Extended Computation Tree Logic

Roland Axelsson!, Matthew Hague?, Stephan Kreutzer?, Martin Lange3, and
Markus Latte!

! Department of Computer Science, Ludwig-Maximilians-Universitit Munich,
Email: {roland.axelsson,markus.latte}@ifi.lmu.de
2 Oxford University Computing Laboratory,
Email: {Matthew.Hague,stephan.kreutzer}@comlab.ox.ac.uk
3 Department of Computer Science, University of Kassel, Germany,
Email: martin.lange@uni-kassel.de

Abstract. We introduce a generic extension of the popular branching-
time logic CTL which refines the temporal until and release operators
with formal languages. For instance, a language may determine the mo-
ments along a path that an until property may be fulfilled. We consider
several classes of languages leading to logics with different expressive
power and complexity, whose importance is motivated by their use in
model checking, synthesis, abstract interpretation, etc.

We show that even with context-free languages on the until operator
the logic still allows for polynomial time model-checking despite the sig-
nificant increase in expressive power. This makes the logic a promising
candidate for applications in verification.

In addition, we analyse the complexity of satisfiability and compare the
expressive power of these logics to CTL* and extensions of PDL.

1 Introduction

Computation Tree Logic (CTL) is one of the main logical formalisms for program
specification and verification. It appeals because of its intuitive syntax and its
very reasonable complexities: model checking is P-complete [9] and satisfiability
checking is EXPTIME-complete [12]. However, its expressive power is low.

CTL can be embedded into richer formalisms like CTL* [13] or the modal p-
calculus £, [21]. This transition comes at a price. For CTL* the model checking
problem increases to PSPACE-complete [29] and satisfiability to 2EXPTIME-
complete [14,32]. Furthermore, CTL* cannot express regular properties like
“something holds after an even number of steps”. The modal p-calculus is ca-
pable of doing so, and its complexities compare reasonably to CTL: satisfiability
is also EXPTIME-complete, and model checking sits between P and NPNcoNP.
However, it is much worse from a pragmatic perspective. For example, its syntax
is notoriously unintuitive.

Common to all these (and many other) formalisms is a restriction of their
expressive power to at most regular properties. This follows since they can be
embedded into (the bisimulation-invariant) fragment of monadic second-order

logic on graphs. This restriction yields some nice properties — like the finite
model property and decidability — but implies that these logics cannot be used
for certain specification purposes.

For example, specifying the correctness of a communication protocol that
uses a buffer requires a non-underflow property: an item cannot be removed
when the buffer is empty. The specification language must therefore be able to
track the buffer’s size. If the buffer is unbounded, as is usual in software, this
property is non-regular and a regular logic is unsuitable. If the buffer is bounded,
the property is regular but depends on the actual buffer capacity, requiring a
different formula for each size. This is unnatural for verification purposes. The
formulas are also likely to be complex as they essentially have to hard-code
numbers up to the buffer length. To express such properties naturally one has
to step beyond regularity and consider logics of corresponding expressive power.

A second example is program synthesis, where, instead of verifying a program,
one wants to automatically generate a correct program (skeleton) from the spec-
ification. This problem is very much linked to satisfiability checking, except, if a
model exists, one is created and transformed into a program. This is known as
controller synthesis and has been done mainly based on satisfiability checking
for £,, [4]. The finite model property restricts the synthesization to finite state
programs, i.e. hardware and controllers, etc. In order to automatically synthesize
software (e.g. recursive functions) one has to consider non-regular logics.

Finally, a third example occurs when verifying programs with infinite or very
large state spaces. A standard technique is to abstract the large state space into
a smaller one [10]. This usually results in spurious traces which then have to
be excluded in universal path quantification on the small system. If the original
system was infinite then the language of spurious traces is typically non-regular
and, again, a logic of suitable expressive power is needed to increase precision.

We introduce a generic extension of CTL which provides a specification for-
malism for such purposes. We refine the usual until operator (and its dual, the
release operator) with a formal language defining the moments at which the un-
til property can be fulfilled. This leads to a family of logics parametrised by a
class of formal languages. CTL is an ideal base logic because of its wide-spread
use in actual verification applications. Since automata easily allow for an unam-
biguous measure of input size, we present the precise definition of our logics in
terms of classes of automata instead of formal languages. However, we do not
promote the use of automata in temporal formulas. For pragmatic considerations
it may be sensible to allow more intuitive descriptions of formal languages such
as Backus-Naur-Form or regular expressions.

As a main result we add context-free languages to the path quantifiers, sig-
nificantly increasing expressive power, while retaining polynomial time model-
checking. Hence, we obtain a good balance between expressiveness — as non-
regular properties become expressible — and low model-checking complexity,
which makes this logic very promising for applications in verification. We also
study model-checking for the new logics against infinite state systems represented
by (visibly) pushdown automata, as they arise in software model-checking, and

obtain tractability results for these. For satisfiability testing, equipping the path
quantifiers with visibly pushdown languages retains decidability. However, the
complexity increases from EXPTIME for CTL to SEXPTIME for this new logic.
The paper is organised as follows. We formally introduce the logics and give
an example demonstrating their expressive power in Sect. 2. Sect. 3 discusses
related formalisms. Sect. 4 presents results on the expressive power of these
logics, and Sect. 5 and 6 contain results on the complexities of satisfiability and
model checking. Finally, Sect. 7 concludes with remarks on further work.
Note to referees. Due to space restrictions we can only give proof sketches of
selected results in the paper. As a full proof of the results reported here requires
about 50 pages, we have decided to include only selected proofs in the appendix
and refer to the full version of this paper for details, which is available from
http://web.comlab.ox.ac.uk/people/Stephan.Kreutzer/csl10.pdf.

2 Extended Computation Tree Logic

Let P = {p,q,...} be a countably infinite set of propositions and X be a finite
set of action names. A labeled transition system (LTS) is a T = (S, —,{), where
S is a set of states, = C S x ¥ xS and £ : S — 2F. We usually write s %5 ¢
instead of (s,a,t) € —. A path is a maximal sequence of alternating states and
actions m = sg, a1, S1, a9, S2,..., S.t. S; u»siﬂ for all 7 € N. We also write a
path as sy —2 51 —25 55 ... Maximality means that the path is either infinite or
it ends in a state s,, s.t. there are no a € X and t € S with s,, = t. In the latter
case, the domain dom(w) of 7 is {0,...,n}. And otherwise dom(m):=N.

We focus on automata classes between deterministic finite automata (DFA)
and nondeterministic pushdown automata (PDA), with the classes of nondeter-
ministic finite automata (NFA), (non-)deterministic visibly pushdown automata
(DVPA/VPA) [2] and deterministic pushdown automata (DPDA) in between.
Beyond PDA one is often faced with undecidability. Note that some of these
automata classes define the same class of languages. However, translations from
nondeterministic to deterministic automata usually involve an exponential blow-
up. For complexity estimations it is therefore advisable to consider such classes
separately.

