Model Checking Games for Branching
Time Logics

Martin Lange and Colin Stirling

LFCS, Division of Informatics
The University of Edinburgh

email: {martin,cps}@dcs.ed.ac.uk

December 2000

Abstract

This paper defines and examines model checking games for the branching time temporal
logic CTL*. The games employ a technique called focus which enriches sets by picking
out one distinguished element. This is necessary to avoid ambiguities in the regeneration
of temporal operators. The correctness of these games is proved, and optimisations are
considered to obtain model checking games for important fragments of CTL*. A game based
model checking algorithm that matches the known lower and upper complexity bounds is
sketched.

1 Introduction

Model checking is a useful and broadly accepted technique for verifying parallel pro-
cesses. The system to be examined is abstracted into a mathematical interpretation
for a logical formula which formalises a property the system is expected to have or
to lack. A model checking algorithm decides whether the system’s abstraction fulfils
the formula and thus whether the system meets its specification given by the formula,
provided that the abstraction is correct. We will not discuss the finding of good ab-
stractions at all, instead we are interested in checking properties of the abstraction
only. Hence, in the following, the term “system” will denote the abstraction as well.

However, verification of concurrent systems is often combined with specification
in the framework of developing them. For such a process a simple yes/no answer to
the question whether a system is correct w.r.t. a certain property is not sufficient.
Moreover, techniques that show why or where the property is violated are required.

Model checking games being played by two players on the system and the formula
provide such features. Answering the question about the property being fulfilled turns
out to be equivalent to finding a winning strategy for one of the players. Once such a
strategy is found, i.e. computed by a verification tool for example, it can be used to
enable an interactive play between the tool and the developer.

There are various classes of interpretations which are suitable for modelling a
temporal behaviour. We will deal with transition systems only.

Furthermore, there also are various logics that allow the formalisation of temporal
properties over transition systems. Emerson and Halpern’s CTL* (cf. [6]), the full
branching time logic, is not just one of them but probably the most appropriate one
for expressing temporal properties. BLTL, the branching version of Pnueli’s linear
time logic LTL (cf. [13]) and Clarke and Emerson’s branching time logic CTL (cf. [2])
for example can be found as genuine syntactic fragments of CTL*. A lot of interesting
properties, like “something holds infinitely often”, cannot be expressed in CTL but
in CTL*. BLTL is capable of doing this, but cannot formalise the existence of a
certain sequence of states in the system.

On the other hand, CTL" can be translated into Kozen’s modal p-calculus £,
introduced in [9], for which such model checking games already exist (cf. [16, 7]).
However, the alternation depth of the resulting p-calculus formulas is bounded by two
(cf. [4]). Since model checking for CTL* is PSPACE-complete (cf. [3, 11]), whereas
there exists a polynomial time algorithm solving the model checking problem for that
fragment of ‘Cu’ the translation procedure must enlarge the formulas or the transition
systems exponentially, unless P=PSPACE.

Such translations are undesirable for the mentioned specification and verification
process, perhaps for complexity reasons but also since a translation violates the sub-
formula property: All formulas occurring in the game should be subformulas of the
formalised property. This enables the user of a verification tool best to understand
the diagnosis of the underlying system that is provided by an interactive game.

There is a fairly simple way of defining games for CTL* which follows exactly the
semantics. I.e. whenever a path formula is reached the corresponding player names a
whole path on which the formula is examined. However, it is easy to give examples
in which the length of a shortest path to be chosen is at least as great as the size of
the transition system. Moreover, since an algorithm might have to examine all the
possible choices the players can take, the resulting complexity would be unacceptably
high. Therefore we require paths in the transition system to be constructed stepwise
throughout the game.

In [1] Bernholtz, Vardi and Wolper have shown how to solve the model checking
problem for CTL* using alternating automata (cf. [12]). Their general approach is to
translate the CTL* formula into a hesitant alternating automaton over trees. Forming
the product of this with a Kripke structure results in an hesitant alternating automa-
ton over words. The model checking problem is thus reduced to a non-emptiness
check of that automaton. In [18] Barringer and Visser have shown how to do this
check efficiently using games as well. Still their games rely on the construction of the
alternating automata and therefore require knowledge of fairly advanced automata
theory.

The model checking games of this paper can be viewed as alternating automata
as well. Their winning conditions may correspond to a special Rabin acceptance
condition on the automata side (cf. [14, 17]). However, using the games in this paper
results in automata over infinite words immediately without taking the detour via
satisfiability checking using alternating tree automata. It only requires an insight
into the logic CTL* rather than another theory that is used to process formulas.

Section 2 recalls the syntax and semantics of CTL* and some of its fragments,

section 3 contains the definition of the model checking games and their correctness
proof. Section 4 describes a game based algorithm and examines the complexity of
the model checking problem for CTL* via games. Finally, optimisations of the games
are considered in section 5 to customise the games for other branching time logics.

