Revealing vs. Concealing: More Simulation
Games for Bichi Inclusion

Milka Hutagalung, Martin Lange, and Etienne Lozes

School of Electr. Eng. and Computer Science, University of Kassel, Germany™

Abstract. We address the problem of deciding language inclusion be-
tween two non-deterministic Biichi automata. It is known to be PSPACE-
complete and finding techniques that are efficient in practice is still a
challenging problem. We introduce two new sequences of simulation re-
lations, called multi-letter simulations, in which Verifier has to reproduce
Refuter’s moves taking advantage of a forecast. We compare these with
the multi-pebble games introduced by Etessami. We show that multi-
letter simulations, despite being more restrictive than multi-pebble ones,
have a greater potential for an incremental inclusion test, for their size
grows generally slower. We evaluate this idea experimentally and show
that incremental inclusion testing may outperform the most advanced
Ramsey-based algorithms by two orders of magnitude.

1 Introduction

Nondeterministic Biichi automata (NBA) are an important formalism and de-
facto standard for the specification and verification of reactive systems. In the
automata-theoretic approach to formal verification [18], problems about pro-
grams get translated into decision problems on automata, for instance NBA.
Satisfiability of a specification corresponds to language non-emptiness which
is NLOGSPACE-complete for NBA. Hence, it boils down to some reachability
questions which can be solved efficiently.

The step from wanted to unwanted (or vice-versa) program behaviour cor-
responds to the complementation problem for NBA. It is known that this is
inherently exponential. This explains why other decision problems on NBA are
harder than emptiness, for example inclusion—corresponding to the question of
whether one specification supersedes another—is PSPACE-complete. Note that
L(A) C L(B) iff L(A)NL(B) = . It is possible to construct an NBA recognising
L(A)N L(B) which is in general exponentially larger than B and which can then
be tested for emptiness. This results in an NPSPACE procedure, and Savitch’s
Theorem [15] brings it down to PSPACE.

A large amount of work in the area of automata theory for verification is
devoted to avoiding explicit complementation because none of the existing com-
plementation procedures [14,17,12] is widely accepted to be good enough for

* The European Research Council has provided financial support under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 259267.

2 Milka Hutagalung, Martin Lange, and Etienne Lozes

practical purposes. Regarding the inclusion problem, there is for instance the
so-called Ramsey-based approach [7,1,2] which essentially uses the computa-
tional content of Biichi’s original proof of complementability of NBA. It clearly
does not avoid PSPACE-hardness but it can sometimes outperform algorithms
based on explicit complementation.

Since the early works of Dill et al [4], there has also been an approach based
on simulation relations. The notion of simulation that reflects the Biichi accep-
tance condition, called fair simulation [10], can be described in terms of a game
between two players, Refuter and Verifier. Consider two NBA A and B over
some alphabet Y. The game proceeds for possibly infinitely many rounds, start-
ing with two pebbles being placed on the initial states of A and B. In each round,
Refuter chooses some a € X and moves the A-pebble along some a-transition.
Verifier responds by moving the B-pebble along some a-transition, too. Refuter
wins if the infinite sequence of states pebbled in A forms an accepting run, and
the one in B does not. A player loses as soon as he/she cannot move anymore.

There is a relatively simple encoding of this game as a parity game with 3
priorities. Thus, the winner in this game can be decided even in polynomial time.
This game entails language inclusion, in the sense that language inclusion holds
whenever Verifier has a winning strategy, but without surprise, the converse does
not hold in general (otherwise we would have PSPACE=PTIME!). It is therefore
reasonable to ask whether the fair simulation games can be refined in order to
obtain something that is “closer” to language inclusion. The answer is yes, and
it is helpful to consult some simple game-theoretic concepts for its explanation.

Fair simulation games are games of perfect information: at each time both
players have full knowledge about the state of the game. Language inclusion, on
the other hand, can be seen as a game of imperfect information, where refuter
cannot observe Verifier’s pebble, and Verifier can always revise his choice pro-
vided it remains consistent with all previous rounds. The anti-chain approach to
language inclusion [5] can be seen as solving such a game, and, like the Ramsey-
based approach, it is in general exponential but can outperform methods based
on explicit complementation.