We call a class 2 of automata reasonable if it contains automata recognising
XY and X* and is closed under equivalences, i.e. if A € 2 and L(A) = L(B) and
B is of the same type then B € 2. L(.A) denotes the language accepted by A.

Let 24, B be two reasonable classes of finite-word automata over the alphabet
Y. Formulas of Eztended Computation Tree Logic over A and B (CTL[2(,B]) are
given by the following grammar, where A € 2, B € B and g € P.

¢ 1= qleVe|-p|E(@Uie) | E(¢RPp)

Formulas are interpreted over states of a transition system 7 = (S, —,¢) in the
following way.

—T,skE=q iff g€ {(s)

—T,sEeVy iff T,sEgporT,sEvand T,s =—p iff T,s}E

— T,s |= E(@UAY) iff there exists a path 7 = sg,a1,51,... with s = s and
In € dom(w) s.t. ay...an € L(A) and T, s, EvY and Vi< n:T,s; E .

— 7,5 = E(pRAY) iff there exists a path m = 59, a1, 51, ... with so = s and for
all n € dom(m): ay...an & L(A) or T,s, = or Ji <ns.th. T,s; = .

As usual, further syntactical constructs, like other boolean operators, are intro-

duced as abbreviations. Similarly, we define A(@UA) := —E(—@RA—1)), A(@RAY) :

—E(—pUA—), as well as QF ¢ := Q(ttUAy), QG := Q(ffRAy) for Q € {E, A}.
For presentation, we also use languages L instead of automata in the tempo-
ral operators. For instance, EGly is EGA¢ for some A with L(A) = L. This
also allows us to easily define the original CTL operators: QXy := QF*p,
Q(LUY) = Q(eU~), Q(¢Ry) = Q(pR¥ ¥), etc. The size of a formula ¢
is the number of its unique subformulas plus the sum of the sizes of all automata
in ¢, with the usual measure of size of an automaton.

The distinction between 2 and B is motivated by the complexity analysis.
For instance, when model checking E(¢U“v) the existential quantifications over
system paths and runs of A commute and we can step-wise guess a path and
an accepting run. On the other hand, when checking E(pR*4)) the existential
quantification on paths and universal quantification on runs (by R — “on all
prefixes ...”) does not commute unless we determinise .4, which is not always
possible or may lead to exponential costs.

However, 2l and B can also be the same and in this case we denote the
logic by CTL[2]. Equally, by EF[2], resp. EG[B] we denote the fragments of
CTL[2,B] built from atomic propositions, boolean operators and the temporal
operators EF4¢, resp. EGBy only. Since the expressive power of the logic only
depends on its class of languages rather than automata, we will write CTLREG],
CTL[VPL], CTL[CFL], etc. to denote the logic over regular, visibly pushdown,
and context-free languages, represented by any type of automaton.

Ezample. We close this section with a CTL[VPL] example demonstrating the
buffer-underflow property discussed in the introduction. Consider a concurrent
producer/consumer scenario over a shared buffer. If the buffer is empty, the
consumer process requests a new resource and halts until the producer delivers
a new one. Any parallel execution of these processes should obey a non-underflow
property (NBU): at any moment, the number of produce actions is sufficient for
the number of consumes.

If the buffer is realised in software it is reasonable to assume that it is un-
bounded, and thus, non-regular. Let X' = {p, ¢, 7}, where p stands for production
of a buffer object, ¢ for consume and r for request. The NBU property is given
by the VPL L = {w € X¥* | |w|. = |w|, and |v|. < |v], for all v < w}, where <
denotes the prefix relation. We express the requirements in CTL[VPL].

1. AGEXPtt : “at any time it is possible to produce an object”
2. AGE(AXCff AEX"tt): “whenever the buffer is empty, it is impossible to consume
and possible to request”

3. AGZ(EXCtt A AX"ff): “whenever the buffer is non-empty it is possible to con-
sume and impossible to request”
4. EFEG® ff: “at some point there is a consume-only path”

Combining the first three properties yields a specification of the scenario
described above and states that a request can only be made if the buffer is
empty. For the third properly, recall that VPL are closed under complement [2].
Every satisfying model gives a raw implementation of the main characteristics of
the system. Note that if it is always possible to produce and possible to consume
iff the buffer is not empty, then a straight-forward model with self-loops p, ¢ and
r does not satisfy the specification. Instead, we require a model with infinitely
many different p transitions. If we strengthen the specification by adding the
fourth formula, it becomes unsatisfiable.

3 Related Formalisms

Several suggestions to integrate formal languages into temporal logics have been
made so far. The goal is usually to extend the expressive power of a logic whilst
retaining its intuitive syntax. A classic example is Propositional Dynamic Logic
(PDL) [16] which extends Modal Logic with regular expressions. There are sim-
ilar extensions of LTL [33, 18, 22] and of CTL [5, 7, 26] refining the temporal op-
erators with regular languages in some form. The need for extensions beyond the
use of pure temporal operators is also witnessed by the industry-standard Prop-
erty Specification Language (PSL) [1] and its predecessor ForSpec [3]. However,
ForSpec is a linear-time formalism and here we are concerned with branching-
time. PSL does contain branching-time operators but they have been introduced
for backwards-compatibility only. The main difference, though, is the fact that
these logics do not reach beyond regular properties, whereas the logics intro-
duced here vastly exceed the expressive power of languages like ForSpec etc. by
being able to formalise non-regular properties.

While much effort has been put into regular extensions of standard temporal
logics, little is known about extensions using richer classes of formal languages.
We are only aware of extensions of PDL by context-free languages [17] or visibly
pushdown languages [24].

The main yardstick for measuring the expressive power of CTL[,B] will
be PDL and one of its variants, namely PDL with the A-construct and tests,
APDL’[REG], [16,30]. In the following we will use some of the known results
about APDL’[2(] for some classes 2 of automata. A proper technical definition
of the syntax and semantics of APDL?[%(] is not required in order to understand
the results presented here, and it is therefore given in the appendix.

There are also temporal logics which obtain higher expressive power through
other means. These are usually extensions of £, like the Modal Iteration Cal-
culus [11] which uses inflationary fixpoint constructs or Higher-Order Fixpoint
Logic [34] which uses higher-order predicate transformers. While most regular
extensions of standard temporal logics like CTL and LTL can easily be embed-

APDL![CFL]

__ _CTL[CFL]
PDLICFL— EF[CFL] EGICFL] APDL/[DCFL]
‘ 1o 9(1'1'L[DEJ£:L—] 3
PDL[DCFLI—EF[DCFL] EG[DCFL] ‘ APDLYVPL]
; : ////L:::’cq‘L[:\’Pi]— i_____,L,,
PDL{VPL—EF[VPL] EG[VPL] | appL'frEG)
3 } } _cTuREG) }
PDLIREG]— EF[REC] EGIREG] } __cTL
‘ ‘ L

Fig. 1. The expressive power of Extended Computation Tree Logic.

ded into £, little is known about the relationship between richer extensions of
these logics.

