
P-Hardness of the Emptiness Problem for Visibly

Pushdown Languages

Martin Lange

Dept. of Elect. Eng. and Computer Science, University of Kassel, Germany

Abstract

Visibly pushdown languages form a subclass of the context-free languages
which is appealing because of its nice algorithmic and closure properties.
Here we show that the emptiness problem for this class is not any easier
than the emptiness problem for context-free languages, namely hard for de-
terministic polynomial time. The proof consists of a reduction from the
alternating graph reachability problem.

Keywords: formal languages, complexity

1. Introduction

Context-free languages (CFL) are an important formalism for the specifi-
cation of the syntax of programming or natural languages. However, the class
of context-free languages lacks some important closure properties, namely de-
terminisability and closure under complement and intersection. The class of
deterministic context-free languages (DCFL) trivially admits determinisabil-
ity and is therefore closed under the complement operation but is not closed
under intersections either. Many applications – for instance the specification
of runs of recursive programs – require more expressive power then just the
regular language on the one hand, and such closure properties on the other.

An important subclass of CFL which does possess all of these three prop-
erties is the class of visibly pushdown languages (VPL) [1] which was originally
introduced under the name input driven languages [2]. These are recognised
by visibly pushdown automata (VPA) which are nondeterministic pushdown

IResearch supported by the European Research Council under the European Union’s
Seventh Framewrok Programme (FP7/2007-2013) / ERC Grant Agreement no. 259267.

Preprint submitted to Information Processing Letters July 18, 2013

automata (PDA) in which the input letter determines the type of stack action
that the automaton carries out when reading this letter.

Since every VPA is also a PDA, upper bounds on decision problems for
PDA trivially carry over to VPA. For instance, the emptiness problem or the
membership problem are solvable in deterministic polynomial time [3].1 In
case of CFL, this is also known to be optimal: the emptiness problem for
CFL is P-hard. This result seems to be folklore and is indeed easy to prove
by a reduction from the alternating graph reachability problem which is an
abstracted version of the membership problem for alternating, logarithmic
space bounded Turing Machines. This is one of the standard P-hard decision
problems [5].

A natural question to ask is whether or not the emptiness problem for
VPA is P-hard. Here we show that the answer is “yes”. We give a reduction
from the alternating graph reachability problem to the emptiness problem
for VPA which follows along the same lines as the one for PDA but is slightly
more involved due to the technical restrictions VPA have in relation to PDA.

Since there is no single natural class of visibly pushdown languages, but
several classes – each parameterised by a visibly pushdown alphabet – we
try to obtain lower bounds on the sizes of these alphabets which still cause
P-hardness. Finally, we conclude with some remarks on the complexity of
the membership problem for VPA, in particular why this does not simply
follow from the emptiness problem as it does in the case of PDA.

2. Visibly Pushdown Automata and Languages

A visibly pushdown alphabet is an alphabet Σ which is partitioned into
three parts (Σpush,Σint,Σpop) consisting of those letters which, respectively,
force a VPA to push a stack symbol, leave the stack untouched, and pop a
stack symbol. The size of the alphabet Σ is a triple (|Σpush|, |Σint|, |Σpop|).
When comparing alphabet sizes we use the pointwise order.

A VPA is a tuple A = (Q,Σ,Γ, q0, δ, F) where Q is a finite set of states,
Σ as above, Γ is a finite stack alphabet containing the special bottom-of-
stack symbol ⊥, q0 ∈ Q is the designated initial state, and F ⊆ Q is a
set of final states. The transition relation δ is partitioned into three parts

1Note that many standard textbooks only present polynomial time algorithms for gram-
mars in Chomsky normal form together with an exponential translation into this form.
See [4] for further details.

2

δ = δpush ∪ δint ∪ δpop where

δpush ⊆ Q× Σpush ×Q× (Γ \ {⊥})
δint ⊆ Q× Σint ×Q
δpop ⊆ Q× Σpop × Γ×Q

A configuration is a (q, γ, w) ∈ Q × Γ∗ × Σ∗. The computational behaviour
of the VPA A is explained by a relation ` on configurations. It is defined as
follows. Let q ∈ Q, γ ∈ Γ∗, a ∈ Σ, w ∈ Σ∗, B ∈ Γ with B 6= ⊥.