2 Syntax and Semantics

Let Prop be a set of propositional constants including true and false, which is closed
under complementary propositions, i.e. Prop = {tt, ff,q1,q1,...} where § = ¢ and
tt = ff. A transition system T is a triple (S, T, L) with (S, T) being a directed graph.
L : S — 2P7P labels the states, such that for all s € S: tt € L(s),ff &€ L(s) and
q € L(s) iff § ¢ L(s). We assume that every state in the graph has at least one

successor state.

{a} {q}

Figure 1: A transition system.

Definition 1 Formulas of temporal logics are built up from atomic propositions g €
Prop, the boolean connectives A and V, the temporal next (X), until (U), its dual
release (R), and the path quantifiers A and E. The latter ones together with X are
unary, all other constructs are binary. We will write @ for either A or E. The set of
subformulas Sub(p) for a given ¢ is defined in the usual way, except that

Sub(eUv) = {pUt, X(eUt), 0 AN X (U¥), %V (o A X(pU¥))}
USub(p) U Sub(v))

{eRy, X (pRY), 0 V X (@R), % A (¢ V X(pRY))}
USub(p) U Sub(v))

Sub(pRy)

Not surprisingly, we set Sub(®) := J Sub(p) for a set ® of formulas. For simplicity
ped
reasons we use the helpful abbreviations Fy := ttUvy and G := £f Ri.

Definition 2 The semantics of temporal formulas is explained using full paths = =
5081 ... Sp ... of a transition system 7. With 7() we denote the suffix of 7 beginning
with the state s;. We assume the transition system to be fixed for the remainder of
the paper and thus write 7 = ¢ instead of 7,7 |= ¢ whenever it is possible.

™ = ¢ iff ¢ € L(s0)

TEeANYIf T, mEpand 7 =9

TEeVYIfT,nEporm =Y

7 | Ap iff for all paths o = sgo’ : 0 = ¢

7 | By iff there exists a path 0 = sgo’ and 0 = ¢

o Tk Xpiff 7)o
o 7 = U iff there exists i € N s.t. 709 =4 and for all j < i: 7l ¢
o T |= Ry iff for all i € N : 7() |= o) or there exists a j < i s.t. 709 = ¢

o and 1 are logically equivalent, p = 1, if for all transition systems 7 and paths
7 the following holds: 7,7 | ¢ iff 7,7 = 4. A temporal formula ¢ is called a state
formula if ¢ = Ap holds. Hence we may write sy |= ¢ instead of m = ¢ in case ¢ is a
state formula. Formulas not being state formulas are called path formulas. They will
still occur as subformulas of state formulas.

The temporal operators until and release can be characterised by their unfoldings
U =9V (p A X(pU)) and pRyY =4 A (p V X(pRy)) or as solutions to similar
fixed point equations with until being a least fixed point and release a greatest.

With all operators being defined the particular temporal logics can be given by
simple grammars.

Definition 3 The pure branching time logic CTL* enjoys no restriction on the use
of the constructs at all.

p u= Ay
vou= g | YAy [YV | XY | YUY | Ry | By | AY

Every CTL* formula begins with an A path quantifier to ensure that it is a state
formula.!

Definition 4 The branching time logic CTL is characterised by the fact that every
temporal operator is immediately preceded by a path quantifier.

o = q|lehNe | Ve | AY | By
Y u= X | Uy | ¢Rp

Obviously, every CTL formula is a state formula.

Definition 5 CTL™ allows boolean combinations of path formulas without nested
temporal operators in addition to the features of CTL.

o u= qleNp | eVe | AY | By
Y ou= AP | YVY | Xe | oUp | oRp

Definition 6 The fair branching time logic FCTL allows path formulas to be in-
terpreted over fair paths only. That is a path satisfying a fairness constraint which
is a boolean combination of infinitely and almost everywhere operators over CTL
formulas.

o = qlerp | oVe | Alx—v) | E(xNv)
Y u= Xo | oUp | oRp
X == XxXAx|xVx | GFyp | FGy

where x — ¥ := —x V 1. Negation can be driven inwards according to the next
Lemma.

1This is not a restriction because of the equivalence Q1Q2¢ = Q2.

Lemma 7 CTL*, CTL, CTL", and FCTL are closed under negation.

Proof Extend the syntax with a negation symbol = whose semantics is given by
7 |= - iff m [£ . The propositional constants and boolean connectives are handled
by the definition of a labelling function and deMorgan’s laws. Furthermore, the
equivalences —Ap = E—p, - X¢ = X -, and —(oUv) = —¢pR-1) hold.

Definition 8 The linear time logic LTL is interpreted over paths of a transition
system. Therefore it consists of temporal operators only. To enable the interpretation
over transition systems, too, one universal path quantifier is added at the outermost
position. The resulting sublogic of CTL* is called BLTL, the branching version of
LTL.