4 Expressivity and Model Theory

We write £ <; £’ with f € {lin,exp} to state that for every formula ¢ € £
there is an equivalent ¢ € £’ with at most a linear or exponential (respectively)
blow up in size. We use <y to denote that such a translation exists, but there
are formulas of £’ which are not equivalent to any formla in £. Also, we write
L=y L if L.<y L and L' <j L. We will drop the index if a potential blow-up
is of no concern.

A detailed picture of the expressivity results regarding the most important
CTL[2] logics is given in Fig. 1. A (dashed) line moving upwards indicates (strict)
inclusion w.r.t. expressive power. A horizontal continuous line states expressive
equivalence. It is currently unknown whether or not CTL[CFL] is embeddable
into APDL’[CFL]. If such an embedding exists, it has to be strict. Note that
CFL does not admit deterministic automata. Hence, Thm. 4.2 (3) (given below)
is not applicable in this case.

The following proposition collects some simple observations.

Proposition 4.1. 1. For all A,B: CTL <j, CTL[,B].
2. For all A, 2,8, : if A <A and B < B then CTL[A,B] < CTLA B

CTL[2l] is properly situated between PDL[2(] and APDL?[(]. In fact, PDL[]
is just a syntactic variation of the EF[2l] fragment. The upper bound imposed
by APDL’[2(], however, only holds for certain classes 2. See the appendix for
detailed proofs of the following result.

Theorem 4.2. 1. For all A: PDL[] =;, EF[2].

2. For all A,%B: EF[2] <j, CTL[,B].

3. For all A,B: if B is a class of deterministic automata then CTL[A,B] <ji,
APDL’[2LU B].

If for some classes 24,8 the inclusion in Part 3 holds, then it must be strict.
This is because fairness is not expressible in CTL[2] regardless of what 2 is, as
demonstrated by the following lemma whose proof appears in the full paper.

Lemma 4.3. The CTL*-formula EGFq expressing fairness is not equivalent to
any CTL[, B] formula, for any A, B.

Fairness can be expressed by AAsi,, where A, is the standard Biichi au-
tomaton over some alphabet containing a test predicate ¢? that recognises the
language of all infinite paths on which infinitely many states satisfy q.

Corollary 4.4. 1. For all2,%B8: CTL* £ CTL[2(,B].
2. There are no A, such that any CTL[A,B] is equivalent to the APDL’[REG]
formula AAg;, -

Finally, we provide some model-theoretic results which will also allow us to
separate some of the logics with respect to expressive power. Not surprisingly,
CTL[REG] has the finite model property which is a consquence of its embedding
into APDL?[REG]. It is also not hard to bound the size of such a model given
that APDL?[REG] has the small model property of exponential size.

Proposition 4.5. Fvery satisfiable CTL[REG]| formula has a finite model. In
fact, every satisfiable CTLINFA DFA], resp. CTL[NFA,NFA] formula has a model
of at most exponential, resp. double exponential size.

We show now that the bound for CTL[NFA] cannot be improved.

Theorem 4.6. There is a sequence of satisfiable CTLINFA]-formulas (1)nen
such that the size of any model of 1, is at least doubly exponential in |1)y,].

The next theorem, proved in detail in the appendix, provides information
about the type of models we can expect — which is useful for synthesis purposes.

Theorem 4.7. 1. There is a satisfiable CTL[VPL] formula which does not
have a finite model.

2. There is a satisfiable ¢ € CTL[DCFL] s.t. no pushdown system is a model
of .

3. Every satisfiable CTL[VPL] formula has a model which is a visibly pushdown
system.

Proof (Sketch of Part 3). The satisfiability problem for CTL[VPL] can be trans-
lated into that of a non-deterministic Biichi visibly pushdown tree automaton
(VPTA). An unrolling of this automaton does not necessarily lead to the claimed
visibly pushdown system. First, such a system might admit paths which violate
the Biichi condition. And secondly, the lack of determinism combines succes-
sors of different transitions undesirably. However, Thm. 4.2 Part 3 states that
CTL[VPL] can be translated into APDL’[VPL] whose satisfiability problem re-
duces to the emptiness problem for stair-parity VPTA [24]. stair-parity VPTA
to parity tree automata (PTA) which preserves satisfiability. The emptiness test
is constructive in the sense that for every PTA accepting a non-empty language
there exists a finite transition system which satisfies this PTA. This system
can be translated back into a visibly pushdown system satisfying the given

complexity DFA NFA DVPA VPA DPDA, PDA

DFA, NFA 1 2 2 3
DVPA, VPA 2 3 2 3 undecidable
DPDA, PDA undecidable

Fig. 2. The complexities of checking satisfiability for a CTL[2(,28] formula. The rows
contain different values for 2 as the results are independent of whether or not the au-
tomata from this class are deterministic. A natural number k£ means that the respective
logic is complete for k-EXPTIME.

CTL[VPL]- or APDL’[VPL]-formula. Implementing this idea, however, requires
some care and is technically involved. a

Putting Prop. 4.5 and Thm. 4.7 together we obtain the following separations.
We expect that CTL[DCFL] < CTL[CFL] also holds but have no formal proof
at the moment. Note that the corollary can also be obtained from language
theoretical observations.

Corollary 4.8. CTL[REG] < CTL[VPL] < CTL[DCFLJ.

5 Satisfiability

In this section we study the complexity of the satisfiability problem for a variety
of CTL[,B] logics. The presented lower and upper bounds, as shown in Fig. 2,
also yield sharp bounds for EF[_] and CTL[_].

Theorem 5.1. The satisfiability problems for CTL[DPDA, _] and for CTL[_,
DPDA] are undecidable.

Proof. Harel et al. [17] show that PDL over regular programs with the one
additional language L:={a"ba™ | n € N} is undecidable. Since L € DCFL D
REG, EF[DPDA] is undecidable and hence so is CTLDPDA, _]. As for the
second claim, the undecidable intersection problem of two DPDA, say A and
B, can be reduced to the satisfiability problem of the CTL[_, DPDA]-formula
AUAAXEE A AUPAXEE. O

Theorem 5.2. The upper bounds for the satisfiability problem are as in Fig. 2.

Proof. By Thm. 4.2(3), CTL[2l, B] can be translated into APDL’[2l U B] with
a blow-up that is determined by the worst-case complexity of transforming an
arbitrary 2A-automaton into a deterministic one. The claim follows using that
REG C VPL and that the satisfiability problem for APDL’[REG] is in EXP-
TIME [15] and for APDL’[VPL] is in 2EXPTIME [24]. O

Theorem 5.3. 1. CTL[DFA, NFA] and CTL[_, DVPA| are 2EXPTIME-hard.
2. CTLIDVPA, NFA] and CTL[_, DVPA U NFA] are hard for SEXPTIME.

Corollary 5.4. The lower bounds for the satisfiability problem are as in Fig. 2.