This reading of the problem suggests that an approximation of language in-
clusion based on fair simulation can be obtained by introducing some form of
“opacity” in Verifier’'s moves. Since an approximation is either complete or it is
not, it is useful to stratify the approximation based on some parameter k € N,
such that smaller values of k, raising simpler games, can be tested first, yielding
an incremental algorithm for deciding language inclusion. Such a parameterized
opacity is obtained for the so-called k-pebble game [6]. This essentially gives Ver-
ifier a limited amount of resources in order to conceal information from Refuter.
He now has up to k pebbles that he moves along a-transitions in B in order to
respond to Refuter’s choice a. The fair simulation game becomes the same as
the 1-pebble fair simulation game, and with growing k, the k-pebble game gets
“closer” to language inclusion.

In this paper, we introduce another family of approximations for language
inclusion. That problem can be characterised by a simple one-round simulation

More Simulation Games for Biichi Inclusion 3

game: first Refuter chooses an infinite word w € L(A), then Verifier produces an
accepting run for it in B. This is not a game of imperfect information anymore
but it can be seen as a game with infinite forecast. A natural finite approximation
of this is to let Verifier have a finite forecast on Refuter’s moves. We call the
result the k-letter game. It works similar to the ordinary fair simulation game
but requires Refuter to always choose the next k letters of the infinite word to be
constructed. This makes Refuter reveal more information about his subsequent
choices to Verifier, whereas pebble games permit Verifier to conceal information
about his past choices.

The k-letter games provide a new approach to the NBA inclusion problem.
They can be used in order to devise an incremental language inclusion test. It
successively solves games for increasing parameters k. Each iteration — which
fixes k — can be done in polynomial time. The complexity grows exponentially
with k but the base of this exponential is only the fixed (and often small) size
of the underlying alphabet whereas, in the case of the k-pebble games, the base
is the variable and usually not so small size of one of the input automata.

The rest of the paper is organised as follows. Sect. 2 recalls the necessary
background about NBA and simulation games. Sect. 3 defines and examines
so-called static multi-letters simulations. Sect. 4 refines them to dynamic multi-
letters simulations which are theoretically better suited for approximating lan-
guage inclusion. Sect. 5 reports on experiments that compare incremental inclu-
sion tests based on multi-letter and multi-pebble games with one of the most
advanced version of the Ramsey-based inclusion test.

2 Background

Words and Biichi automata. As usual, we use X to denote a finite alphabet
with |X| > 2, e for the empty word, X* /X% /X% for the sets of all finite / non-
empty finite / infinite words over X. For some k € N, X* (resp £=*) denotes the
set of all words of length exactly (resp. at most) k. In the following, all language-
theoretic concept are to be understood with respect to some fixed alphabet.

A non-deterministic Biichi automaton (NBA) is a tuple A = (@, qo, 4, F)
where @ is a finite set of states with gy being a designated starting state, A C
@ X X x @ is a transition relation, and F' C @ is the set of accepting states. The
size of A is measured in terms of its state space: |A| := |Q)].

A run of Aon aword w = agay --- € X¥ is an infinite sequence p = qg, q1, - - -
such that (g;,a;,qi+1) € A for all @ > 0. Let inf(qo,q1,-..) = {q | there are
infinitely many ¢ with ¢ = ¢;}. When using this notation we implicitly assume
that go, g1, . . . is an infinite sequence. The run is accepting if inf(qo, q1,...)NF #
(. The language of A is the set L(A) of infinite words for which there exists an
accepting run.

We write ¢ — ¢’ when (¢, a,q') € A assuming that the underlying NBA can
be inferred from the context.

4 Milka Hutagalung, Martin Lange, and Etienne Lozes

The language inclusion problem for NBA is the following. Given two NBA
A and B, decide whether or not L(.A) C L(B) holds. We simply write A C;,, B
in that case.

Fair Simulation. The fair simulation game G, [10] is played between Refuter
and Verifier on two NBA A = (Qu, ¢, Aa, Fa) and B = (Qs,¢5,, A, F5),
both controlling a pebble each, according to the following description.