® Ay
Yvou= g | YAy | pVvy | XY | YUY | YRy

3 Model Checking Games for CTL*

In order to introduce games we need two players, namely I and I1.2 If p is one of them
then P denotes the other one. It is player II's task to show that a formula is satisfied
whereas player I tries to show the converse.?

The set of configurations for a transition system 7 and a formula ¢ is Conf (T,) =
{LI} x S x Sub(p) x 25U0(#) . A configuration is written p,s - [¢)], ® where p is a
player called the path player, s € S, ¢ € Sub(y) and ® C Sub(p). In this case) is
said to be in focus. We may also write p, s - ® if there is a ¢ € ® in focus that does
not need explicit mentioning.

A play between player I and player II is a sequence of configurations. There are
nineteen rules of the form

p, sk [‘P]v ¢ 1
.8k [(10/], Y p
for transforming configurations. They are to be read as: If the actual configuration
is p,s = [p], ® then player p” has to perform a choice and the next configuration is
v], P

The side formulas, i.e. those that are not in focus, can be seen as an insurance for
the path player’s opponent to redo a move that she has done before. This is necessary
because the path player is allowed to choose the path stepwise along which a formula
is examined.

At each configuration the set of side formulas together with the formula in focus
can be understood as a disjunction (resp. conjunction) of formulas in case the path
player is player I (resp. II).

A play for a transition system 7 with starting state s and a formula ¢ begins
with the configuration I, s I [¢].# From then on, the play proceeds according to the
following rules.

2In the following “he” will stand for player I whereas “she” will be a synonym for either player
1T or both.

3Therefore, they are often called refuter and verifier, or from a logical point of view Vbelard and
Jloise.

4Note that by the construction of CTL* formulas ¢ is of the form A, thus player I being the
path player in the beginning of a play.

Once the focus is on a quantified formula a new path has to be chosen. Thus, all
current sideformulas do not matter anymore.

s [Ag], @ s [Ey], @
(1) pI,sl—[i] (2) pH,sl—g[Dgo]

An explicit state formula can also be discarded in case the focus player does not
want to prove (resp. refute) it in the current state.

p, sk e,Q, & _ p,skElelg, @ _
®) o Fd.@ @ = sFe P

The four rules for a boolean connective in focus are almost straightforward. Note
that it is not necessary to keep both disjuncts for example if the path player is player
IT because assumingly she knows which path she is going to choose.

Lsk [po A 1], @ Lsk [po V1], @

) —TsrpLe ! © T ele,e U
I, s [po V1], @ 1,5 - [po A 1], @
(7) IT, s - [pi], @ I (8) I s+ [pi], 14, @

The temporal operators U and R simply are unfolded.

(9) p, st [@Uﬂj]’ o (10) p, sk [‘deJL o
psk [V (e AX(eUY))], @ pskE [A(pV X(pRY))], @

One could easily imagine similar rules for the abbreviated formulas F¢ and G in
which they are unfolded to v V X Fy) and ¥ A X G respectively.

Now, applying those rules might generate an X-formula in focus. Before a play
can proceed with that all side formulas have to be brought into this form, too. The
rules for that are very similar to the ones above.

(1) I st [X9], 00 A @1, P
I sk [X¢], 0@

Lsk [X¢], 00V p1,®
178 = [X?/J]MPONPL(I)

IIaS H [XWWOO /\9017(1)
ILS F [Xw]acha(zplaé

I (12)

I, s F [X%], 00 V 1, D
IL'S F [Xi/)]%a‘p

(13) I (14)

p, s = [Xx], U, @
p,sE[Xx], ¥V (e A X(pUy)), @

p. s [Xx], oR), @
p,sE [Xx[, oA (pV X(pRy)), @

Once a configuration is reached in which every formula begins with an X, it is
possible to go over to the next state on the path currently being examined.

(15)

(16)

p, st [Xeo], Xp1,..., Xk
p7t|_ [QDO]’SDlv"':SOk

(17) p, §s—1

Finally, there is a special rule that enables the focus player to react appropriately
to the path player’s moves.

Pkl @
p, s [Y], p, @

A move in a play consists of two steps. First, the path player and the focus
determines which of the rules (1) — (17) applies,® and hence which player takes the
next choice. After that the path player’s opponent has the chance to reset the focus
using rule (18).

A play is finished after a full move if it has reached a configuration

(18)

1. p,st[q], @, or

2. C =1L s F [pUy],® (resp. C =1,s F [pRy],®) after the play already went
through C and player P never applied rule (18) in between, or

3. p,sF [p], @ for the second time possibly using rule (18) in between.

In the first case player II wins if ¢ € L(s), otherwise player I wins. In the second
case player I wins if the formula in focus is U1, and player II if it is pRt. In the
third case p wins.

The model checking game T'grox (7, s,) for a CTL* formula ¢ and a transition
system 7 with starting state s is the tree of all possible plays for 7, s and ¢. We say
p wins or has a winning strategy for Tor+ (7, s, ¢) if she can force every play into a
configuration that makes her win the play.