Proof. As CTL is EXPTIME-hard [12], so is CTL[_, _]. The lower bound for
PDL[DVPA], that is 2EXPTIME [24], is also a lower bound for CTL[DVPA,
_] due to Thm. 4.2. The picture is completed by Thm. 5.3 combined with
Prop. 4.1(2). O

Proof (Thm. 5.3, sketch). For each of the four lower bounds, we reduce from
the word problem of an alternating Turing machine 7" with an exponentially or
doubly exponentially, resp., space bound. These problems are 2EXPTIME-hard
and 3EXPTIME-hard [8], respectively. A run of such a machine can be depicted as
a tree. Every node stands for a configuration—that is, for simplicity, a bounded
sequence of cells. An universal choice corresponds to a binary branching node,
and an existential choice to an unary node. We aim to construct a CTL[_,_]-
formula ¢ such that each of its tree-like models resembles a tree expressing a
successful run of 7" on a given input. Thereto, the configurations are linearized—
an edge becomes a chain of edges, in the intended model, and a node represents
a single cell. The content of each cell is encoded as a proposition. However, the
linearization separates neighboring cells of consecutive configurations. Between
these cells, certain constraints have to hold. So, the actual challenge for the
reduction is that ¢ must bridge this exponential or doubly exponential, resp.,
gap while be of a polynomial size in n—that is, in the input size to 7.

We sketch the construction for CTL[DFA, NFA]. The exponential space
bound can be controlled by a binary counter. Hence, the constraint applies only
to consecutive positions with the same counter value. To bridge between two such
positions, we use a proof obligation of the form AUA for NFA A. In a tree model,
we say that a node has a proof obligation for an AU-formula iff that formula is
forced to hold at an ancestor but is not yet satisfied along the path to the said
node. The key idea is that we can replace A by an equivalent automaton D with-
out changing the models of ¢. In our setting, D is the deterministic automaton
resulting from the powerset-construction [27]. In other words, we simulate an ex-
ponentially sized automaton. Here, the mentioned obligation reflects the value
of the counter and the expected content of a cell. One of the building blocks of
@ programs the obligation with the current value of the counter. Thereto, we en-
code the counter as a chain of labels in the model, say (bit?i)lgign where b; € B
is the value of the ith bit. The automaton A contains states qf’ foralll1 <i<n
and b € B. Initially, it is ensured that D is in the state {¢? | 1 <i < n,b € B}.
Informally, this set holds all possibilities for the values of each bit. In A, any
¢® has self-loops for any label except for bit;®. Hence, a traversal of a chain
eliminates invalid bit assignments from the subset and brings D into the state
{¢?" | 1 < i < n} which characterizes the counter for which the chain stands. Fi-
nally for matching, a similar construction separates proof obligations depending
on whether or not they match the counter: unmatched obligations will be satis-
fied trivially, and matching ones are ensured to be satisfied only if the expected
cell is the current one. Details are given in the appendix.

For the other parts involving DVPA, again, the constructed formula ¢ shall
imitate a successful tree of T' on the input. The space bound can be controlled
by a counter with appropriate domain. The constraints between cells of consec-

utive configurations, however, are implemented differently. We use a determin-
istic VPA to push all cells along the whole branch of the run on the stack—
configuration by configuration. At the end, we successively take the cells from
the stack and branch. Along each branch, we use the counter to remove expo-
nential or doubly exponential, resp., many elements from stack to access the cell
at the same position in the previous configuration. So, as a main component of
¢ we use either AUAAXff or AGAff for some VPA A. In the case of a counter
with a doubly exponential domain, the technique explained for CTL[DFA, NFA]
can be applied. But this time, a proof obligation expresses a bit number and its
value. d

6 Model Checking

In this section we consider model-checking of CTL[, B] against finite and
infinite transition systems, represented by (visibly) pushdown systems.

Finite State Systems. The following table summarises the complexities of
model checking CTL[2(,B] in finite transition systems. Surprisingly, despite its
greatly increased expressive power compared to CTL, CTL[PDA,DPDA] remains
in P. In general, it is the class B which determines the complexity. The table
therefore only contains one row () and several columns (8). Note that PDA
covers everything down to DFA while DPDA covers DVPA and DFA.

’ H DPDA ‘ NFA ‘ VPA ‘ PDA ‘
[PDA[[P-complete| PSPACE-complete| EXP-complete[undecidable]

Theorem 6.1. Model checking finite state systems against CTL[PDA,DPDA]
is in P, CTL[PDA,VPA] is in EXPTIME, and CTL[PDA,NFA] is in PSPACE.

Proof (Sketch). To obtain a PTIME algorithm for CTL[PDA,DPDA] we observe
that — as for plain CTL — we can model check a CTL[2(,%B] formula bottom-
up for any 2 and B. Starting with the atomic propositions one computes for
all subformulas the set of satisfying states, then regards the subformula as a
proposition. Hence, it suffices to give algorithms for E(zU4y) and E(xRBy) for
propositions x and y.

We prove the case for E(zU”y) by reduction to non-emptiness of PDA which
is well-known to be solvable in PTIME. Let 7 = (S,—,¢) be an LTS and
A= (Q,X,T,5,q,F). We construct for every s € S a PDA Ay = (Q x
S, X, 1,0, (qo,8), F'), where F' = {(q,s) | ¢ € F and y € £(s)} and ¢'((¢,), a,)
{(¢,s) | ¢ €6(q,a,v) and s " and z € £(s)}.

Clearly, if L(A7) # 0 then there exist simultaneously a word w € £(A) and
a path 7 in 7 starting at s and labeled with w, s.t. z holds everywhere along 7
except for the last state in which y holds. Note that this takes time O(|S||A[|T]).

The same upper bound can be achieved for ER-formulas. However, they re-
quire the automaton to be deterministic. This is due to the quantifier alternation
in the release operator, as discussed in Sect. 2.

10

We show containment in P by a reduction to the problem of model checking
a fixed LTL formula on a PDS. Let 7 and A be defined as above except that A is
deterministic. We construct a PDS T4 = (QxSU{g, b}, I, A, ¢'), where ¢ extends
£ by ¢'(b) = dead for a fresh proposition dead. Intuitively, g represents “good”
and b “bad” states, i.e. dead-end states, in which E(zR“y) has been fulfilled or
violated, respectively. Furthermore, A contains the following transition rules:

(g,€) if x € ¢(s) and (¢ € F implies y € £'(s))

(b€ ifge Fandy ¢ l'(s)

((¢', '), w) if none of the above match and there ex. a € X, s.t.
s s and (¢,w) € 6(q,a,~) for some v € I''w € I'*

Note that |74] = O(|7| - |A|). Now consider the LTL formula Fdead. It is not
hard to show that s &7 E(xRAy) iff ((qo,), €) =7, Fdead. The fact that model
checking a fixed LTL formula over a PDS is in PTIME [6] completes the proof.

To show that CTL[PDA,NFA] is in PSPACE we reduce E(zRPy) to the prob-
lem of checking a fixed LTL formula against a determinisation of the NFA B.
This is a repeated reachability problem over the product of a Biichi automaton
and a determinisation of the NFA. Since we can determinise by a subset con-
struction, we can use Savitch’s algorithm [28] and an on-the-fly computation of
the edge relation. Because Savitch’s algorithm requires logarithmic space over
an exponential graph, the complete algorithm runs in PSPACE.