(q, γ, aw) ` (q′, Bγ, w) if (q, a, q′, B) ∈ δpush
(q, γ, aw) ` (q′, γ, w) if (q, a, q′) ∈ δint

(q, Bγ, aw) ` (q′, γ, w) if (q, a, B, q′) ∈ δpop
(q,⊥, aw) ` (q′,⊥, w) if (q, a,⊥, q′) ∈ δpop

Let `∗ be the reflexive-transitive closure of `. Also, we write `n to denote
the n-fold iteration of this relation. The language accepted by A is then

L(A) := {w ∈ Σ∗ | ∃q ∈ F. ∃γ ∈ Γ∗. (q0,⊥, w) `∗ (q, γ, ε)}

It is very easy to see that the language {anbn | n ∈ N} for instance is a
VPL over the visibly pushdown alphabet ({a}, ∅, {b}). Moreover, every Dyck
language is a VPL over a suitable partitioning of the alphabet. On the other
hand, {anban | n ∈ N} is not a VPL over any alphabet since a PDA would
have to perform push actions when reading the first a’s, and pop actions
when reading the latter a’s.

Finally, consider the alphabet ({a}, {b}, {c}) and the language L0 over
this alphabet given by the following context-free grammar.

S → ε | bS | aScS

Again, it is not difficult to see that this is a VPL.
The proofs of soundness and completeness of the aforementioned reduc-

tion use the following technical lemma. We omit a detailed proof since it is
very easy to prove by induction on n.

Lemma 1. For all n ∈ N, all q, q′ ∈ Q, all γ, γ′, δ ∈ Γ∗, all w,w′, v ∈ Σ∗ we
have:

3

a) (q, γ, w) `n (q′, γ′, w′) iff (q, γ, wv) `n (q′, γ′, w′v),

b) if (q, γ, w) `n (q′, γ′, w′) then (q, γδ, w) `n (q′, γ′δ, w′),

c) if (q, γδ, w) `n (q′, γ′δ, w′) such that all intermediate configurations have
a stack of the form δ′δ then (q, γ, w) `n (q′, γ′, w′).

Note that it is not possible to extend the model of VPA to allow for ε-
transitions. Closure properties and determinisability for VPA depend on the
fact that with every letter of the input that is consumed, exactly one of the
three types of stack actions occur. Additional ε-transitions in between could
therefore at most be allowed when the stack remains untouched.

3. The Complexity of the Emptiness Problem

Recall that the following problem, known as the alternating graph reacha-
bility problem, is P-hard [5]. Let G = (V, V0, V1, E, s, T) be a directed graph
such that V is the set of nodes which is partitioned into V0 ∪ V1 ∪ T and
E ⊆ V × V is the set of edges. We will write xE for the set of all E-
successors of a node x ∈ V . Furthermore, s ∈ V is a designated starting
node. This gives rise to an inductively defined set of nodes RG(T) from
which T is alternating-reachable in G.

R0
G(T) := T

Ri+1
G (T) := Ri

G(T) ∪ {x ∈ V0 | ∃y ∈ Ri
G(T). (x, y) ∈ E} ∪

{x ∈ V1 | ∀y ∈ V. if (x, y) ∈ E then y ∈ Ri
G(T)}

RG(T) :=
⋃
i∈N

Ri(T)

The problem then consists of deciding whether or not s ∈ RG(T).
Note that the configuration graph of a logarithmic space bounded Turing

Machine is of at most polynomial size. Hence, the alternating graph reach-
ability problem in fact asks whether or not an alternating logspace machine
accepts a given input word.

We can furthermore assume that every node in V1 in G has out-degree
equal to 2. It is always possible to add two sink nodes to V0 without outgoing
edges, and add edges from every node in V1 with outdegree < 2 to either or
these nodes. Furthermore, for every node in x ∈ V1 with successors y1, . . . , yk
for some k > 2 we can add a new node z to V1 with successors yk−1 and

4

yk, remove the edges (x, yk−1) and (x, yk) and add an edge (x, z). This
reduces the outdegree of a node by 1 and can be iterated until all nodes in
V1 have outdegree 2. Suppose G′ is the graph resulting from G by means
of this transformation. It should be clear that s ∈ RG′(T) iff s ∈ RG(T).
Furthermore the number of nodes in G′ is linear in the number of edges in
G.

We will use this specialised problem for the reduction to VPA emptiness.
Let G = (V, V0, V1, E, s, T) be such a graph with outdegree 2 for all nodes
in V1. We will construct a VPA AG = (Q,Σ,Γ, q0, δ, F) over the visibly
pushdown alphabet Σ with Σpush = {a}, Σint = {b}, and Σpop = {c}. Its
components are as follows.

• Q := V ∪ {fin} where fin 6∈ V ,

• Γ := V ∪ {⊥} where ⊥ 6∈ V ,

• q0 = s,

• F = {fin}, and

• δ given by

δpush := {(x, a, y1, y2) | x ∈ V1 and xE = {y1, y2}}
δint := {(x, b, y) | x ∈ V0 and (x, y) ∈ E}
δpop := {(x, c, y, y) | x ∈ T, y ∈ V } ∪ {(x, c,⊥, fin) | x ∈ T}

Intuitively, AG starts in s to “search” for T . If its current state is a node
in V0 then it requests a b symbol and continues with a successor node. If
it is in V1 then it requests an a symbol, pushes one of the successor nodes
onto the stack and continues with the other one. If it has reached T then
it requests to read a c symbol and continues with the top-most node on
the stack. If the stack is empty, it moves to a final state. Thus, it simply
uses a depth-first search strategy in order to find a tree which witnesses that
T is alternating-reachable from s. Such trees are encoded in words of the
grammar L0 presented in Section 2.