Fair simulation game Gz, (A, B)

start: qo 1= qf:};t, (J(/) = QiL:it

round i: (1) Refuter chooses some a € X
(i=0,1,...) (2) Refuter chooses ¢; 11 such that ¢; = q;+1
(3) Verifier chooses ¢}, such that ¢, ¢4

winner: Refuter wins if ...
e Verifier cannot move anymore
e inf(qo,q1,...) N Fa# 0 and inf(q),q),...)NEr =10
Verifier wins if ...
e Refuter cannot move anymore

o inf(qo, q1,-..) N Fa =0 orinf(qy,qi,...) N Fg#0

We write A Cg,, B if Verifier has a winning strategy for Ggir(A, B). It is well-
known that fair simulation approximates language inclusion in the sense that
A T, Bimplies A T, B but not vice-versa. A counterexample for the converse

implication is the following.

Ezample 1. Consider the following two NBA A (left) and B (right) over the
alphabet X = {a, b, c}.

Clearly, we have A C, , B. On the other hand, Refuter can win G (A, B)
because Verifier has to commit in the first round to some a-successor, and then
Refuter can choose a b- or a c-successor whereas Verifier only has one of these

choices.

The game Gpir(A, B) can be reduced to a parity game [9] on a graph of size
O(JA] - |B] -1 X]). Thus, the winner of a fair simulation game is decidable. In the
vertices, we keep track of the current state of A, B, and the letter a chosen by
Refuter. The vertex reached by a move q} i>q; 41 of Verifier has a priority 2
if q;_H is a final state, and the vertex reached by a move q; = ;41 of Refuter
has a priority 1 if g;4; is a final state. Other vertices have priority 0. It is not

More Simulation Games for Biichi Inclusion 5

too hard to check that player 0 wins the parity game iff Verifier has a winning
strategy for Geir(A, B). In fact, winning strategies in these two games can easily
be derived from one another.

Multi-Pebble Games. The k-pebble game for some k > 1 is a refinement of
the fair simulation game [6]. Here we only give a brief sketch of its definition and
state some important properties. A detailed definition is not necessary in order
to follow the rest of this paper. The interested reader is referred to the literature
for that purpose [6, 3].

In the k-pebble game G, (A, B) on two NBA A and B, Refuter controls and
moves a pebble on A as is done in the fair simulation game. Verifier now controls
k pebbles on B. In response to a letter a chosen by Refuter he chooses k (not
necessarily different) a-successors of the currently k pebbled states in B and
moves the pebbles there. The winning conditions for finite plays are the same
as above. An infinite play is won by Verifier if the constructed infinite run in A
is not accepting or if it can be guaranteed in some way that the pebbling in B
“contained an accepting run”. As an example, A Eﬁeb B holds for the two NBA
of Ex. 1: in the first round, Verifier pushes a pebble in each of the two branches,
and in the second round, he drops the irrelevant one, and continues like in the
standard fair simulation game. It is hard to determine whether a sequence of
pebblings contains an accepting run, roughly for the same reasons that make the
power set construction unsuitable for determinising Biichi automata. However,
since multi-pebble games only approximate language inclusion, it is possible
to relax the winning condition even further and check whether the sequence
of pebblings contains a run that is accepting w.r.t. a co-Biichi condition or,
equivalently, whether all runs contained in it are accepting w.r.t. the Biichi
condition. The determinisation problem for co-Biichi automata is conceptually
simpler [13], and using this together with the possibility to drop pebbles yields
a reasonable approximation and a direct reduction to finite parity games.

Ezxample 2. For every k > 1, the k-pebble game for the two automata
a b

is won by Refuter. He wins by always playing a: Verifier must keep a pebble on
the first state of B to be ready for a possible b, i.e. he must not drop it at any
time. Since this pebble does not visit an accepting state infinitely often, Refuter
wins the game. Note that L(A) = L(B) nonetheless.

We write A Elseb B if Verifier has a winning strategy for g:feb(.A, B). Obvi-

1
ously, we have T, = G, .

Proposition 3 ([6]). For every k > 1 and NBA A, B over X there is a parity
game of size at most |A| - (2 |B| + 1)* - (|X| + 1) and index 3 that is won by

player 0 iff ACE,, B.

