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Abstract

Weintroducea simplegametheoreticapproac to satisfi-
ability cheding of tempoal logic, for LTL and CTL, which
hasthe samecompleity as using automata. The meda-
nismsinvolvedare both explicit and transpaent, and un-
derpina novel approad to developingcompleteaxiomsys-
temsfor tempoal logic. Theaxiom systemsre naturally
factoredinto whathappengocally andwhathappensn the
limit. The completenesproofs utilise the gametheoretic
constructionfor satisfiability: if a finite setof formulasis
consistenthenthere is a winning strategy (and therefore
constructionof an explicit modelis avoided).

1 Intr oduction

The automataheoreticapproacho satisfiabilitycheck-
ing for temporalogicis very popularandsuccessfulé, 17].
However thereis a costwith the involvementof automata
mechanism&ndin particularthe book keepingimplicit in
the productconstructionwhena local automatoris paired
with an eventualityautomatonWhile this is not animped-
iment for checkingsatisfiability it appearsto be for other
formal taskssuchas shaving that an axiomatisationof a
temporallogic is complete. When proving completeness,
oneneeddo establishthatafinite consistensetof formulas
is satisfiable.lt is not known, in generalhow to pluginto
suchaproofautomataheoreticconstructiongsuchasprod-
uct anddeterminisationjfor satisfiability Insteadstandard
completenesproofseitherappealko “canonical”structures
built from maximalconsistensetg15, 8] or tableauxwhich
explicitly build modelsfrom consistentsets,asillustrated
by the delicateproofs of completenes$or CTL* [14] and
modalp-calculug[18], andeventhe proofsof completeness
for LTL [7, 13 (futurelineartimelogic) andCTL [5] (com-
putationtreelogic).

In this paperwe introducea simple gametheoreticap-
proachto satisfiabilitycheckingof temporallogic, for LTL
and CTL, which has the samecompleity as using au-

tomata. The mechanisminvolved, the use of a “focus”,

is both explicit andtransparentandunderpinsa novel ap-
proachto developingcompleteaxiomsystemdor temporal
logic. The axiom systemsare naturallyfactoredinto what
happendocally andwhat happensn the limit. The com-
pletenesproofsusethegametheoreticconstructiorfor sat-
isfiability: if afinite setof formulasis consistenthenthere
is a winning stratgy (andthereforeconstructionof an ex-

plicit modelis avoided).

Although the origin of thesegamesis model checking
CTL* [12], it remainsto be seenif the gametechnique
extendsto satisfiability checkingof CTL* and modal p-
calculus.Moreover, it remaingo be seenf thetechniquas
practicallyviablefor testingsatisfiabilityof LTL andCTL.

2 LTL

We presenLTL [7] in positive form, whereonly atomic
formulasarenegated.Let Prop beafamily of atomicpropo-
sitionsclosedundernegation,where——¢g = ¢, andcontain-
ing theconstantst (true)and£f (false).Formulasof LTL
arebuilt from Prop usingbooleanconnectvesVv andA, the
unarytemporaloperatorX (next) andthe binarytemporal
connectvesU (until) andits dual R (release).

We assumea usualw-modelfor formulas,consistingof
aninfinite sequencef statesvhich aremaximalconsistent
setsof atomicformulas. A states thereforeobeysthe con-
dition thatfor ary ¢ € Prop, g € siff =q € s, andtt € s
andff ¢ s. Thesemanticsnductively defineswhenanw-
sequencef statess satisfiesa formula @, writteno = @.
In thecaseof ¢ € Prop, o |= ¢ iff ¢ isin theinitial stateof
o. Theclausedor the booleanconnectvesareasusual. If
o = 5051 ...andi > 0theno® = s;s;,1 ... istheith suffix
of 0. Theremainingclausesareasfollows.

cEX® iff ol

olE®UV iff 3i>0.0'FE Uand
Vi:0<j<i.ol =

iff Vi>0.0'FVor
3j:0<j<i.ol b ®

o= ®PRY



We assumehat F'U (eventually¥) abbreviatesttU ¥ and
its dual G¥ (always¥) abbreviatesf£f RV. The meanings
of U and R aredetermineddy their fixed point definitions,
QU VY is theleastsolutionto « = ¥ Vv (® A X«) whereas
O RV isthelargestsolutionof « = U A (® V X ).