The successful game tree for the winner p of a game I'gri+(7, s,) is a refined
version of the tree of all possible plays in I'crix(7,s,¢). At every configuration
C that gives p the choice all but one successor C’ are eliminated, such that p still
wins if she chooses C’. If P has the choice in C' then all successors from the game
graph are preserved in the successful game tree. Abusing notation we will identify
Perns (7, s,) with the successful game tree for the winner as well.

Example 9 To illustrate the game rules we give an example. Let 7 be the transition
system of figure 1. The formula to be examined is ¢ := E(qU(Gq)).® Obviously, 7
with starting state s satisfies ¢. The tree showing a winning strategy for player IT
with the rule numbers annotated is given in figure 2. The dots indicate a branch of
the game tree that occurs twice. We use the abbreviation 1 := qU(Gq). Player II
wins the play of the leftmost branch because of winning condition three, and the one
right beside it because of condition two.

3.1 Correctness

We will show that player II has a winning strategy for a game if and only if the
transition system and the starting state model the formula. In order to do this we
need a few technical lemmas.

5A situation in which two different rules are applicable is possible. However, the order in which
they are used does not effect the outcome of the game.

6The expressed property is “There exists a path with a finite prefix and an infinite suffix. On the
prefix g never holds, on the suffix it always does.”

Lst [B0]
10, s - [¢] o)
IL, sk [GqV (A X)) 7)
I, s - [g A X)) ®)
IL s - [g], Xv 18) IL sk [X¢],7 @
ILsF [X¢],q W I s - [X4]
I, s F [X4] :
— . a7
IL ¢ - [¢] (9)
ILtF [GqV (A X)))
II, ¢ - [Gq]
II,t - [g A XGq] ®)
IL t + [¢], XGq ILt+ [XGql,q ()
It + [XGql, q 4 It + [XGq] (17)
Ler (XGal () Itk (G
1Lt F [Gq]

Figure 2: A successful game tree for player II.

Lemma 10 Let Cy,...,C,C4,...,C,C be a play with C = p,s = ®. Then all
intermediate configurations C, ..., C} are also of the form p,s; - ®; fori =1,... k.

Proof For simplicity reasons we assume p = I. Suppose there is an ¢ with C; =
I, s; F ®;. Take the least such i. All formulas in ®; must have been subformulas of
formulas in ®. One of them must have been of the form E¢ which caused the path
player to become player IT with rule (2). From this follows ®; = {¢}. As C is also a
configuration following C; all formulas in ® must have been generated by ¢ only, in
particular Ep. This would cause E¢ to be a genuine subformula of itself. The p =11
case is dual.

Proposition 11 Every play has a uniquely determined winner.

Proof Every play is finite because the number of states of the transition system
is finite, and so is the number of subformulas of a given (. Therefore, the number
of configurations is finite and every play will eventually reach a configuration that
has been visited before and the third finishing condition will apply. The first or the
second could apply beforehand.

If the play ended with an atomic proposition in focus then the winner is uniquely
determined because {q,q} C L(s) is by definition excluded for each state s. If a con-
figuration is visited twice then the path player, who is unique according to Lemma 10,
wins. It may happen that a configuration p, s = ® with U, ¢’ Ry’ € ® occurs twice,
but only one of these formulas can stay in focus permanently. Hence, the winner is
unique in this case, too.

Lemma 12 For every game one of the players has a winning strategy.

Proof Consider the tree of all possible plays in a given game. At each leaf one of
the players has a winning strategy by doing nothing. Let C' be a configuration with
successors (1, ..., Ck. By induction hypothesis, there is a winning strategy for either
of the players in each game beginning with C;. The branching in C' can only be caused
by one of the rules that require a choice to be made by, say, p. Now p also has a
winning strategy for the game beginning in C' if there exists an ¢ such that p has a
winning strategy in Cj, because she may choose to play on with C;. If there is no
such one, p has a winning strategy in C, because he will win no matter which C; she
chooses.

Corollary 13 Player II wins Tcre+ (7, s, ¢) iff player I does not win Tgrox (7, 8,).
Proof The “only if” part is obvious. The “if” part follows directly from Lemma 12.

The next result reestablishes an observation from [8] in terms of games: CTL*
model checking can be polynomially reduced to LTL model checking.

Lemma 14 The game graph for a game I'crr+ (7, 8, @) can be partitioned into blocks.
These blocks can be ordered, such that every play

e never leaves a block 7 into a block j with j < ¢, and
e finally stays in one block.

Proof This follows from Lemma 10 if one also considers changes from a path player
p to p herself by using game rule (1) or (2). The order on the blocks can be found in
a breadth-first-search that labels the reachable configurations with natural numbers,
beginning with 1. A new number is assigned to a configuration whenever game rule
(1) or (2) is applied. The second property follows from this and the finiteness of the
game graph.