6 Milka Hutagalung, Martin Lange, and Etienne Lozes

Furthermore, these games give rise to the following hierarchy

1 2 3 k
Epeb g Epeb ,C,_ Epeb g s ,C,_ U Epeb g Eincl : (1)
k>1

3 The Static Multi-Letter Games

We consider a new parametrised simulation game. In this game, Verifier moves
only one pebble, but benefits from Refuter being forced to reveal more informa-
tion to him/her in a single round.

Definition. Let £ > 1. The static k-letter game is played between Refuter and
Verifier on two NBA A = (Q 4, ¢, A, Fa) and B = (Qg, ¢5,, A, F), similar
to the fair simulation game. However, in each round both players advance by
k moves through the NBA instead of just 1 as it is done in the fair simulation
game.

Static k-letters game G%_ (A, B)

start: qo = qi’éit, q == qfit, j:=0
round i: (1) Refuter chooses some w = a; ...a, € ¥
(2) Refuter chooses gj+1,...,qj+x such that
4~ dj+1 2 gjpa = i>Clj+k
(3) Verifier chooses ¢}, ., q;-Jrk such that
=i "2 Q= &)qﬁk
4)j=75+k

winner: same as in fair simulation game

We write A CE . B if Verifier has a winning strategy for G%,. (A, B).

The game GE_.(A, B) can be modeled by a parity game on a graph of size
O(JA| - B - (|Z|* +1)). In the vertices, we keep track the current state of A, B,
and the word w = ay ...ax chosen by Refuter. The vertex reached by a move
qj - ;1. of Verifier has a priority 2 if a final state is seen along the move. The

vertex reached by a move g; — ;41 of Refuter has priority 1 if a final state is
seen along the move. Other vertices have priority 0. We can use a suitable result
on parity games of index 3 [11], and obtain the following theorem.

Theorem 4. For every k > 1 and NBA A and B, GE,.(A,B) is decidable in
time O((JA| - B[- (| Z* + 1))%).

Properties. It is quite obvious to see that the 1-letter static game is the same
as the fair simulation game. Thus we have CL,, = C. . Furthermore, the static
games approximate language inclusion in the following sense.

More Simulation Games for Biichi Inclusion 7

Theorem 5. For every k > 1 and all NBA A, B we have: A CE_. B implies
A Eincl B.

Thus, static multi-letter games look like a good alternative to the multi-
pebble games for incrementally searching for a proof of language inclusion. In-
deed, the size of these games, while still growing exponentially, grows “only” as
O(]Z|*), hence much slower than the multi-pebble games for typical inputs in
which X < |B| (see Prop. 3).

However, the static multi-letter games do not form a hierarchy, at least in
the same sense as the k-pebble games do: for instance, for every k > 2, there are
NBA A, B such that A CE_, B but A ZEL! B. Indeed, the following two NBA
Ap (left) and By (right) are such a counter-example.

Instead, the static multi-letter games form a lattice which is isomorphic to
the one of naturals numbers under the division ordering.

Theorem 6. For all k, k' > 0:

|:gcd(k,k/)

k k' k k' lem(k, k")
Coat Cc C nCc Cc C U C C

—stat —stat = —stat —stat = —stat

For the purpose of an algorithm that solves static multi-letter games incre-
mentally in k, this result tells that some sequences of values for k could introduce
more incompleteness, like e.g. iterating over the powers of 2. Of course, increasing
k by 1 in each step would alleviate this problem.

The lower complexity of the static multi-letter games with respect to the
multi-pebble games comes at the price of being more incomplete.

Theorem 7. The following holds.

1. For allk > 1, there are NBA A, B such that A Eﬁeb B (and thus A G, B),
but A ZE . B.
2. Uk’Zl E.i:cu‘.at - Uk21 EI;eb'

Proof. (1) Consider NBA A’, B’ obtained by slightly modifying NBA A, B from
Ex. 1, by adding an a-loop in the initial state of A and B. Whatever k is, Refuter
can take the a-loop k—1 times and then the outgoing a-transition in A”’s initial
state. Verifier has to respond with a move that makes him/her commit to the
following b or c. In the next round, Refuter can choose ca*~! or ba*~! and
Verifier will be stuck. On the other hand, we have A’ Eﬁeb B.