A formula @ is satisfiableif thereis a model o such
thatc | ®. In the naie tableauapproachto deciding
satisfiability one constructsan “or” decisiontree. The
root is a finite set of initial formulas, and the decision
guestionis whethertheir conjunctionis satisfiable. Child
nodesare producedby local rules on formulas. A node
TUu{® AT} haschildTU {®,T}. Anodel'U {®V T}
hastwo childrenTC U{®} andl'U{¥}. Formulas®U ¥ and
® RV arereplacedby their fixedpointunfolding, ¥ \ (& A
X (PUT))and¥ A (P vV X (PRY)). After repeatedappli-
cationsof theserules,a nodewithout childrenhastheform
{1,y @n, XPy,..., XD, }, whereeachq; € Prop. If
thesetP = {qi,...,q,} is unsatisfiablethen the node
is an unsuccessfuleaf. If P is satisfiableandm = 0
thenthe nodeis a successfuleaf. Otherwisea new child
{®4,...,D,,} is producedwhich amountsto moving to a
new state.

Nodeswith until or releaseformulas may continually
producechildren,andthereforeonealsoneedsanothercri-
terionfor whena nodecountsasa leaf. An obviouscandi-
dateis whena nodeis a repetition,containsthe samefor-
mulasas an earliernode (andin betweenthereis at least
oneapplicationof the new staterule). Whetheror not such
aleafis successfulvill dependonwhetherformulasarethe
resultof the fixed point unfolding of a releaseor an until
formula. A repeatof ® RV shouldbe successfulvhereas
repeatbof ®U VY is unsuccessful.

Considerthe following exampledecisiontree,whereset
bracesaredropped(andtt andff aredispensedvith and
sotheunfoldingof F'¥ is ¥ v X F'¥ andthe unfolding of
GUis U A XGV).

Fq, XGFq
qV XFq,XGFq
7, XGFq XFq,XGFq
— Next —  Next
GFq

Fq,GFq
FqANXGFq Fq,FqN\N XGFgq
Fq, XGFq

Fq, XGFq

Next labelsa transitionto a new state. Both leavesin this
treearerepetitionsof theroot. Howevertheleft leaf should
countas successfubecausehe formula F'¢ at the initial
nodeis “fulfilled” in the left branch,giving the model sg
whereq € sq. In contrastFq is not fulfilled in the right
branchandis thereby‘regenerated”andthereforetheright
leaf shouldcountasunsuccesful.

The problemof which fixed points are regeneratedlis-
appearsn the automataheoreticapproachto satisfiability
[17]. Roughlyspeakingthe decisiontreeis thenonly part
of thestory It is captureddy the“local” automatorandone
alsoneedsto factorin the “eventuality” automatornwhich
automaticallydealswith regenerationof fixed points, and
thereforethe problemdoesnot arise. However the costis
the use of the product constructionbetweenthe two au-
tomata.While thisis notanimpedimentfor checkingsatis-
fiability it appearso befor otherformaltaskssuchasshaw-
ing thatanaxiomatisatiorof atemporallogic is complete.

We now show thata simple gametheoreticapproacho
satisfiability checking,wherethe mechanismsre both ex-
plicit andtransparentyasthevirtuethatit alsoleadsto very
simpleproofsof completenesfor bothLTL andCTL.

3 Gamesfor LTL

In the naive tableauapproachto satisfiability thereare
“or” choicesbut thereareno “and” choices.Recastingasa
game,‘or” choicesare3-choicedor theplayer3 and“and”
choicesareV-choicesfor the playerV. Therole of player3
is thatof verifier, “I wantto show thattheinitial setof for-
mulasis satisfiable’whereagherole of V is thatof refuter,
“l wantto shaw thatthe initial setof formulasis unsatisfi-
able”. In apositionl’, ®; vV &, playerd chooseshedisjunct
®;, andplay continuedrom the positionl’, ®;. Theideais
that3 (V) hasawinning strat@y iff theinitial setof formu-
lasis satisfiablgunsatisfiable).

We needto forceplayerV to make choices.A new com-
ponentthe“focus”, is introducednto a setof formulasfor
this purpose.Oneof the formulasin a positionis in focus.
We write [®], T to representhe positionT' U {®} when®
is in focus. PlayerV choosesvhich formulais in focus. If
it is an“and” formulathen¥ choosesvhich subformulato
keepin focus. During a play V may alsochangemind, and
move thefocusto a differentformula.