Using the fact that every VPA can be determinised at a possibly exponentially
cost [2], we obtain an algorithm for CTL[PDA,VPA]. O

We now consider the lower bounds.

Theorem 6.2. For fized finite state transition systems of size 1, model checking
for EF[VPA] is PTIME-hard, EG[NFA] is PSPACE-hard, EG[VPA] is EXPTIME-
hard, and EG[PDA] is undecidable.

Proof (Sketch). It is known that model checking CTL is PTIME-complete. Thus,
the model checking problems for all logics between CTL and CTL[CFL] are
PTIME-hard. However, for EF[VPL)] it is already possible to strengthen the re-
sult and prove PTIME-hardness of the expression complexity, i.e. the complexity
of model checking on a fixed transition system. The key ingredient is the fact
that the emptiness problem for VPA is PTIME-hard.!

Model checking the fragment EG[2] is harder, namely PSPACE-hard for the
class REG already. The proof is by a reduction from the n-tiling problem [31]
resembling the halting problem of a nondeterministic linear-space bounded Tur-
ing Machine. Two aspects are worth noting. First, this result — as opposed
to the one for the fragment EF[l] — heavily depends on the fact that 2 is a
class of nondeterministic automata. For 2l = DFA for instance, there is no such
lower bound unless PSPACE = PTIME. The other aspect is that the formulas

! This can be proved in just the same way as PTIME-hardness of the emptiness
problem for PDA.

11

constructed in this reduction are of the form EG“£f, no boolean operators, no
multiple temporal operators, and no atomic propositions are needed.

The principle is that tilings can be represented by infinite words over the
alphabet of all tiles. Unsuccessful tilings must have a finite prefix that cannot be
extended to become successful. We construct an automaton A which recognises
unsuccessful prefixes. Every possible tiling is represented by a path in a one-
state transition system with universal transition relation. This state satisfies the
formula EGA£f iff a successful tiling is possible.

However, if we increase the language class to CFL we are able to encode an
undecidable tiling problem. The octant tiling problem asks for a successful tiling
of the plane which has successively longer rows [31]. Since the length of the rows
is unbounded, we need non-determinism and the unbounded memory of a PDA
to recognise unsuccessful prefixes.

The situation is better for VPA. When used in EF-operators, visibly push-
down languages are not worse than regular languages, even for nondeterministic
automata. This even extends to the whole of all context-free languages.

In EG-operators VPA increase the complexity of the model checking problem
even further in comparison to NFA to EXPTIME. We reduce from the halting
problem for alternating linear-space bounded Turing machines. An accepting
computation of the machine can be considered a finite tree. We encode a depth-
first search of the tree as a word and construct a VPA A accepting all the words
that do not represent an accepting computation. As in previous proofs, one then
takes a one-state transition system with universal transition relation and formula
EGA£E. O

Visibly Pushdown Automata We consider model checking over an infinite
transition system represented by a visibly pushdown automaton. We have the
following with undecidability for EF[DPDA].

] H DFA/ DVPA \ NFA/ VPA \ DPDA ‘
’DFA e VPA\\EXPTIME—complete\2EXPTIME—complete\undecidable‘

Theorem 6.3. Model checking VPA against CTL[VPA,DVPA] is in EXPTIME,
and CTL[VPA,VPA] is in 2EXPTIME.

Proof (sketch). To obtain the first result, we follow the game approach hinted
at in Section 2 (hence the restriction to DVPA). We reduce the model checking
problem to a Biichi game played over a PDS, which is essentially the product
of the formula (including its automata) and the model. That is, for example,
from a state (s,¢1 A ¢2) the opponent can move to (s,p1) or (s,p2) — the
strategy is to pick the subformula that is not satisfied. The stack alphabet is
also a product of the model stack and the formula VPA stack. For a temporal
operator augmented with a VPA, the formula VPA component is set to L to
mark its bottom of stack. Then the automaton is simulated step-wise with the
model. At each step the appropriate player can decide whether to attempt to
satisfy a subformula, or continue simulating a path and run. Since deciding these

12

games is EXPTIME [35], we get the required result. The second result follows
by determinisation of the VPA. a

Theorem 6.4. Model checking VPA against CTL[DFA] is EXPTIME-hard, EGNFA]
is hard for 2EXPTIME, and EF[DPDA] and EG[DPDA] are undecidable.

Proof (sketch). EXPTIME-hardness follows from the EXPTIME-hardness of
CTL over PDA [19], and that CTL is insensitive to the transition labels.

2EXPTIME-hardness is similar to Bozzelli’s 2EXPTIME-hardness for CTL* [23].
This is an intricate encoding of the runs of an alternating EXPSPACE Turing
machine. The difficulty lies in checking the consistency of an exponential length
guessed work tape. We are able to replace the required CTL* subformula with
a formula of the form EG#, giving us the result.

The undecidability results are via encodings of a two counter machine. In-
tuitively, the VPA simulates the machine, keeping one counter in its stack. It
outputs the operations on the second counter (appropriately marked to meet
the visibly condition) and the DPDA checks for consistency. In this way we can
simulate two counters. ad

Pushdown Automata For PDA we have the following, with undecidability
for EF[DVPA].

] H DFA \ NFA \ DVPA ‘
’DFA/ NFA\\EXPTIME—complete\2EXPTIME—c0mplete\undecidable‘

Theorem 6.5. Model checking PDA against CTLINFA,DFA] is in EXPTIME,
and for CTLINFA NFA] it is in 2EXPTIME.

Proof (sketch). These results are similar to the VPA case, except, since the
formula automata do not have a stack, we drop the visibly restriction. a

Theorem 6.6. Model checking PDA against EF[DVPA] and EG[DVPA] are
undecidable.

Proof (sketch). The lower bounds which do not follow from the results on VPA
can be obtained by a reduction from two counter machines. a

7 Conclusion and Further Work

To the best of our knowledge, this is the first work considering a parametric
extension of CTL by arbitrary classes of formal languages characterising the
complexities of satisfiability and model checking as well as the expressive power
and model-theoretic properties of the resulting logics in accordance to the classes
of languages. The results show that some of the logics, in particular CTL[VPL)
may be useful in program verification because of the combination of an intuitive
syntax with reasonably low complexities of the corresponding decision problems.

13

Some questions still remain to be answered, in particular the relationship be-
tween CTL[CFL] and APDL’[CFL] and whether or not CTL[DCFL] < CTL[CFL]
holds.

Furthermore, there are obvious directions for further work. It is possible to
consider CTL* or CTL™T as the base for similar extensions. It is also possible to
extend such logics with automata on infinite words, for instance in the form of
path quantifier relativization. This may be even more suitable in the framework
of abstraction and refinement as mentioned in the introduction.

References

1. Inc. Accellera Organization. Formal semantics of Accellera property specification
language, 2004. In Appendix B of http://www.eda.org/vfv/docs/PSL-v1.1.pdf.

2. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. 36th Ann.
ACM Symp. on Theory of Computing, STOC’04, pages 202-211, 2004.

3. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The For-
Spec temporal logic: A new temporal property specification language. In Proc.
8th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’02, volume 2280 of LNCS, pages 296-311, Grenoble, France, 2002.
Springer.

4. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. Theor. Comput. Sci., 303(1):7-34, 2003.

5. 1. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL for-
mulas. In Proc. 10th Int. Conf. on Computer Aided Verification, CAV’98, volume
1427 of LNCS, pages 184—194. Springer, 1998.

6. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proc. 8th Int. Conf. on Concurrency
Theory, CONCUR’97, volume 1243 of LNCS, pages 135-150. Springer, 1997.

7. T. Bréazdil and I. Cernd. Model checking of regCTL. Computers and Artificial
Intelligence, 25(1), 2006.

8. Ashok K. Chandra, Dexter C. Kozen, and Larry J.Stockmeyer. Alternation. Jour-
nal of the ACM, 28(1):114-133, 1981.

9. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Logics of Programs: Workshop, volume 131 of LNCS,
pages 52-71, Yorktown Heights, New York, 1981. Springer.

10. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the ACM,
50(5):752-794, 2003.

11. A. Dawar, E. Gradel, and S. Kreutzer. Inflationary fixed points in modal logics.
ACM Transactions on Computational Logic, 5(2):282-315, 2004.

12. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in
the temporal logic of branching time. Journal of Computer and System Sciences,
30:1-24, 1985.

13. E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic. Journal of the ACM, 33(1):151-178,
1986.

14. E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of
programs. SIAM Journal on Computing, 29(1):132-158, 2000.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of
programs. In Foundations of Computer Science, Annual IEEE Symposium on,
pages 328-337, 1988.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194-211, 1979.

D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular pro-
grams. Journal of Computer and System Sciences, 26(2):222-243, 1983.

J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic. Annals
of Pure and Applied Logic, 96(1-3):187-207, 1999.

I. Walukiewicz. Model checking ctl properties of pushdown systems. In FSTTCS,
pages 127-138, 2000.

D. Kirsten. Automata Logics, and Infinite Games — A Guide to Current Research,
chapter 9 — Alternating Tree Automata and Parity Games, pages 405-411. Number
2500 in LNCS. Springer, 2002.

D. Kozen. Results on the propositional p-calculus. T'CS, 27:333-354, 1983.

O. Kupferman, N. Piterman, and M. Y. Vardi. Extended temporal logic revisited.
In Proc. 12th Int. Conf. on Concurrency Theory, CONCUR’01, volume 2154 of
LNCS, pages 519-535. Springer, 2001.

L. Bozzelli. Complexity results on branching-time pushdown model checking.
Theor. Comput. Sci., 379(1-2):286-297, 2007.

C. Léding, C. Lutz, and O. Serre. Propositional dynamic logic with recursive
programs. J. Log. Algebr. Program., 73(1-2):51-69, 2007.

Ch. Loding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proc.
24th Int. Conf. on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS’04, volume 3328 of LNCS, pages 408-420. Springer, 2004.

R. Mateescu, P. T. Monteiro, E. Dumas, and H. de Jong. Computation tree reg-
ular logic for genetic regulatory networks. In Proc. 6th Int. Conf. on Automated
Technology for Verification and Analysis, ATVA’08, volume 5311 of LNCS, pages
48-63. Springer, 2008.

Michael O. Rabin and Dana Scott. Finite automata and their decision problems.
IBM Journal, 2(3):115-125, 1959.

W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4:177-192, 1970.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the Association for Computing Machinery, 32(3):733-749, 1985.
R. S. Streett. Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control, 54(1/2):121-141, 1982.

P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity,
Logic, and Recursion Theory, volume 187 of Lecture notes in pure and applied
mathematics, pages 331-363. Marcel Dekker, Inc., 1997.

M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal
logics of programs. In Proc. 17th Symp. on Theory of Computing, STOC’85, pages
240-251, Baltimore, USA, 1985. ACM.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1-37, 1994.

M. Viswanathan and R. Viswanathan. A higher order modal fixed point logic.
In Proc. 15th Int. Conf. on Concurrency Theory, CONCUR’04, volume 3170 of
LNCS, pages 512-528. Springer, 2004.

I. Walukiewicz. Pushdown processes: Games and model-checking. Information and
Computation, 164(2):234-263, 2001.

15

A Proof Details

We provide the details for a number of the proofs omitted from the main paper.
However, due to the length of the combined proofs, we only present the most in-
teresting results here. For a complete set of results, please refer to the full version
available from http://web.comlab.ox.ac.uk/people/Stephan.Kreutzer/csl10.pdf.
Semantics of PDL with the A-operator and tests. Formulas Form and
programs Prog of APDL’[R] for some 2 over an alphabet X are the least sets
satisfying the following.

P C Form.

If v,1 € Form then ¢ V¢ € Form, —¢ € Form.

If ¢ € Form, A € Prog then {A)p € Form.

2A C Prog.

For every 2-automaton A over X' U {¢? | ¢ € Form} we have A € Prog.

If A € Prog and A’ results from A by equipping it with a Biichi condition
on states, then AA’ € Form.

SR

APDL’[2] consists of all elements of Form which are constructed in this way. The
fragment PDL[] is obtained by removing clauses (5) and (6). The semantics is
again defined over states of transition systems. The clauses for atomic proposi-
tions and the boolean operators are as usual. For the other constructs, we use
the fact that programs and formulas are defined inductively. For a 7 = (S, —, ¢)

with edge labels in X’ and a finite subset & C Form of formulas let 7% result

from 7 by adding, for every s € S and every ¢ € &, a transition s s if

T,s E ¢. For a formula ¢ let ?(¢) be the set of all tests ¥? occurring in ¢
syntactically.

T,s = (A)p iff Im =359 551 2 ... 55, in
T UA) with sq = s s.t.
(i) a1...a, € L(A), and
(il) T,sn E .
T,sl= AA ff Ir = 59 25y 225 . in 77 (A
with s9 = s and ajas ... € L(A).

A.1 Proof of Thm. 4.2

Theorem

1. For all 2: PDL[] =, EF[2].

2. For all 2, B: EF[2] <y, CTL[2,B)].

3. For all A, B: if B is a class of deterministic automata then CTL[,2B] <j,
APDL’[A U B].

16

Proof. The first two cases are left to the full version. Here we concentrate on
the third case. We focus on finite state automaton only. However, the proof
can be extended to the two kinds of pushdown automata considered in the
report—every subsequent replacement can be extended to push, pop and in-
ternal operations. Tests are internal operations, anyway. The proposed transla-
tion of the ER-formulas relies on an translation of the possibly larger formula
AXff = —E(ttU¥tt). As latter does not involve any ER-formula we may assume
an appropriate induction principle. The translations of proposition and boolean
operation are straight forward. Given a CTL-formula E(¢);U%4)5), we construct
an automaton A’ by modifying A as follows.

objective in A|replacement to get A’

p—2sq | p %4@> q
@T(wz)?c

Each dotted circle matches either a final or non-final state. The function 7 refers
to the translation for those formulas for which the induction hypothesis is appli-
cable. Obviously 7, s = E(¢1UA,) iff T, s = (A)tt.

