.

Path := on ∧ AG

((
on → (EXon ∧ EX¬on)

)
∧

(
¬on → AX¬on

))

Models of formula Path look like the one that is schematically depicted in
Fig. 1. 2 The states in the upper line are those satisfying on, the ones below
are the cache states not satisfying on. Their labels will be required to differ
from their predecessors’ only in the proposition on. Thus, we only show the
labels of the states on the on-path.

Propositions p0, . . . , pn−1 will be used to assign to each state on this path a
natural number in the range 0, . . . , 2n− 1 represented in binary coding. These
should then act as a counter, i.e. the values should be increased successively
along the on-path. It is easy to assert the minimal and maximal value in this,

2 Since CTL+ is bisimulation-invariant one can only characterise the models of
a formula upto bisimilarity. Furthermore, models can have other parts (not just
unreachable ones) which the formula Path makes no assertions about. Later we will
be interested in the smallest models of Φn anyway for which such parts are obsolete.

5

marking the beginning and the end of each segment on this path.

Minn :=
n−1∧
i=0

¬pi Maxn :=
n−1∧
i=0

pi

Incrementation of the counter values can be formulated in CTL+ as follows.
Note that in binary increment the least significant digit always flips and the
others flip only if all lower bits are set. Equivalently, a bit flips only if the one
below flips from 1 to 0.

Nextn := AGA
(
Xon → (

(p0 ↔ X¬p0) ∧
n−1∧
i=1

Xpi ↔ (pi ↔ (pi−1 → Xpi−1))
))

This results in the numbers called “value of pi’s” in Fig. 1. It also partitions
the path outlined with the proposition on into segments of length 2n. The
proposition even is now used to mark every second of these segments. This
will be used later on when the second counter is being modelled.

Evenn := even ∧ AGA
(
Xon → (

(even ↔ Xeven) ↔ X¬Minn

))

Next we axiomatise the cache states in the sense that they mirror their prede-
cessor on that path w.r.t. all propositions other than on. Let P ′n := Pn \{on}.

Cachen := AGA
(
X¬on →

∧

q∈P ′n
(q ↔ Xq)

)

Note that this even implies that once the on-path is left all reachable states
carry the same P ′ label.

We now use the proposition bit to model a counter with 2n many bits – one for
each state in such a segment. The first such state, i.e. the one representing the
number 0 carries the least significant bit of this counter. It is easy to require
this counter to have minimal value in the first segment.

Initn := A
(
Gon → (¬bit)U(¬bit ∧ XMinn)

)

Next we need to say that the counter value is increased by one when moving
from one segment to the next one along on. In order to do so we use another
atomic proposition flip that marks all those bits which need to be flipped in
the next incremental step. This is done in the usual way: the least significant
bit is always flipped, and another bit is flipped only if the one below is set and
flipped as well.

Flipn := AGA
(
Gon → (Minn → flip) ∧

¬XMinn → (
Xflip ↔ (flip ∧ bit)

))

6

This can then be used to model the increment of that counter. We need the
values of the counter bits to flip or remain the same according to the value of
the proposition flip when moving to the same bit in the next segment. This
requires an assertion of the kind “something holds in 2n many steps” which is
in general not easy to express in CTL+ with a formula of less than exponential
size. Here we employ two tricks to model such an assertion via a statement of
the weaker form “something holds eventually”.

• In a position representing an arbitrary bit of the counter and a value i ∈
{0, . . . , 2n − 1} we quantify over a path that will eventually reach a state
representing the same value i. This can be done using the cache states.

• There are in general several of these paths starting in an on-state represent-
ing i. The first one runs into its cache state immediately, the second one
runs into the cache state of the i-th state in the next segment, the third
one does the same for the segment after that etc. In order to restrict the
quantification to the second one in this enumeration – the only one that
connects a bit to the same bit in the next segment – we require the value
of the proposition even to change exactly once on this path.

First of all we build a path formula that restricts the quantification accord-
ingly.

resn := Xon ∧
(

Minn → ¬(
F(even ∧Maxn) ∧ F(¬even ∧Maxn)

))

∧
(
¬Minn → ¬(

F(even ∧Minn) ∧ F(¬even ∧Minn)
))

∧
n−1∧
i=0

((
pi → F(¬on ∧ pi)

) ∧ (¬pi → F(¬on ∧ ¬pi)
))

The requirement on the bit values to change correctly is then only a simple
case distinction.

Incn := AGA

(
resn →

(
flip → (

bit → F(¬on ∧ ¬bit)
)

∧ (¬bit → F(¬on ∧ bit)
))

∧
(
¬flip → (

bit → F(¬on ∧ bit)
)

∧ (¬bit → F(¬on ∧ ¬bit)
)))

Clearly, the size of the Φn is only linear in n since so is the size of each conjunct.

Lemma 3 |Φn| = O(n).

To show that the Φn witness the large model property of CTL+ of doubly-
exponential size we need to show that they are satisfiable and that their models

7

must have that size indeed.

Lemma 4 For all n ∈ N: Φn is satisfiable.