Theorem 2. The emptiness problem for VPA over an alphabet of size (1, 1, 1)
is P-hard under AC0-reductions.

5

Proof. Suppose G = (V, V0, V1, E, s, T) is a graph serving as an input to the
alternating graph reachability problem. AG can be constructed from G by
an AC0-reduction. It remains to be seen that L(AG) 6= ∅ iff s ∈ RG(T).

“⇐=” In order to use induction we need to strengthen the statement
slightly and will show that for all i ∈ N and all x ∈ Ri

G(T) there is a
wx ∈ {a, b, c}∗ such that (x, ε, wx) `∗ (z, ε, ε) for some z ∈ T . Note that, if
this is the case then (x,⊥, wxc) `∗ (z,⊥, c) ` (fin,⊥, ε) using Lemma 1 (a)
and (b) and the construction of δpop. It should be clear that this implies the
statement because of q0 = s.

In the base case we have i = 0, i.e. x ∈ R0
G(T) which means x ∈ T .

Clearly, wx := ε witnesses the claim because `∗ is reflexive.
In the inductive step let i > 0 and assume x ∈ Ri

G(T). There are three
cases. If x ∈ Ri−1

G (T) then the claim follows from the hypothesis immediately.
If x ∈ V0 then there must be a y with (x, y) ∈ E. By hypothesis, there is a
wy such that (y, ε, wy) `∗ (z, ε, ε) for some z ∈ T . Let wx := bwy. Then we
have (x, ε, bwy) ` (y, ε, wy) `∗ (z, ε, ε) which finishes this case.

In the last case we have x ∈ V1. Let y1, y2 be its two successors. By
hypothesis there is a wy1 such that (y1, ε, wy1) `∗ (z1, ε, ε) for some z1 ∈ T .
According to Lemma 1 (b) we also have (y1, y2, wy1) `∗ (z1, y2, ε). Using the
hypothesis a second time, we obtain a wy2 such that (y2, ε, wy2) `∗γ (z2, ε, ε) for
some z2 ∈ T . Now let wx := awy1cwy2 and consider the following derivation.

(x, ε, awy1cwy2) ` (y1, y2, wy1cwy2) `∗ (z1, y2, cwy2) ` (y2, ε, wy2) `∗ (z2, ε, ε)

This finishes the completeness part of the proof.
“=⇒” Suppose L(AG) 6= ∅, i.e. there is a w with (q0,⊥, w) `∗ (fin,⊥, ε).

Note that q0 6= fin and fin is only reachable via a pop-transition on the
stack ⊥ from some z ∈ T . Hence, we must have w = vc, and (q0,⊥, v) `∗
(z,⊥, ε). Let v = a0 . . . an−1. There must exist an n ∈ N, q0, q1, . . . , qn ∈ Q,
γ0, γ1, . . . , γn such that (qi, γi, ai . . . an−1) ` (qi+1, γi+1, ai+1 . . . an−1) and qn =
z, γ0 = ⊥, γn = ⊥. We will now show by induction on the length n of such
a derivation that q0 ∈ RG(T). It should be clear that this proves the claim
because q0 = s.

The base case of n = 0 is immediate because qn = z, z ∈ T , and T =
R0
G(T). For the step case we distinguish three cases. Remember that Q = V ,

i.e. automaton states are also nodes in the graph. If q0 ∈ T then we are
finished as in the base case. If q0 ∈ V0 then we must have (q0, a0, q1) ∈ δint
and therefore (q0, q1) ∈ E. Note that (q1,⊥, a1 . . . an−1) `n−1 (qn,⊥, ε) and
therefore q1 ∈ RG(T). But then q0 ∈ RG(T) as well.

6

In the last case we have q0 ∈ V1. Note that q0 must have two succes-
sors in G, and one of them must be q1. Let y be the other. Then we have
γ1 = y⊥. Let i be the smallest index such that γi = ⊥, i.e. take the moment
in which y gets popped from the stack again. Then we must have qi = y, and
(y,⊥, ai . . . an−1) `n−i (qn,⊥, ε). Since i ≥ 1 we have y ∈ RG(T) by hypothe-
sis. Furthermore, we have (q1, y⊥, a1 . . . an−1) `i−1 (qi−1, y⊥, ai−1 . . . an−1) `
(qi,⊥, ai . . . an−1). The last step is only possible if qi−1 ∈ T . According to
Lemma 1 (c) we also have (q1,⊥, a1 . . . ai−1) `i−1 (qi−1,⊥, ai−1) because y re-
mains on the stack for the entire derivation by assumption. Using Lemma 1
(a) we get (q1,⊥, a1 . . . ai−2) `i−1 (qi−1,⊥, ε). Since i − 1 < n, we have
q1 ∈ RG(T) by hypothesis and, together with qi ∈ RG(T) we then have
q0 ∈ RG(T).