(2) Assume A CE_ B. Then Verifier has a winning strategy with |B| pebbles,
since he can mimic a play of the static k-letters game by just pushing all pebbles

8 Milka Hutagalung, Martin Lange, and Etienne Lozes

following all available choices, except every k rounds in which he only keeps live
a single pebble on the state defined by his winning strategy for the k-letters
game. O

Another drawback of the static multi-letter games in the perspective of an in-
cremental algorithm is that determining whether the search is hopeless is harder
than for the multi-pebble games: the latter are ensured to become stationary,
whereas for all k > 1, it holds that |Gk, (A, B)| < |GELL(A, B)|.

4 The Dynamic Multi-Letter Games

In this section we consider a further refinement of the fair simulation game in
which, again, Refuter is forced to reveal more information to Verifier. Moreover,
Verifier is given additional power in this game which remedies the lack of a linear
hierarchy for static games.

Definition. Let & > 1. The dynamic k-letter game is played between Refuter
and Verifier on two NBA A = (Qu4, ¢, Aa, Fa) and B = (Qs, 5, As, F5),
similar to the static k-letter game. However, Verifier now can choose how far
both players need to advance in each round.

Dynamic k-letter game Qé“yn (A, B)

start: Qo i=qgr, qhi=q¢5,j:=0
round 4: (1) Verifier chooses some h with 1 < h < k
(2) Refuter chooses some w = ay ...a, € X"
(3) Refuter chooses gj41, ..., ¢j+n such that
Q5 = Q41— Qa2 = o = Qi
(4) Verifier chooses ¢;, ..., q;-+h such that
G " = gy,
(5)ji=j+h

winner: same as in fair simulation game

We write A E’jyn B if Verifier has a winning strategy for gc]fyn (A, B).

The game Qé“yn (A, B) can be reduced—similar to the k-letter static game—to
a parity game of size O(|A| - |B| - (|Z|**1 + k)). In the vertices we keep track of
the current state of A, B, the h chosen by Verifier, and the word w = ay ...ap
chosen by Refuter. We use the same priority assignment as in the parity game
for the static k-letter game.

Theorem 8. For every k > 1 and NBA A and B, A E’jyn B is decidable in time
O((JA[- 1B - (|Z[F+1 + k))?).

More Simulation Games for Biichi Inclusion 9

Properties. It is quite obvious to see that the 1-letter dynamic game is the
same as the 1-letter static game, hence the same as the fair simulation game.
Therefore we also have Eéyn = L. As with the static games, the dynamic
games approximate language inclusion. However, the dynamic games do form a
hierarchy similar to the k-pebble games.

Theorem 9. The following holds.

1 2 3 k
Cin G Ean G EOn & - ¢ Uk cC

= =dyn = =dyn = =dyn = =incl
k>1

Proof. By definition it is clear that E’d“yn C Elj;gl for every k > 1. However for

every k, there are NBA A, B with A E’jﬁl B but A Z’jyn B as we consider the
following two NBA A (left) and B (right).

As mentioned above, for k = 1, the static and dynamic games coincide. For
larger parameters, the dynamic games are nonetheless more powerful than the
static ones.

Theorem 10. For k > 2, we have CE_, C Ck

=stat = =dyn"

Proof. By definition, Cf,, C Cf . To show T} & C&,; for k > 3, consider any
NBA Ay, and By, for which Aj,_; ZE,. Br_1 but A,_; CEL By holds. By the
inclusions Eft;tl - E’dc};l - Eﬁyn, it holds that Aj_; E’jyn Bi_1, which ends the

proof. The case k = 2 is similar. |

Despite being better approximations of language inclusion than static games,
dynamic games suffer from the same drawbacks compared to multi-pebble games.

Theorem 11. The following holds.

1. For allk > 1, there are NBA A, B such that A Egeb B (and thus AT,
but A ,Z’jyn B.

k k
2. UkZI Edyn g Uk21 Epeb‘
Although the sequence of games is not stationary, there is an upper bound

on the indices k that are worth being tried while looking for a proof of language
inclusion.

B)’

10 Milka Hutagalung, Martin Lange, and Etienne Lozes

Theorem 12. For all NBA A, B, if there is k > 0 such that A Ck B, then

=dyn
ATk B for kg = 20AHIBD",

This result could be seen as the indication of a faster convergence of the
multi-pebble games towards a fixpoint (since the corresponding upper bound
for pebble games is “only” |B|). However, these upper bounds are often not
tractable in practice, and should be considered with some care.