Givena startingformula @, (the conjunctionof the ini-
tial formulas)we will defineits focus gameG(®,). The
setof subformulasof @, Sub(®), is definedasexpected
but with the requirementthat the unfolding of an until
UV (DA X(PUD)) is asubformulaof ®U T andthe un-
folding of areleasel A (® vV X (®RT)) is asubformuleof
®RY¥. A positionin aplay of G(®,) is anelement[®],T’
where® € Sub(®g) andT’ C Sub(®g) — {®}. A play
of the gameG(®) is a sequencef positionsPy P, ... P,
where P, is theinitial position[®,], andthe changein po-
sition P; to P, is determinedby oneof the movesof Fig-
urel. They aredividedinto threegroups.Firstarerulesfor
3 who choosedlisjunctsin andout of focus.Secondarethe
movesfor player¥ who choosesvhich conjunctremainsin
focusandwho alsocanchangefocuswith therule change.
Finally, therearetheremainingmoveswhich do notinvolve



Player 3

[®oV @], [®], PV Py,T
[®,],T (D], ®;,T
Player vV
[®g A P4],T [®], T, T I
hang.
[(bi}7(b1—iar [‘I’],(I),F cHanse

Other moves

[@®UT],T
UV (@A X(QUW))],T

(@], U, T
[, UV (& AX(QUW)),T

[ORU],T
A (®VX(PRD)),T

(@], DR, T
[@], U A (@ V X(®RT)),T

[®], Do A Dq,T
[(ma(bovq)lvr

[X@l]a"'an)'qula"'SQn
[D1],.. ., Pon

next

Figure 1. Game moves

ary choices,andso neitherplayeris responsibldor them.
Thesencludethefixedpoint unfolding of until andrelease
in andout of focus,the removal of A out of focusandthe
next staterule, next, wherethe focusremainswith the sub-
formulaof thenext formulain focus. It is thereforeincum-
bentonV to make surethatan X formulais in focuswhen
next is applied.

The next ingredientin the definition of the gameis the
winning conditionsfor a player whena play countsasa
win.

Definition 1 Playery winstheplay P, ..., P, if

1. P,is[q|,I" and(gisff or—q € T') or

2. P, is [@UVY],T andfor somei < n the position P;
is [PUV],T" andbetweenP; ... P, playerV hasnot
appliedtherule change.

Thereforev wins if thereis a simplecontradictionor are-
peatpositionwith the sameuntil formulain focusandno
applicationof changebetweertherepeats.

Definition 2 Playerd winstheplay P, ..., P, if

1. P,is|q],--.,q, @and{q,..., q,} is satisfiableor

2. P, is [®RY],T andfor somei < n thepositionP; is
[®RY],T or

3. P, is [®],T" andfor some: < n the position P; is
[®],T andbetweenp; ... P, playerV hasappliedthe
rule change.

So 3 wins if playerV is unableto focuson a X formula

so that next can be appliedwhenthe atomicformulasare

satisfiable The othertwo conditionscoverrepeatpositions.
Firstis the caseif the repeatpositionhasthe samerelease
formulain focus,and seconds the caseof a repeatwhen

the sameformulais in focusandchangehasbeenapplied

betweenthe repeatpositions. The following upperbound

onthelengthof aplayis obvious.

Fact 1 Every play of G(®,) has finite length less than
|Sub(®g)| x 2/Sub(®o)l,

A playerwinsthegameG(®,) if theplayeris ableto win
every play of thegame thatis hasa winning stratgy*. The
followingis asimpleconsequencef Fact1 andthefactthat
thewinning conditionsaremutually exclusive.

Fact2 EverygameG(®,) hasa uniquewinner.

Next we cometo thegamecharacterisationf satisfiabil-
ity, which we split into two halves.

Proposition1 If 3 winsthegameG(®,) then®, is satisfi-
able.

Proof: Assume3 wins the gameG(®,). Considerthe
play whereV usesthe following optimal stratgy. Let
o, U¥, ..., 9,U¥,, bea priority list of all until subfor
mulas of &, in decreasingorder of size. We say that
UV is presentin a position P if either®U¥ € P or
TV (®PAX(PUY)) € Por X(®UVT) € P. PlayerY
startswith the focuson ®,. If the formulain focusis a
releaseformula ® R¥ and ¥ containsan until subformula
thenV choosesl whenthereleasdormulais unfolded. If
theformulais a conjunctionthenV chooses conjunctwith
anuntil subformula.If thefocusremainson a releasefor-
mulaor endsup onamembemf Prop thenV changegocus,
if thisis possiblefo theuntil formulawhichis presentn the
positionandwhichis earliestin thepriority list. If thefocus
is on anuntil formula®,U ¥, thenV keepsthe focuson it
until it is “fulfilled”, thatis until player3 choosesl; when
it is unfolded. This until formulais thenmovedto the end
of the priority list. PlayerV thenchangedocusto the ear
liest until formulain the priority list whichis presenin the
position,if thisis possible.This arguments thenrepeated.
By assumptiorplayer3 wins againstthis strateyy, andthe
play hasfinite length. It is now straightforvardto extract
aneventuallycyclic modelfrom the play, whereevery until
formulapresenin somepositionwill befulfilled. O

Next we prove the converseof Propositionl. Oneproof
is to shov how a winning strateyy for 3 can be extracted