Note that the constructed alphabet is small but not necessarily minimal.
It is not too difficult to see that the result can be strengthened to an alphabet
of size (1, 0, 1). For this, one simply merges push-transitions with internal
transitions that can follow them.

Proposition 3. The emptiness problem for VPA over an alphabet of size
(1, 0, 1) is P-hard under AC0-reductions.

However, this introduces additional nondeterminism. It is also possible
to show this lower bound for deterministic VPA, at a small increase in the
alphabet.

Corollary 4. The emptiness problem for deterministic VPA over an alphabet
of size (1, 2, 1) is P-hard under AC0-reductions.

Proof. Note that the assumption about outdegree 2 of all nodes in V1 can
equally be made for all nodes in V0. Now take two int-symbols b1 and b2, fix
a total ordering < on V and re-define the transitions in AG with

δpush := {(x, a, y1, y2) | x ∈ V1, xE = {y1, y2} and y1 < y2}
δint := {(x, b1, y1), (x, b2, y2) | x ∈ V0, xE = {y1, y2} and y1 < y2}

The pop-transitions remain unchanged. Note that they were deterministic
already, and so are the others as well now. The proof of Theorem 2 goes
through with this definition as well.

7

4. Remarks on the Membership Problem

The corresponding P-hardness proof for CFL immediately yields P-hard-
ness of the (universal) membership problem, where the input consists of a
word and a PDA or a CFG. The reason for this is the closure of CFL under
homomorphisms. A homomorphism of particular interest is hε which maps
every alphabet symbol to ε. Clearly, L is non-empty iff ε ∈ hε(L). Since a
PDA or CFG for hε(L) can easily be obtained from a PDA or CFG for L by
replacing every alphabet symbol in the transition table or grammar rules by
ε, we immediately get P-hardness of the question whether ε is contained in
the language of a given PDA or CFG. This, however, is just a special case of
the universal membership problem.

Now note that VPL is not closed under homomorphisms in general, in par-
ticular not under those that map certain alphabet symbols to ε. P-hardness
of the universal membership problem for VPA is therefore not a consequence
of the proof above. In fact, the problem is very unlikely to be P-hard, since
P ⊇ LOGCFL and it is not too difficult to see that the membership prob-
lem is included in LOGCFL: it is known that LOGCFL is characterised by
nondeterministic auxiliary pushdown automata with a logarithmic worktape
[6, 7]. Such a machine can simulate a given visibly pushdown automaton
on a given input word. It uses its stack to simulate the stack of the input
automaton, and its auxiliary tape to search the transition table of the input
automaton as well as remember the current position in the input word.

On the other hand, we do not believe that the universal membership
problem for VPA is LOGCFL-hard. It remains to characterise the exact
complexity of this problem.

Acknowledgment. We would like to thank Friedrich Otto for useful comments
on this matter. In particular, the observation that the universal membership
problem for VPA is in LOGCFL is his. We would also like to thank an
anonymous referee for helpful comments, in particular for the observation
that the reduction is in fact AC0 and not just logspace.

[1] R. Alur, P. Madhusudan, Visibly pushdown languages, in: Proc. 36th
Ann. ACM Symp. on Theory of Computing, STOC’04, ACM Press, New
York, 2004, pp. 202–211.

[2] K. Mehlhorn, Pebbling mountain ranges and its application to DCFL-
recognition, in: Proc. 7th Int. Coll. on Automata, Languages and Pro-
gramming, ICALP’80, Vol. 85 of LNCS, Springer, 1980, pp. 422–435.

8

[3] S. Sippu, E. Soisalon-Soininen, Parsing Theory. Vol.I: Languages
and Parsing, EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, Berlin, 1988.

[4] M. Lange, H. Leiß, To CNF or not to CNF? An efficient yet presentable
version of the CYK algorithm, Informatica Didactica 8.

[5] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, Alternation, Journal of
the ACM 28 (1) (1981) 114–133.

[6] I. H. Sudborough, Time and tape bounded auxiliary pushdown automata,
in: Proc. 6th Symp. on Mathematical Foundations of Computer Science,
MFCS’77, Vol. 53 of LNCS, Springer, 1977, pp. 493–503.

[7] S. Cook, Characterizations of pushdown machines in terms of time-
bounded computers, Journal of the ACM 18 (1) (1971) 4–18.

9