To conclude, it may be noticed that typical examples are such that | Y| < |B|.
In this context, the size of dynamic games, like the ones for static games, is
expected to grow much slower than those of multi-pebble games. Therefore, the
next section compares these games from an experimental point of view.

5 Experiments

We implemented the three incremental inclusion tests using OCaml and the
PGSolver library [8] with the recursive algorithm by Zielonka [19]. We evaluated
our implementation by comparing it to Rabit [2], a recent Java implementation
of optimized Ramsey-based methods (we used the options recommended by the
authors, namely -q -b -rd -fplus -SFS -qr -c -1). We ran experiments on
a machine with 16 Intel Xeon cores at 1.87GH, including experiments with Rabit
(note however that Java code naturally tends to run slower than OCaml code).
Due to the possible divergence of our algorithms, we fixed a timeout of 1 hour
for every incremental inclusion test and every pair of automata. The results as
well as the OCaml code are available online.!

For our experiments, we used the same benchmarks over which Rabit was
tested?, restricting to pairs of automata A, B for which language inclusion can be
expected (namely Rabit does not report that A IZ, , B). Rabit benchmarks were
obtained from (1) several mutual exclusion protocols with possible errors injected
into the code, and (2) the Tabakov-Vardi random model [16], parametrized by the
number of states of the automata, the transition density (dy,), and the acceptance
density (dacc).

The results for the benchmarks on protocol verification are summarised in
Figure 1. The performances of all algorithms are unsurprisingly very similar for
the cases where fair simulation holds (k=1). For the cases where fair simulation
does not hold, Rabit tends to be the better tool. An exception is BakeryV2, for
which Rabit times out, whereas multi-letter simulations perform quite well.

The Tabakov-Vardi benchmarks consist of (1) 4000 pairs of automata with
15 states, di, ranging from 1.5 to 3, and daec from 0.1 to 1.0, (2) 100 pairs of
automata with 30 states each, dy, = 2, dace = 0.1, and (3) 100 pairs of automata
with 50 states each, di, = 3, dace = 0.6. For these parameters one can expect
a substantial amount of positive instances for the language inclusion problem,
so-called “hard” inclusion in case (2) and easy but non-trivial inclusion in case
(3) [2]. We call a method successful on a pair of automata if it can show language

! see http://carrick.fmv.informatik.uni-kassel.de/~milka/iit
2 see http://languageinclusion.org/CONCUR2011

More Simulation Games for Biichi Inclusion 11

mutual exclusion protocols ‘

multi-letter multi-pebble .
k|dynamic||k|static||k| pebble Rabit
Mecs 1| 22.94s [|1]23.48s||1| 25.41s 39.00s
FischerV2||1| 0.07s |[1|0.07s||1| 0.07s 0.09s
Peterson ||1| 0.01s |[[1|0.01s|[1| 0.01s 0.03s
Bakery |(|1| 7.22s ||1]|7.16s||1| 7.23s 4.43s
Phils 1| 0.02s |[1|0.02s||1| 0.02s 0.11s
Fischer ||1| 40.80s [|1{47.30s||1| 47.37s 3.41s
FischerV3||-| >1h |[|-| >1h ||- >1h 7.63s
FischerV4|-| >1h ||-| >1h ||- >1h 2136.70s
BakeryV2|[2| 36.01s [|2| 7.06s ||- >1h >1h
random NBA ‘
size = 30, dacc = 0.1, diy = 2 size = 50, dacc = 0.6, dir = 3
dynamic|static |pebble| Rabit |[dynamic|static|pebble| Rabit
time 59.12s |52.78s|18.22s[1655.84s|| 0.55s |0.52s| 2.09s [127.53s
success %|| 80% | 82% | 86% 58% 100% |100%| 100% | 100%
average k|| 3.66 | 4.33 | 1.93 - 1.01 |1.01| 1.01 -

Fig. 1. Experimental comparisons between multi-letter simulations and other methods.

inclusion before the timeout, and for fixed size, dacc, and dy,, its percentage of
success is the rate of successful pairs of automata over all pairs for which one may
expect language inclusion. The results for sizes 30 and 50 are given in Figure 1,
too. Any incremental inclusion test is almost always two orders of magnitudes
faster than Rabit. Incremental inclusion tests are also more successful in general,
although the percentage of success of multi-letter games may fall to ~ 50% for
automata of size 15 with timeout 10 minutes (see detailed benchmarks). The
pebble game typically explores smaller values of k only. It heavily depends on
the size of the automata, in contrast to the multi-letter game.