IFormally awinning strateyy, seefor example[9], for playerd is aset
of rulesr of theform, if theplaysofaris Py . .. P andPy is[®oV®1], T
([®], @0 V ©1,T) thenchoose[®;],T" ([®], ®;, ). Similarly for player
V. A play obegys 7 if all the movesplayedby the playerobey therulesin
7. A strat@y « is winning for a playerif shewins every play in whichshe
usesr.



from a model of ®;. However we provide an alternatve
proof which is the key to obtaininga completeaxiom sys-
tem. We utilise anobsenationfrom fixed pointlogicsabout
leastfixed points. Given Park’s fixed point induction prin-
ciple (1) below andthatafixedpointis equivalentto its un-
folding (2), Lemmal below holds(asobsenedby a num-
berof researcherdpr instancd10, 15, 19]). Standardsub-
stitutionis assumedy {®/Y'} is thereplacementf all free
occurrencesf Y in ¥ with ®. Moreoverwe write = @ to
mean® is valid (trueeverywheren all models).

(1)  if EU{®/Y} > Dthen |=pYV. U —
(2)  EupY.U o U{uy.v/v}

Lemmal If Yisnotfreein ® and® A uY. VU is satisfiable
thentheformula® A U{(nY. =® A ¥)/Y} is satisfiable

Proof: Suppose® A uY. WV is satisfiable, but =
U{(pY.—=® A T)/Y} — —®. Thereforee= U{(nY. =P A
U)/)Y} — =@ A U{(uY.-® A ¥)/Y}. Henceby (2)
E U{(uY.-® AV)/Y} — uY.-® AU andsoby (1)
E ©Y. ¥ — =@ which contradictghat® A pY. U is satis-
fiable. O

Lemmal sanctionghe following propertyof until un-
folding.

Lemma?2 If &' A (QU W) is satisfiablethend’ A (U V (P A
X((® A -2 )U(T A—D')))) is satisfiable

Proof: Assumed’ A (DU Y) is satisfiable. So thereis a
modelo suchthato = @ ando | UV, andtherefore
ol E Wando/ | ®forj:0 < j < i, for somei > 0.
Alsoassumed’ A (T V (DA X ((DA-D )T (T A-D))))is
not satisfiableandsothefollowing validity holds|= @ —
(YA (=PVX((-PVP')R(—VVD')))). Because = P’
thereforeo = ~U A (=@ V X((—=® V &' )R(-T V D).
Soo | -V andbecauser = ®UV it follows thato &
®. Andsoo E X((=® Vv ®')R(~T Vv &')), andtherefore
ol (=@ Vv ®)R(-¥ Vv &). Andsoc! = -¥ v &' and
ol E @V VX((-PVP)R(-UVP)). If ol | &' then
o' = —W by the valid formulaabore, andsoo! = —~¥
andbecauser! = ®UV it followsthats! = &, andso
ol = X((=® v ®)R(-¥ v &')). Theargumentis now
repeatedor subsequent’, 5 > 0, which contradictsthat
oUW, O

Proposition 2 If @, is satisfiablethen player 3 wins the
gameG(Dy).

Proof: Assumethat @y is satisfiable. We shav that
player 3 wins the game G(®,). The ideais that 3 al-
ways choosesa move which preseres satisfiability (and
vV hasto choosemoves which presere satisfiability). If
T A (®g Vv @) is satisfiablethenT' A ®; is satisfiablefor
at leastonei € {0,1}, and so player 3 choosessuch

ani. If the positionis [@UY¥],I" where the until for-
mula is in focus then player 3 adornsthe interpretation
of it whenit is unfolded, [¥ V (& A X (@ pU¥ _1))],T
where®_r and ¥_r areto be understoodas ® A = AT
and ¥ A = AL. This adornment,which is justified by
Lemmaz, is repeatedaslong asthe until formulais in fo-
cus. Wheneer V changeamind, an adorneduntil subfor
mula® . a. A-r, UV, a.. AT, lOSesits adornmenand
is returnedto its intendedinterpretationdU . Now it is
easyto seethatV cannever win. Condition1 of the win-
ning conditionfor ¥ cannotbereachedecausél preseres
satisfiability And condition2, the repeatposition, cannot
occurbecausé= ®_r A A-1, U%-r, A n-r, — AT
O

Proposition 3 The compleity of decidingthe winner of
G(®g) isin PSRACE.