Lemma 15 Let I'; and I's be two games beginning with C4 = p,s - ® and C5 =
p,s B W. Assume that they both stay in one block only according to Lemma 14.
Consider the game I's beginning with C5 = p,s - & U W.

a) If p = I and player II wins I'y or I's then she also wins I's.

b) If p =1I and she wins I'; and T’y then she also wins T';.

Proof a) Say she wins I'y. She will win I'3 by setting the focus as she would have
done in I'y. Thus, she will also do the same moves. Since the set of side formulas
in g is larger than in T'y, rules (3), (4), (11) (16) might have to be invoked at
intermediate positions. However, the set is still finite such that only a finite number
of new moves in '3 can occur between two original moves from I'y. If she wins I’y with
winning condition one then she obviously does so in I's, too. Assume she wins with
condition two. The finiteness of the number of new side formulas from I's ensures
that every play in I's performs a loop as well. Since formulas from I'y do not occur
in focus in this play the winner is the same as the one in I';.

It is possible to create new branchings by using rule (11) for example. But the
new plays only differ in the set of the side formulas which have no effect on the winner
at all. Thus, every play in I's corresponds to a play in I'; with the same winner.

b) Here, player I is in charge of the focus. Similar arguments as in the preceding
case hold for the use of the rules (3), (4), (11) — (16) as well as for the loops in I's.
Player I can ignore side formulas, but he will lose because the plays correspond to
similar plays in I'y or I's where he would lose, too. Thus, his only chance is to reset
the focus from a formula of, say, I'y to a formula of I'; before he loses like he would
in I'y. Again, he will lose there as he would in T's, or he resets the focus back to a
formula from T'; again. Since |Sub(® U ¥)| < co he will eventually create a loop such
that he used rule (18) on this loop. Thus, player II also wins every possible play in
I's.

Theorem 16 Player II wins T'cr+ (7, s, ¢0) iff T, s = @o.

Proof Because of Lemma 13 it is enough to prove one implication only. We will show
completeness of the games by exhibiting a winning strategy for player II provided
that g is satisfied by 7 and s. Soundness follows from completeness and duality
(Corollary 13).

Because of Lemma 14 it suffices to consider games on formulas with one path
quantifier only. Nested Q¢ formulas can be seen as completely new games and,
hence, can be considered to be atomic propositions. An induction on the number of
blocks finally proves the theorem for arbitrary CTL* formulas. Therefore, we may
assume the path player to stay the same throughout an entire game.

There are two distinguishable cases depending on the path quantifier of pg. First,
let g = Ap. Thus, every configuration occurring in I'grp«(7, s, p0) is of the form
I,t - ® where @ is to be interpreted disjunctively, and player II has control over the
focus. Furthermore, disjuncts are preserved and player I chooses at conjuncts.

In order to set the focus we let player II maintain a list L of all subformulas of
o, except atomic propositions. At the beginning L is ordered by decreasing size. At
any stage in the play player II checks whether she can set the focus to a valid atomic
proposition. If there is none she sets the focus to the earliest formula in the list that
is present in the actual configuration. The formula that is in focus is always moved
to the end of the list. She then takes her choices according to the following strategy.
If the actual configuration is

e [tF [x V], ® choose the disjunct that occurs first in L.

o It [xRy], ® choose [¢)] or [X (xR)] after unfolding the R formula, depending
on which of them was not discarded by player I.

o Lt F [xUy],® choose [¢] after the unfolding no matter which player I's choice
is.

e Itk [g],® and ¢ & L(t), set the focus to the earliest element in the list that is
present in P.

These rules guarantee that in case of a repeat either an R formula stayed in focus
or, if the focus has been changed, every other formula has been in focus, too. Thus
player II avoids to lose with condition (3) although she could have won if she had set
the focus cleverer.

It remains to show that this strategy guarantees her to win. Assume she does
not. By Corollary 13 player I has a winning strategy and thus can force the play

10

into a winning position for himself. There are two possibilities. He can only win with
winning condition (1) if the winning position is I, ¢ F [¢], and there is no other formula
that player I can set the focus to. But then g = A(A; X*i¢) for some i and k;, and
therefore s [~ pg.

Player I's other possibility is to force a play like

Ia sk [900]

Lt-®

)

Ltk ®

where 09 = s... and o = t... are the finite sequences of states occurring in the play
such that player I has chosen the path m = ggot. Moreover, there is a [¢'] € ® and
¢’ = xR only if player II has used the focus change rule between the two occurrences
of the repeated configuration C' =1t - ®.

Since s = g there is a @ € C s.t. 0% = . We show that player II is able to
find this « and win before player I can win the play with winning condition (3). Let
a = q. Because ¢ is true in t player II wins the play immediately.

In case a = x A the assumption shows that player I cannot win no matter which
conjunct he chooses. The case a = X1 is also straightforward since player I keeps
the focus on « until game rule (17) is applied and the focus is automatically set to .