The experiments demonstrate that incremental inclusion testing is a very
reasonable heuristic for proving language inclusion. This heuristic, when it suc-
ceeds, is still comparable to the recently optimised Ramsey-based approach, and
may perform well when simulation does not hold (k > 1).

In order to tackle the lack of completenes, it is tempting to try to combine
incremental inclusion and the Ramsey-based approach. It remains to be seen
whether or not the results of the multi-letter simulation tests can be used for
quotienting. We aim to develop a combination of the two approaches in the
future.

References

1. Abdulla, P.A.) Chen, Y.F., Clemente, L., Holik, L., Hong, C.D., Mayr, R., Vojnar,
T.: Simulation subsumption in ramsey-based Biichi automata universality and in-

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Milka Hutagalung, Martin Lange, and Etienne Lozes

clusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV. Lecture Notes in
Computer Science, vol. 6174, pp. 132-147. Springer (2010)

. Abdulla, P.A., Chen, Y.F., Clemente, L., Holik, L., Hong, C.D., Mayr, R., Vojnar,

T.: Advanced ramsey-based Biichi automata inclusion testing. In: Katoen, J.P.,
Koénig, B. (eds.) CONCUR. Lecture Notes in Computer Science, vol. 6901, pp.
187-202. Springer (2011)

Clemente, L., Mayr, R.: Multipebble simulations for alternating automata - (ex-
tended abstract). In: Gastin, P., Laroussinie, F. (eds.) CONCUR. Lecture Notes
in Computer Science, vol. 6269, pp. 297-312. Springer (2010)

Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simula-
tion preorders. In: Larsen, K.G., Skou, A. (eds.) CAV. Lecture Notes in Computer
Science, vol. 575, pp. 255-265. Springer (1991)

Doyen, L., Raskin, J.F.: Antichains for the automata-based approach to model-
checking. Logical Methods in Computer Science 5(1) (2009)

Etessami, K.: A hierarchy of polynomial-time computable simulations for au-
tomata. In: Brim, L., Jancar, P., Kretinsky, M., Kucera, A. (eds.) CONCUR.
Lecture Notes in Computer Science, vol. 2421, pp. 131-144. Springer (2002)
Fogarty, S., Vardi, M.Y.: Efficient Biichi universality checking. In: Proc. 16th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’10. LNCS, vol. 6015, pp. 205-220. Springer (2010)

Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA. Lecture Notes in Computer Science, vol. 5799, pp. 182-196. Springer
(2009)

. Grédel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:

A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001],
Lecture Notes in Computer Science, vol. 2500. Springer (2002)

Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Inf. Comput.
173(1), 64-81 (2002)

Jurdzinski, M.: Small progress measures for solving parity games. In: Pro-
ceedings of the 17th Annual Symposium on Theoretical Aspects of Computer
Science. pp. 290-301. STACS ’00, Springer-Verlag, London, UK, UK (2000),
http://dl.acm.org/citation.cfm?id=646514.695804

Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(3), 408—429 (2001)

Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Com-
put. Sci. 32, 321-330 (1984)

Safra, S.: On the complexity of w-automata. In: Proc. 29th Symp. on Foundations
of Computer Science, FOCS’88. pp. 319-327. IEEE (1988)

Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences 4, 177-192 (1970)

Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer
Science, vol. 3835, pp. 396—411. Springer (2005)

Thomas, W.: Complementation of Biichi automata revisited. In: et al., J.K. (ed.)
Jewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pp. 109-122. Springer (1999)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proc. 1st Symp. on Logic in Computer Science,
LICS’86, pp. 332-344. IEEE, Washington, DC (1986)

Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. TCS 200(1-2), 135-183 (1998)