Proof: Considerthetreeof all playsin G(®,) wherethe
positionof thefocusis completelydeterminedby the strat-
egy describedn the proof of Propositionl, above. Player
Jwins G(®y) iff thereexists a pathin this treesuchthat3
winstheplay of this path.An algorithmP cannondetermin-
istically choosethis path. Therequiredspacds polynomial
in the size of the input. P only hasto storea counterand
two configurations:the actualone which getsoverwritten
everytime anew gamerule is applied,andtheonewhichis
repeatedn cased winstheplaywith herwinning condition
2 or 3. Thelatter canbe chosemondeterministicallytoo,
andgetsdeletedevery time therule changds applied. The
counteris neededo terminatethealgorithmif it did notfind
arepeaafter |[Sub(®g)| * 2/51P(®0)l configurationsNotice
thatthe sizeof the counteralsois polynomialin thelength
of theinput |®,|. Henceby Savitch’s Theoremthe problem
canbesolvedin PSACE. O

4 A completeaxiomatisationfor LTL

The gametheoreticcharacterisatiomf satisfiability of-
fers a simple basisfor extracting a completeaxiom sys-
temfor LTL. GivenanaxiomsystemA aformula® is A-
consistentif A I/ —®. The axiom systemA is complete
provided thatfor any @ if ® is A-consistenthen ® hasa
model. In this framework thisbecomes

(*) if @ is A-consistenthen3 winsthegameG(®).

TheaxiomsystemA for LTL is presentedn Figure2. The
axiomsandruleswere developedwith the proof of (x) in
mind. Axioms 1-6 andtherulesMP andXGenprovide “lo-
cal” justificationsfor the rulesof the focusgamefor LTL,
andaxiom7 andtherule Rel captured’s winning strateyy.

Theorem1l TheaxiomsystemA is soundandcompletefor
LTL.



Axioms

. ary tautologyinstance
L OUY — WV (O AX(PUW))
. DRV — U A (& V X(PRY))

CXOAXT — X(PAW)

1

2

3

4. X—P — - X
5

6. X(® - U) - X& — XU
7. 2(PRY) > —U-V
Rules

MP if - ® and- ® — ¥ then- ¥

XGen if F ® then- X ®

Relif F®" — (T A (PVX((PVI)R(T VD))
thenk & — (PRY)

Figure 2. The axiom system A

Proof: Soundnessf A is straightforvard. Eachaxiomis
valid andeachrule preseresvalidity. Theinterestingcase
is the rule Rel, whosesoundnessvas proved in lemmaz2
of the previous section. For completenes®f A we es-
tablish (x), if ®q is A-consistentthen 3 wins the game
G(®g). The proof is similar to Proposition2 of the pre-
vious section. Given a finite A-consistentsetof LTL for-
mulaswe shav that ary playerV move or other move in
Figurel preseresA-consisteng, andthatplayerd canpre-
sene A-consisteng when shemoves. If T',®; V @, is
A-consistenthenT, ®; is A-consistenfor some: by ax-
iom 1, andtherule MP. Axioms 2 and3 areneededor the
fixed point unfolding moves. Axioms 4-6 andrule XGen
arerequiredfor the next move. If ®4,...,®,, is not A-
consistenthenA - ®; A ... A ®,,_7 — —®,, andso
A XPAN...NX®D,, ;1 — =X, usingXGenand
axioms6, 5 andone half of 4. Finally rule Rel is usedto
captured’s winning strateyy. If the positionis [PU Y], T’
andI’, ®U ¥ is A-consistenthenby rule Rel, the otherhalf
of axiom4 andaxiom7I', ¥ V (& A X(®_rU¥ 1)) is A-
consistent. O

In [7] soundnessandcompletenessf the following ax-
iom systemDUX for LTL is provedusingmaximalconsis-
tentsetsof formulag.

2A4, A5 and U2 as presentecherediffer slightly from their original
form which s dueto thedifferentsemanticof the G andU operatoused
there.

Al. £fR(® — U) — (f£R® — £ERD)
A2. X(=®) — X P

A3. X(® — ¥) — (X& — X0)

A4. £fR® — & A X (££RD)

A5. ffR(PAXDP) — (D — ££fRD)
Ul. UV — FV

U2. QU < UV (& A X (DUW))

R1. ary tautologyinstance

R2. if - ® and- & — ¥ then ¥

R3. if - U then- £ffRY

Soundnes®f DUX andcompletenessf A ensurethat,
if DUX F ® thenA = ®. However, it is alsointerestingto
comparehetwo axiomatisationgn details.

Axioms andrulesA2, A3, U2, R1andR2 arepresenin
A. A4 is aninstanceof axioms3 andU1 simply reflectsan
abbreviation. R3 canbesimulatedn A asfollows. Suppose
thereis a proof usingR3. Thenthereis a shorterproof of
¥ in DUX for which by hypothesighereis an A-proof, too.
InstantiateRel with & = tt and® = ff. This proves
F £fRU if - U A Xtt is provable. But this canbe done
usingthehypothesisaxiom1 andrule XGen.