If &« = x V ¢ she tries one of them, say y. If 0¥ [~ x then by hypothesis there
will be an i € N s.t. she has to reset the focus once the play has reached (¢*)®). But
o“ W= x implies 0% = 9, and there must be a 10’ € Sub()) s.t. ¢’ occurred later than
x in L and (¢*)® |= 4. Since x is moved to the end of L player II will try 1/’ before
the play can perform a repeat on C.

If & = xUsp then there is an i € N s.t. (6%)@ = 9. According to her strategy
player IT will try to set the focus to 1 at every (6*)¥) with j = 0,1,.... If (6*)W) £ ¢
then, like in the former case, she will be forced to remove the focus from a formula
that has been generated by 1. But before she can reach v again she has to try
X (xU). Therefore she will eventually find an ¢ that has the ascribed property and,
hence, disable the assumed repeat.

If @« = xRy then there are two choices for player I to take. Either he chooses
Y. But 0¥ | xRy implies 0* |= ¢ and by induction hypothesis the assumed play is
not possible. Or he chooses x V X (xR) which also holds on o“. This case either
reduced to the general V case or player II sticks to the generated R formulas until
the play reaches C again. But this contradicts the assumption that player I wins this
play since the formula in focus has been YR and the focus has not been changed.

In the remaining case g begins with an existential path quantifier, i.e. o9 = F.
Since s = g there is a path 7, s.t. 7 = ¢. Every configuration is of the form II,¢ F @,
and ® is interpreted conjunctively, i.e. o |= 1 for all ¢» € ® where 0 = (") =1¢...
for some ¢ € N. Suppose player I wins g (7, s, ¢0). One possibility to do so is to
exhibit a repeat on a xyUt in focus. Assume there is an a = X!(xU) € ® for some
I € N and some configuration II,¢ - ®. Since o = « there is a j > [, s.t. o E 1.
Therefore player II can choose 1) once the play has reached the first state of o(1).

11

(@D
Ly—()—(u

{@} {q}
Figure 3: Another simple transition system.

This disables a repeat on xU in focus. However, xU might be regenerated by a
superformula at a later position, but player I loses the play by winning condition (3)
if he sets the focus to it at that point.

His other possibility to win is to reach a position II,¢ - ® with [¢] € ® and
q & L(t). But then o £ A\ ® and therefore 7 [~ .

Since this holds for all path choices by player IT we conclude s [~ ¢ which con-
tradicts the assumption.

3.2 The focus

In this section we show why a configuration in the model checking game needs to be
a set of formulas and, moreover, why the focus on this set is needed, too.

Example 17 Consider the CTL* formula ¢ = A(XqV Xg).” Obviously, ¢ is a
tautology, so player I should not win any game on any transition system, in particular
the 7 shown in figure 3.

However, if we require configurations to contain exactly one formula only, player 1T
cannot win the game on 7 and ¢ anymore. The reason for this is that player II has to
choose one of the disjuncts before player I chooses a transition from s to t;, i € {0,1}.
Clearly, if player II selected X ¢ for example he would choose t; and vice versa. Thus,
configurations must be sets of formulas provided paths are chosen stepwise.

Example 18 The second example justifies the use of the extra focus structure on
sets of formulas. Consider ¢ := E(Fq A GFq) and the two transition systems 7; =
({s}:{(s;5)}.L1) and T = ({s},{(s.s)}, L2) with L1(s) = {q} and La(s) = {q}.
Th,s = ¢ but Ta, s = . However, without an additional structure like the focus on
the set of formulas the games g« (71,8, ¢) and Terx (72, 8, @) would look like

II,st+ Fq, XGFq II,s+ Fq,GFq

II,st+ Fq,XGFq II,s+ Fq,GFq

The difference between I'crr+ (71, 8, @), depicted on the left, and Torrs (72, 8, @) is
the generation of F'g. In the first case it is generated from the XGFq above, in the

7y says that every path’s next state is either labelled with ¢ or G.

12

second it regenerates itself. Hence, in that case player I can keep the focus on F'q¢ and
explicitly show this regeneration.

The proof of Theorem 16 shows that an algorithm which searches for a winning
strategy for either of the players does not have to consider focus change moves after
every step in a play. Indeed, it shows that focus change moves only need to be allowed

e to and away from an atomic or quantified subformula, or
e after the application of rule (17).

The first case is necessary because the winning condition (1) requires an atomic for-
mula to be in focus. The second case is necessary because by using rule (17) the
path player reveals a further step in the construction of a path while the focus player
maintains a set of formulas among which there is one that is (not) fulfilled on this
particular path and which depends on the path player’s choice.

4 A Game Based Model Checking Algorithm

Because of Lemma 14 it is sufficient to consider formulas of the form ¢ = Ay or
¢ = Ev only where 1 does not contain any path quantifiers. For arbitrary formulas
the algorithm MC,, can be recursively applied to every block of the game tree, where
p =1 if the path quantifier is a universal one. Otherwise p = II.