And as for a formula o:=E(1/;R*¢)5), the automaton A is assumed to be
complete, and is turned into a safety w-automaton A’ as follows. The translation
of pis AA’.

objective in A replacement to get A’

®

T (AX£E)?
J{T(wl)?
<O
@ @r(¢2)?©:>

7

The double arrows indicate either in- or outgoing edges. For the later discus-
sions we wish A" to be deterministic. Therefore, the edge 7(¢1)? is omitted iff
T(AX£f) = 7(¢/1). Note that in this case, the X-transition is not eligible anyway
as 7(¢1)? reports a dead-end state in the LTS.

Let m = sg,a1,51,... be a path witnessing 7,59 = E(1R). As A is
deterministic, the run of A on a prefix 7’ of 7 is a prefix of the run on 7. Thus
the witnessing path can be turned into a run in A’: As long as 11 does not hold
we follow the trace of A. In particular, if a final state in A is reached then the
respective edge 7(12)? can be passed. Now, if the current state has no children
then A’ can follow the edges 7(AX£f)?, and for ever tt? . And if 1); holds in the

17

current state of the LTS the proof obligation vanishes for the next state onwards.
Hence A’ can take the way 7(11)?.

Conversely, let m = sg,a1,51,... be a path witnessing 7,59 | AA’. The
run on this path has a prefix—maybe the whole run—which corresponds to a
run of A on 7 where 15 is ensured every time A recognizing the present word,
that is, the states in the lower line of replacement are not taken. If the prefix
is infinite the run is an infinite witness for . Otherwise, the suffix has the
shape (7(AXtt)?) (tt?7)* or (7(¢1)?) X (tt?)*. Both alternatives presents a finite
witness of ¢. In particular, the last state of the first witness has no successors.

Finally, the transition is only linearly increasing.

O

A.2 Proof of Thm. 4.6

Theorem. There is a sequence of satisfiable CTL[NFA]-formulas (¢,)nen such
that the size of any model of v, is at least doubly exponential in [i),].

Proof. Fix an even number n > 0. Let [n]:={1,...,n}. Let A be the following
NFA over the alphabet X:={—n,...,—1,#,1,...,n}.

=(

Let @ D [n] be set of its states. The e-transition can be eliminated with a lin-
ear overhead. However, the e-transitions are more convenient for presentation
purposes. In any case, the size of A is linear in n. Let D be a deterministic au-
tomaton for A4 obtained from the standard powerset construction [27]. Although
we do not use D explicitly, it allows us to say that at a node of a model there is
a proof obligation for AFA_in a state S C Q, for instance.

Let S C [n]. Consider a Hintikka model of some formula ¢ and let AF*p occur
in some node. Suppose that we have the control over the formulas ¢, or over the
Hintikka model, respectively. Now, we can set up A with the set S as follows.
Let [n]\ S = {s1,...,s¢}. Consider a path 7 passing the labels s1, ..., s;, # such
that along the path p does not hold. At the end of this path, there is a proof
obligation for AF“p in the state S (w.r.t to D). Iterating this construction with
different sets S yields to many proof obligations for the AF4 along the iteration.

18

As for the lower bound, we construct a formula ¢ polynomially sized in n
such that any of its tree model consists of two phases. The first one creates
exponential many proof obligations for some instances AFAp along the path.
There are doubly exponential many such paths. In the second phase the model
satisfies these obligations but it also materializes all the obligations. The set of
proof obligations will be so that the materialization is characteristic for this set.
This property prevents any model from sharing the different materializations.
To be more precise, the first phase is built from smaller blocks, called S-blocks.
For each set S C [n] of size n/2 there is a leaf such that the block imposes
an additional proof obligation for AF4p in the state S. The first phase consists
of b := (7;2)/2 many? layers of S-blocks. For each list § := Si,...,S,/2 with

each element in (757]2), there is a path (starting from the root) which reaches the
second phase and which has collected proof obligations for AF“p in the state S;

for any 7 € [n/2]. In the last phase, the model can pick out b = (n%) — b sets in

(7[3]2) Only for these sets the model has a path. For a set {aq,..., an/g} € (7[3]2),
the path touches the labels —ay, ..., —a, /2 in some order. The node after the
last label has no successor, and it is the only state on the path at which p holds.
The passed labels transform the proof obligations. The only node which can
fulfill the the proof obligations is a dead-end node. The combination of both
properties implement the said materialization. This final phase is implemented

by a so-called T-block.

The encoding of this paradigm uses two kinds of counters: one to iterate the
S-blocks, and the others to control the branching in any T-block. We write C for
a list of n (distinct) propositions which are intended to be used as n-bit counter.

Let A, B, C—possibly indexed—be counters, £ € N, v € {0,...,2" — 1},
and A C ¥. There are CTL-formulas of polynomial size (in n) which encode the
following properties.

Formula Property
FC =v7,"C # v The counter C has (not) the value v.
"AX4A =B The value of A in any A-successor is the value of B of the

current state.

"AX*A =B+ 1" The value of A in any A-successor is the successor value of
B of the current state. If B represents 2" the behavior is
undefined.

A= Ef:o B; The value of A is the sum of the values of B; for all
i = 0...¢. Here, we allow (polynomial many) additional
counters, respectively variables, to compute the sum suc-
cessively.

The final formula ¢ uses the propositions p, and the counters C and C; for
1=0,...,n.

2 Indeed, (,ny) = % = 2(2721) is even.

19

Encoding of S-blocks. For A C X and 1 a CTL-formula, the formula
X2 =AX"\Aff A EXPtt A AXDY

forces that for any of its models there are only A-successors and at each of them
1 holds. Note that for an a € A there might be more than one a-successors.

The enumeration of all S € (7:;2) is constructed level by level. An element S
is enumerated increasingly. Thereto, the auxiliary formulas ¢,, ¢ are introduced
for £ the number of levels remaining and m the maximal number seen along an
enumeration so far.

Pm,0 :'X{#}tt
Om,e =Ixlmdt 1=, if0>0

Finally, an S-block is forced by

k—1
o=AFDp A p A ponp AN\ AKX Mg s g
me[n]
ke[n/2]

Any (tree) model of o enumerates all subsets of [n] of size n/2, and ensures
that along the enumeration p does not hold while the proof obligation AFAp is
imposed on the root. That is, for any sequence ay, ..., a, /241 in X' the following
properties are equivalent.

— ai,...,0y 7 is a strictly increasing sequence in [n], and Up /241 = #-
— there exists a path sg, a1, 1, az, so, .. . starting at s such that s; = —p for all
i€{0,...,n/2}, and sy = AF4p.