TheremainingaxiomsAl andA5 aremorecomplicated
toprovein A. A simplewayis to shav thatV winsthefocus
gameon the negationsof theseaxioms. The gamerules
andwinning conditionsresembleghe axiomsandrulesof A
which areneededor the proof. We show this for A5. The
negationof thisaxiomis ® A (f£R(P A X)) A (ttU D).
Letd’ = & A (FER(P A X D)).

®,££R(D A X D), [ttU—D]
P, X0, X(FER(DP A X D)), [~ V X (tt o U—D o]
D, X0, X(FER(® A X)), [X (ttoa U D]
D EER(D A XD), [tt o U—D o]

The gamerules usedare the unfolding of R, the adorned
unfolding of U, the disjunctive choice and the next rule.
PlayerV wins with winning condition2. Thereforethe ax-
ioms andrulesneededo prove A5 are1 andMP (for V),
2 and3 (for the unfoldings),4 — 6, XGen (for next), 7 (to
reasonaboutthe negationof A5), and Rel to describethe
winning condition.



5 CTL

In this sectionwe definefocusgamedor CTL. Againwe
presentCTL in positive form. Formulasof CTL are built
from Prop, thebooleanconnectvesv andA, thetwo unary
temporaloperators) X and the four binary temporalop-
eratorsQ(...U...), Q(...R...) whereQ € {E,A}. E
is the “some paths”quantifierand A is the “for all paths”
quantifier

A Kripke modelfor CTL formulasconsistsof a setof
statesS, a binary transitionrelation R which is total (for
all s € Sthereisat € S suchthat sRt) anda valuation
which assigndo eachstates € S amaximalconsistenset
of atomicformulasin Prop. The semanticdefineswhen
a states satisfiesa formula @, s | @, andit appealsto
full pathsfrom a statesy whichis anw-sequencef states
s081 .. . suchthats;Rs; .1 for eachi > 0. In thecaseof ¢ €
Prop, s | q iff ¢ belongsto thevaluationof s. Theclauses
for the booleanconnectvesare asusual. The remaining
clausesreasfollows.

sk EX® iff

sEAXD iff
so | E(OUW) iff

Jt. sRtand t = @

Vt. if sRt thent = ®

Ffull path sgsy... 31 >0.5, T
andVj:0<j<is;=®

so = AQUW) it
andVj:0<j<is;j=®

Ffull path sgs1... Vi > 0.8, T
ordj:0<j<is;=®

so = E(®RY) iff

so = A(QUU) iff
or3j:0<j<i.s; @

Thesemantic®f until andreleasdormulasaredetermined
by their fixed point definitions. Q(®U V) is the leastsolu-
tiontoa = ¥V (¢ A QX o) andQ(PRVY) is the largest
solutiontoa = T A (P V QXa).

We now definethe focusgameG'(®,) for a CTL for-
mula ®y. As with the LTL game,a positionin a play
of G'(®y) is an element[®],T" where®d € Sub(P,) and
I' C Sub(®y) — {®}, anda play is a sequencef posi-
tions Py P ... P, whereP, is theinitial position[®]. The
changein position P; to P, is determinedoy one of the
movesof Figure3. Againthey aredividedinto threegroups.
First are rules for 3 who choosedisjunctsin and out of
focus. Secondare the moves for playerV who chooses
which conjunctremainsin focusandwho alsocanchange
focuswith therule change.PlayerV alsochooseghe next
statewhenan AX formulais in focus,by choosinga sin-
gle EX ¥, if thereis one:weincludeherethe casewhere
[ = 0 andV doesnot have ary choice. Finally, thereare
theremainingmoveswhich do notinvolve ary choicesand
soneitherplayeris responsibldor them. Thesencludethe
fixed point unfolding of until andreleasdan andout of fo-
cus,the removal of A out of focusandthe next staterule

Vfull paths sgsy... 38 >0.s; E ¥

Vfull paths sgsy... Vi > 0.s; =¥

Player 3
[<I>0\/<I>1],F [(I)],(I)o\/@hF
[q)i]ar [(I)] (I)iar
Player ¥
[@g A ®q],T [®],¥,T chanee
[(pi]v (plfiar [\IIL @,F &

[AX®y],..., AX®, EXU,,. . EXV, q,...

) qﬂl

[(I)l]v ey (I)nv \I/j
Other moves

[Q(@UD)],T
WV (2AQXQ(RUW)), T

(@], Q(®U W), T
[@, UV (®AQXQAUD)),T

[Q(@RY)], T
[T A(@VQXQ(PRY)),T

@], Q@RY), T
@], U A (2 VQXQ(PRY)),T

[‘m,‘bo AN®,T
[(I)]a(I)Oa (I’lar

[EXUy),..., EXU,, AX®,, ..