The algorithm is shown below. It maintains three global variables, namely Cy to
find loops on paths, and counter and maz to measure the length of a path. MC,
nondeterministically chooses successor configurations of the actual one to find a path
on which the path player’s opponent can keep a formula in focus such that she wins
that play. Since the number of different configurations in one block is bounded by
|S| - 2!¢! the path player wins in case the length of a play exceeds this value.

global Cy =L, s F [¢] ; counter = 0 ; maz = |S| - 2%/

MC,(C) =
if ' = Cy then returnp
if counter > max then return p
choose C’ € next-moves(C)
counter := counter + 1
if focus_change(C,C") then Cp :=C’
MG, (C')

We can give an upper complexity bound of the model checking problem for CTL*
that matches the upper and lower bound from [3].

Theorem 19 The model checking problem for CTL* is in PSPACE.

Proof An arbitrary CTL* formula ¢ can contain at most %

% blocks according to

irredundant path
quantifiers. Therefore, a game tree can contain at most |S] -

13

st oo AN I sk o Ver I

sk w; st
sHAXp sEFEXp
71%@ I, s—t 71%@ II, s —t
sF QeU1) s Q(pRY)
sEYV (e AQXQ(eU)) sk A (pVQRQXQ(pRY))

Figure 4: The rules for the CTL model checking games.

Lemma 14. Although MC,, might have to be invoked |S]- ‘—“20‘ times, the space it needs
can be reused for every call of the procedure.

Note that MC,, is end-recursive, thus it only needs to store the constant value
maz, the polynomially sized counter, and two configurations of size linear in .

By Savitch’s Theorem (cf. [15]) the algorithm can be transformed into a deter-
ministic one with a quadratic trade-off in the polynomial space complexity only.

The algorithm is local provided that the size of the transition system can be
estimated without explicitly constructing it. This is possible if the transition system
is given in a specification language like CCS (cf. [10]) for example.

5 Other Branching Time Logics

We examine how to optimise the model checking games for CTL* in order to obtain
model checking games for other branching time logics as well. T',(7, s, ¢) is defined
as in section 3 for a formula ¢ of a branching time logic L.

5.1 Model Checking Games for CTL

A corollary of Lemma 14 says that in the CTL case no sets of formulas and hence no
focus are needed. Since every temporal operator is immediately preceded by a path
quantifier situations like the ones in examples 17 and 18 cannot occur. Moreover,
whenever a temporal operator is handled the corresponding quantifier would cause
all side formulas to be erased from a configuration anyway. Thus, the model checking
game rules can be simplified vastly for the CTL case. They are given in figure 4. The
set of configurations for the gameon 7 = (S, T, L), s € S and @ is Conf = Sx Sub().8
A play is finished if it reaches a configuration

1. C=stgq, or

2. C = sk Q(xUv) for the second time, or

8The definition of subformulas in the CTL case differs slightly from the one introduced in Def. 1
but can easily be seen in the game rules.

14

LskwoApr,® I sk @oVer,® 1
Lskg;,® I, s ;, ®
LskFwoVer,® I II,s o A 1, ®
178'_90079017(D IIvsl_SDO7S017¢
p, st Uy, @ D, st Ry, @
pyskE V(e A X(pUY)), @ pysE YA (e V X(pRY)), @
p, sk Ap, & pskEEp,®
Lstko sk
p,sto,QyY,® 7 pste.q,®
pyst @ p.sk e, @

p,st Xpg, ..., Xpg
, s—1
p:t'_SDOV"a(;Dk b

Figure 5: The model checking game rules for CTL™.

3. C' = st Q(xRy) for the second time.

In the first case player IT wins if ¢ € A(s), otherwise player I wins. In the second case
player I wins, and in the third case player II wins.

Theorem 20 Let 7 = (S,T,L),s € S, € CTL. T,s E ¢ iff player II wins
FCTL(Ta S, (10)

Proof Every rule in a CTL game can be seen as a combination of rules of a CTL*
game, and the winning conditions are simply amended to these combined rules. There-
fore correctness follows from Theorem 16.

5.2 Model Checking Games for CTL"

Although CTL™ has the same expressive power as CTL only (cf. [5, 19]), example 17
shows that the model checking games cannot be optimised for CTL™ like they can
be for CTL. In particular, sets of formulas are needed. However, since the formula of
example 18 that justifies the use of the focus is not in CTL™ the question whether a
focus is needed for CTL™ games is reasonable to ask. CTL™ does not allow nested
temporal operators, therefore the answer is no.

The game rules for the CTL™ model checking games are given in figure 5. Here,
a play is finished if it reaches a configuration

1. C=1I,st q, U, with ¢ & L(s), or else

2. C=1,sFq, 0, with g € L(s), or else

15

3. C=1I,s+ Uy, T for the second time, or else
4. C =1,sF @R, ¥ for the second time.

In the first and third case player I wins. So does player IT in the second and fourth case.
Note that the path player’s opponent must be allowed to discard atomic propositions
before one of the winning conditions can apply.