PROOF. Let Tn = (S,−→, L) be the transition system shown in Fig. 1. For-
mally, S = {sk, s

′
k | k ∈ N}; the transitions are sk−→ sk+1, sk−→ s′k, and s′k−→ s′k

for all k ∈ N; and the labeling is given as:

L(on) = {sk | k ∈ N}
L(pi) = {sk, s

′
k | the i-th bit of k mod 2n is 1}

L(even) = {sk, s
′
k | k div 2n is even }

L(bit) = {sk, s
′
k | the (k mod 2n)-th bit of (k div 2n) is 1}

L(flip) = {sk, s
′
k | ∀h = 0, . . . , (k mod 2n)− 1 : the h-th bit of (k div 2n) is 1}

It is not hard to verify that T , s0 |= Φn holds indeed. 2

Lemma 5 For all n ≥ 1: every model of Φn has at least 2n · 22n
many states.

PROOF. Suppose that T = (S,−→, L) with some state s0 ∈ S is a model
of Φn. Since T , s0 |= Path there is a path π = s0, s1, . . . that satisfies on
everywhere. Because of this and Cachen, every si has a cache s′i that does
not differ in the atomic labels except for proposition on. Hence, we must have
si 6= s′j for all i, j ∈ N.

The small type assigns to each state sk in π an st(sk) ∈ N. It is defined as

st(sk) :=
n−1∑
i=0

bi · 2i with bi =

{
1 , if sk ∈ L(pi)

0 , otherwise

Clearly, we have st(sk) ∈ {0, . . . , 2n − 1} for all k ∈ N. Now for all j, k ∈ N
we have st(sj) 6= st(sk) ⇒ sj 6= sk because binary representations are unique,
and equal states must have equal labels. Formula Nextn ensures that st(sk) =
st(sj) only if k ≡ j mod 2n.

Let ran(sk) = {j | k div 2n = j div 2n} be the range of a state sk on π – the
set of all indices of states in its segment. Clearly |ran(sk)| = 2n for all k ∈ N,
and the range of a state is a closed segment of the path π. Furthermore, this
induces an equivalence relation: sk ≈ sj iff ran(sk) = ran(sj). Hence, these
segments are non-overlapping, of fixed size 2n, cover the entire path π, and
are always of the form sk, sk+1, . . . , sk+2n−1 such that k ≡ 0 mod 2n. This
also means that for all sk and all pairwise different i, j ∈ ran(sk) we have
st(si) 6= st(sj). We write ran(sk) = ran(sj) + 1 iff 1 ≤ j − k ≤ 2n and there is
an h with k ≤ h ≤ j such that st(sh) = 0.

8

The big type of a state sk in π is

bt(sk) :=
∑

i∈ran(sk)

bi · 2imod 2n

with bi =

{
1 , if si ∈ L(bit)

0 , otherwise

It is obtained by reading the value of the proposition bit in the range of sk as
the binary representation of a natural number. Since |ran(sk)| = 2n for all sk

we have 0 ≤ bt(sk) < 22n
. We also clearly have bt(sk) 6= bt(sj) ⇒ sk 6= sj for

all k, j ∈ N by contraposition. More interestingly, we have bt(sk) 6= bt(sj) ⇒
ran(sk) 6= ran(sj). Since ranges are non-overlapping, two states with different
big types must occur in two different segments on π.

Now formula Initn ensures bt(sk) = 0 for all 0 ≤ k < 2n, i.e. for all states in
the first segment. Formulas Flipn and Initn ensure that for all k, j ∈ N such
that ran(sk) = ran(sj) + 1 we have bt(sk) = bt(sj) + 1 mod 22n

. This means
that π contains at least 22n

many different segments each of size 2n, and each
with a different big type. Furthermore, within each segment, all states are
pairwise different because they have pairwise different small types. Hence, π
must contain at least 2n · 22n

many different states. 2

This establishes part (2) of the Gap-Lemma. Part (1) was, as said above,
already proved by Emerson and Halpern.

Theorem 6 ([2]) CTL has the small model property of size f(m) = m · 23m.

Corollary 7 There is a 2Ω(m)-succinctness gap between CTL+ and CTL.

PROOF. Thm. 6 yields the small model property for CTL of size f(m) =
m · 23m which is strictly monotonically increasing. Lem. 3–5 yield the large
model property for CTL+ of size g(m) = 2c·m · 22c·m

for some constant c.
Hence, we have f−1(g(m)) = 2Ω(m) which is the succinctness gap according to
Lemma 1. 2

References

[1] M. Adler and N. Immerman. An n! lower bound on formula size. ACM
Transactions on Computational Logic, 4(3):296–314, 2003.

[2] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. Journal of Computer and System Sciences,
30:1–24, 1985.

9

[3] J. Johannsen and M. Lange. CTL+ is complete for double exponential time. In
Proc. 30th Int. Coll. on Automata, Logics and Programming, ICALP’03, volume
2719 of LNCS, pages 767 – 775. Springer, 2003.

[4] T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. 19th
Conf. on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS’99, volume 1738 of LNCS, pages 110–121. Springer, 1999.

10