.,AXq’n,ql,...

next

™ next

(U], ®P1...,P,

Figure 3. CTL Game moves



whenan EX formulais in focus. The winning conditions
for aplayerarealmostidenticalto the LTL game.

Definition 1 Playery winstheplay P, ..., B, if
1. P,is[g|,I" and(gisff or—q € T') or

2. P, is [Q(®UW)],T andfor somei < n the position
P;is [Q(®UD)], T andbetween?, ... P, playerV has
notappliedtherule change.

Definition 2 Player3 winstheplay P, ..., B, if

1. P,isq],--.,qn @and{qi,..., ¢, } is satisfiableor

2. P,is[Q(®RY)],T andfor somei < n thepositionP;
is[Q(®PRY)],T" or

3. P, is [®],I" andfor some: < n the position P; is
[®],T andbetweenp; ... P, playerV hasappliedthe
rule change.

Facts1 and2 of Section3 alsohold for CTL games.A
mainresultis againthe gamecharacterisatioof satisfiabil-

ity.
Proposition1 3 winsthegameG'(®y) iff @ is satisfiable

Proof: Assume3 wins the game G'(®;). The proof
is similar to that of Proposition1 of Section 3, ex-
cept that all “next” state choicesare examined, and so
we have a tree of plays insteadof a single play. Let
Q1(2UYY),...,Q,(2,UT!) beaninitial priority list of
all until subformula®f &, in orderof decreasingize.Each
playin thetreeof playshasits own associatedurrentprior-
ity list. Playerv startswith thefocuson ®,. Oncethefocus
is on anuntil formula, Q;(®;UY!), playerV keepsthe fo-
cusonit until it is fulfilled (player3 choosesl’) or there
is branching.At anapplicationof next a play splitsinto all
choices,eachwith its own priority list. If the focusis on
a formula AX ®; thenit will be on ®; in all theseplays
andthey eachhave the samepriority list. If the positionis
[EXU],...,EXU,AX®y,...,AXD,, q,...,qn and
[ is the currentpriority list thenthe focusremainson ¥ in
theplay with this subformulawith list [. Otherwisefor each
1 > 1 thereis the play whereV changedocusfor the posi-
tionw;, ®&q,...,P,.If U;is E(@;U\D;) thenthis formula
is movedto the endof the priority list [; andV choosesas
focusthe earliestuntil formulain I; presentn the position
EXU,; AX®q,...,AX®D,, if thisis possible. This argu-
mentis repeated.By assumptiorplayer 3 wins the finite
treeof plays. It is now straightforvardto readoff a Kripke
modelfrom this treeof playswhere®, is true at theinitial
state.

For the corverseassumehat @, is satisfiable We show
that3 hasa winning stratgy for thegameG’(®(). We use

thefactthatfor eachQ € {A, E} if ' AQ(PU V) is satisfi-
ablethen®’ A (T V(PAQXQ(PA-D'UTA-D'))) is sat-
isfiable. Sothe interpretationof Q(®U ¥) canbe adorned
whenever it is unfoldedin focus aswith Proposition2 of

Section3. O

Oneimportantdifferencewith LTL is the complexity of
checkingthewinnerof agameG’(®,), becausef branch-
ing choicedor V.

Proposition 2 The compleity of decidingthe winner of
G'(®y) isin EXPTIME

Proof: Theproofis very similarto thatof Proposition3 of
Section3. However, the treeof all playsis now anand-or
tree becausef playerV’s choicesusingrule next. There-
fore the polynomialspacealgorithmdecidingthe winnerof
G'(®y) is alternatinginsteadof nondeterministic. By [3]
the problemis thereforedn EXPTIME. O

6 A completeaxiomatisationfor CTL

The gametheoreticcharacterisatiomf CTL satisfiabil-
ity alsoallows oneto extracta soundandcompleteaxiom
systenmfor CTL, thesystemB in Figure4.

Theorem1 TheaxiomsystenB is soundand completefor
CTL

Proof: Soundnes®f B is straightforvard. The mostin-
terestingcasesare soundnessf ARel andERelrules,and
in the caseof ERel the rule captures'limit closure”. For
completenessf B, the proof is similar to Theorem1 of
Section4. If ®, is B-consistentthen player 3 wins the
gameG'(®y). Given a finite B-consistentset of formu-
las, ary move by playerV or othermove in Figurel1 pre-
senesB-consisteng. Theimportantcasesarethenext state
rules. Assume®s, ..., ®,, ¥, is not B-consistentand so
BFE® A...AN®, — -¥;. Soby AXGenandaxioms9,8
and6 B+ AX®; A ... NAXP, - -EXV; (andusing
7 insteadof 6 onedealswith the casewhen! = 0). Finally
the ARel and ERel rules are usedto capture3's winning
strata@y. O

In [5] soundnesandcompletenessf the following ax-
iom systenfor CTL is provedusingtableaux.