Theorem 21 Let 7 = (S,T,L),s € S, € CTL". 7T,s = ¢ iff player II wins
FCTL+ (T, S (P)-

Proof The game rules and winning conditions for CTL™ arise from the CTL* games
by removing the focus. Thus, it suffices to show that, whenever a play performs a
loop, there is no ambiguity about the regeneration of U or R formulas. Assume a
play like

Lsko

I, s - xUy, ¢, ¥

II,s = xU, o', U

in which xU1) has been generated from ¢’ instead of from itself. Therefore, xU1) is a
proper subformula of ¢’. But this means that ¢’ contains a path quantified formula
Q¢" s.t. xU € Sub(¢"). Since the rules for path quantifiers cause all other formulas
to be erased ¢’ cannot occur a second time unless it was a proper subformula of itself.
The xR case is dual.

5.3 Model Checking Games for FCTL and BLTL

Example 18 shows that already in the FCTL case a focus on sets of formulas is needed.
This is not surprising since FCTL formulas may contain nested path operators of
depth two.

Since BLTL formulas can contain arbitrary nestings of path operators together
with boolean connectives the focus approach on sets of formulas is needed in that
case, too. However, according to Lemma 14 the game graph for an BLTL formula
consists of one block only. Therefore it is not necessary to memorise the path player
explicitly. Rules (1) — (3) never apply, and in rule (17) it is always player I who
chooses the next state from the transition system.

6 Conclusion

It was shown that model checking for branching time logics, in particular CTL* can
be done directly using games. In contrast to automata-theoretic approaches it is
not necessary to take a detour via satisfiability checking first. Although the main
advantage of games in logics is to provide a clear understanding of formulas and
the properties they express, the games of this paper can be used to solve the model

16

checking problem for CTL* algorithmically in a way that matches the known lower
and upper bounds.

ing

The following table summarises the resources which are needed in the model check-
games for the various branching time logics.

Conf

CTL* | {III} x S x Sub(p) x 2540(¥)

CTL S x Sub(p)
CTL* (LI} x S x 25ub(¥)
FCTL | {I,II} x S x Sub(yp) x 25ub(¢)
BLTL S x Sub(p) x 25u(¥)
References
[1] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach

2]

3]

7]

to branching-time model checking. In D. L. Dill, editor, Proc. 6th Int. Conf.
on Computer Aided Verification, CAV’94, volume 818 of LNCS, pages 142 155,
Stanford, June 1994. Springer.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In Logics of Programs: Workshop, volume 131 of
LNCS, Yorktown Heights, New York, May 1981. Springer.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications. In Conf. Record
of the 10th Annual ACM Symp. on Principles of Progr. Lang., pages 117 126.
ACM, ACM, January 1983.

M. Dam. CTL* and ECTL* as fragments of the modal p-calculus. TCS,
126(1):77-96, April 1994.

E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. Journal of Computer and System Sciences,
30:1-24, 1985.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic. Journal of the ACM, 33(1):151-178,
January 1986.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
IEEE, editor, Proc. 32nd Annual Symp. on Foundations of Computer Science,
pages 368-377, San Juan, Puerto Rico, October 1991. IEEE Computer Society
Press.

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
logic strikes back. Science of Computer Programming, 8(3):275-306, 1987.

17

[9]

[14]

[15]

[16]

[17]

18]

[19]

D. Kozen. Results on the propositional mu-calculus. T'CS, 27:333-354, December
1983.

R. Milner. A calculus of communicating systems. LNCS, 92, 1980.

F. Moller and G. M. Birtwistle. Logics for concurrency: structure versus au-
tomata, volume 1043 of LNCS. Springer, New York, NY, USA, 1996.

D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. TCS,
54(2-3):267-276, October 1987.

A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on the
Foundations of Computer Science, FOCS-77, pages 4657, Providence, Rhode
Island, October 31-November 2 1977. IEEE, IEEE Computer Society Press.

M. O. Rabin. Automata on infinite objects and church’s problem. Amer. Math.
Soc. Providence, RI, 1972.

W. J. Savitch. Deterministic simulation of nondeterministic turing machines. In
ACM Symp. on Theory of Computing (STOC ’69), pages 247-248, New York,
May 1969. ACM Press.

C. Stirling. Local model checking games. In I. Lee and S. A. Smolka, editors,
Proc. 6th Int. Conf. on Concurrency Theory, CONCUR’95, volume 962 of LNCS,
pages 1-11, Berlin, GER, August 1995. Springer.

W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozen-
berg, editors, Handbook of Formal Languages, volume 3, Beyond Words. Springer,
Berlin, 1997.

W. Visser and H. Barringer. Practical CTL* model checking: Should SPIN be
extended? Int. J. on Software Tools for Technology Transfer, 2(4):350-365, 2000.

T. Wilke. CTL" is exponentially more succinct than CTL. LNCS, 1738:110-121,
1999.

18