Ax1. ary tautologyinstance

AX2. EF® « E(ttU®)

AX3. AF® — A(ttU®)

Ax4. EX(®V V) - EX®V EXU
AX5. AXP — -EX-d

AX6. E(®UT) — UV (P A EXE(DUD))



Axioms

1.

[N
o

11.

© © N o 0 ~ W DN

ary tautologyinstance

E(@UW) — UV (® AN EXE(OUW))
A(PUD) ( )
E(®RY) — U A (& V EXE(PRY))
A(PRY) (

AX-® «— -EX®

U) =TV (PAAXARUY

U) = WA (DVAXA(PRY))

AX=P —» -AXD

AXPNAXT — AX (DA D)
AX((I)—>\II) — AXP — AX VU

. ~A(®RV) < E(=dU-V)

—~E(®RV) < A(=DU—T)

Rules

MP if - ® and- ® — ¥ then- ¥

AXGen if - ® then AX®

ERel if - & — (U A (@ V EXE((®V & )R(TV &))))

ARel if - @' — (T A (D V AXA((® VO )R(T V 3'))))

then- &' — E(®RV)

then &' — A(®RV)

Figure 4. The axiom system B

AX7. A(BUT) — TV (& NAXADUD))
Ax8. EXtt N AXtt
R1. if - ® - Uthenk EX® — EXWV
R2. if - & — U A EX®' then- & — E(®RV)

R3.if+ & — U AAX (D' V A(PRY))
then- & — A(PRYD)

R4. if F ® and- ® — U then- ¥

Thesameargumentgor comparinghetwo LTL axioma-
tisationsalsoholdfor thetwo axiomatisationsef CTL. Ax1,
Ax5 — Ax7, andR4 arealreadypresenin B. Ax2 andAx3
arecoveredby theabbreviationof F'. Ax4 canbeprovedby
acombinationof 6 —9, 1 andMP. 1, AXGen, 7, MP and6
establishAx8. Rule R1is simulatedusingAXGen, 9, MP,
7 andthe hypothesiof having a shorterproofof ® — W in
B. R2is simulatedn the following way. Supposéhereis a
B-proofof & — WA EX®'. Then,by4,1,andMP thereis
alsoaproofof & — WA (PVEXE((®VP)R(TVP)))
for ary ®. Using ERelyieldsaproofof @ — E(®RU).
SimulatingR3 s similar.

7 Conclusion

We have introduceda gametheoreticapproacho satis-
fiability checkingof LTL and CTL. It remainsto be seen
if focus gamesextendto richer logics suchas CTL* and
modal p-calculus. In [12] it was showvn that focus games
canalsobe usedto solve the modelcheckingproblemfor
CTL*. Thegametreesarisingtherearevery similar to the
tableaustructuresisedin [2, 1]. However, in orderto tackle
the problemof decidingwhetherfixed point constructsare
regeneratedr reproducedheseauthorspursuea different
stratgyy. Take the unfolding of ®UW for example. While
the focus highlightsthe casethat player3 alwayschooses
thetermin which ®U ¥ occursagain,apathin thetableaux
of [2] is successfuif ¥ never occursafter ®UW. The dif-
ferenceseemdo beapointof view only. In thefocusgames
it is checledwhethera fixed point constructis regenerated,
thereforeit is never fulfilled. In the tableauapproacht is
checledwhetherit is neverfulfilled, thereforeit is regener
ated.

In [1] theauthorsdefineTableauBiichi Automatawhich
areessentiallythe sameasthe tableauxof [2]. As with the
focusgamesthis enableghe authorsto handletheregener
ation problemof fixed pointsimplicitly. Insteadof explic-
itly requiring tableauxto be processedvith a depth-first-
searchthe solutionto the regeneratiorproblemis encoded
in an acceptanceondition, which is in that casea gener
alised Buchi condition. However, this small differenceis
thekey to the strengtheningemma(Lemmal of Section3)



whichunderpinghe proofsof completenessf theaxioma-
tisations.

A more recentautomatatheoreticapproachto satisfi-
ability and model checkingemploys alternatingautomata
[16, 11]. Althoughtheseappearto bevery gametheoretic,
they rely uponautomataver treeswhich capturethe “and”
branching,both in the caseof the boolean“and” and in
the casefor CTL of branchingthroughnext states.In both
case®f LTL andCTL formulasarestatesof theautomata,
andtransitionsare determinedby maximal consistentsets
of atomicpropositions. The acceptanceonditionsdecide
acceptabldixedpointregenerationlt is not clearif thisap-
proachcanunderpinsoundandcompleteaxiomatisations.
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