Encoding of T-blocks. An T-block is a tree with b leaves. The encoding is similar
to that of an S-block. Additionally, at each node v we use a counter Cy and
counters C; for each outgoing label —i. The counter C contains the number
of leaves of the tree? at v. Similarly, C; stands for the number of leaves at the
respective subtree. The counters C; must sum up to Cy. In analogy to ¢y, ¢, each
formula ., ¢ is responsible for a certain level. However, the expression X4 is
replaced by a variation additionally depending on the counter C;.

Ymo:="Co=17 A p A AXEf

Ym0 i=7p A /\ ax{ed e
aceX\{—n,...,—1}
n+1—¢
A { (FCi #07 Ex{*i}tt>
i=m-+1

3 Because CTL is bisimilar, there might be more than one out-going edge with a given
label a € Y. In this case, we pick out one such edge. So, the term “tree” refers to
the tree thinned out.

20

A ’_AX{_i}CQ = Cij}
A T-block is represented by the formula 7 defined as

P
Co=b" A dos AN AT
me[n]
ken/2]

Encoding. Now, the S-blocks can be iterated b-times.
©:="C=0"A AGY ('_AXE\{#}C =C'A
"axt#le =+ 17)

A AGETH#N (TC £ 07— o)
A AT HFH(TC =b1 1)

@ is satisfiable. We construct a tree model of ¢. Obviously, the existence of the
first phase—as mentioned in the introductive text—is guaranteed because T and
o without its last conjunct have bisimilar models only. Given a path 7 from the
root to the last element of the first phase, it remains to show how to continue
with a T-blocks. By the construction of ¢ and ¢, there are sets Sy,...,Sp € (1[3]2)
such that the path has collected only proof obligation of AF“p for the states S;
to Sp. Let S := {S; | ¢ € [b]}. Now, set

T .= {Te(gg)un]\ms}.

Note that |T| = (7:}2) -S| > (n7/’2) — b = b. Choose a subset 7/ C 7T of
size (7;;2) — b. The formula 7 forces b branches. Therefore, for each T € T’ we
construct a branch which passes the labels —tq,..., —t;, where t1,...,t; is an
increasing enumeration of 7. For any S € S, the sets S and T are not disjoint.
Indeed, if they are disjoint then [n] \ 7" = S as both have the same size n/2.
But this is contradiction to T' € 7. The non-disjointness ensures that any proof
obligation in S is turned into an obligation for a set of states containing a final
state, after passing the labels —tq,..., —t;. However, this state models p, and
hence all proof obligations disappear.

Lower bound. Consider a model 7 of ¢. Because (zkk) > 2% for any k € N, the

set ((75212)) has at least doubly exponential size in n. For any set S € ((75212)) there
is a rooted path ms through the S-blocks of 7 which got proof obligations for
AFAp for every S € S and ends at the first node of a T-block. Let S and S’ two
different sets in (([52)) As for the lower bound, it suffices to show that the last
nodes of mg and 7g: are different. Assume that they are identical. The T-block
starting at the last node shows b branches, each naming (the negative of each
element of) a set T C [n] of size n/2. As in the case of satisfiability, the proof
obligations got transformed by each branch. Since a T-block is a dead end, a

21

transformed proof obligation must refer to a set which contains a final state of A.
Therefore, T must intersect with any element of SUS’. That is, ([n]\T) ¢ SUS’.
In total, each of the b = (HT/LZ) — b branches names a different set which is not in
SUS’. So, |SUS’| = b. Being of size b, both § and S’ are identical. Contradiction.

O

A.3 Proof of Thm. 4.7
Theorem.

1. There is a satisfiable CTL[VPL] formula which does not have a finite model.

2. There is a satisfiable ¢ € CTL[DCFL] s.t. no pushdown system is a model
of .

3. Every satisfiable CTL[VPL] formula has a model which is a visibly pushdown
system.

We commit the first two cases to the full version. Here we prove part three,
beginning with the following lemma.

Lemma A.1l. Every satisfiable CTL[VPL] formula has a model which is a vis-
ibly pushdown system.

Proof. Beforehand, we harmonize the definitions of two kinds of automata, and
of a push down system.

Let X = (X, X;,X;) be a pushdown alphabet [2]. For the following three
definitions, @ refers to a set of states, gy € @ to an initial state, I" to a stack
alphabet containing the bottom-of-stack symbol L, and col : Q — N to a function
coloring the states Q. Moreover, we implicitly use the standard [2, 20] notations
of a configuration, and of a run on w-words over X' and on infinite trees over X,
respectively. For simplicity, let T be the set (Q x X x (I'\ {1} x @)*) U (Q x
Yix Q) U (Qx Xy xI'x Q). We write ((¢1,B1), ... (gn, Bn)) for an element
in (I'\{L} x Q)*. A ordered visibly pushdown system (oVPS) over X' is a tuple
P = (Q,I6,q) such that 6 C T and ¢ is deterministic. An oVPS P induces
an Y-labeled and ordered tree by unrolling 6. A parity tree automaton over X
is a tuple A = (Q, 0, qo, col) such that § C Q x X x Q*. A stair parity visibly
pushdown tree automaton [25] over X is a tuple A = (Q, I, 9, qo, col) such that
6 C T. Any such automaton is said to be satisfiable if there exists a tree which
it accepts.

Given a stair parity VPTA A, we construct an oVPS such that its induced
tree is accepted by A. As for the claim of Thm. 3, for any APDL’[VPAJ- and
any CTL[VPA]-formula ¢ there is a stair parity VPTA which accepts exactly the
unique diamond path and unique A-path Hintikka tree models of ¢ [24, Lem. 24].
By the announced implication there exists a oVPS which admits such a Hintikka
model for ¢. From this, one obtains a VPS [25] satisfying ¢, as just as one gets
a tree model from a Hintikka model [24, Prop. 23].

Let A = (QA, T,64, ¢3!, col™) be a stair parity visibly pushdown tree au-
tomaton over a a pushdown alphabet X = (X, X}, X;).

22

Definition A.2. Wiog.col*: Q* — N\ {0}, and Q* = {1,...,|Q*|}. The
parity tree automaton B := (QB,65,¢¥, col®) is defined as follows.

— QB = (QAX T x29") U{v}.
- qég = (Q647J-7®)
— colB((g,_,_)) := col™(q) for all g € Q*, and col®(v) := 0.

The relation 68 is given by case distinction on X.

Always: (v,a,(v)) € 68 for alla € X.
For all a € X; and (q,a,(q1,...,q)) € 6*: Then ((¢,v, R),a, {(q1,7, R),- .., (qr,7, R))) €
68 for ally € I.
For all a € X, and (q,7,a, {q1,...,q)) € 6*: Then ((¢, L, R),a,{(q1, L, R),...,(qr, L, R))) €
§8. And ((q,v, R),a,(v)) €% if ¢; € R for alli=1,... k.
For all a € X and (q,a, (71, q1),---, (Y, qr))) € 0 Let Ry,..., Ry C QA be
arbitrary. Then ((q,7', R'),a, (w; ... w)) € 68 where w; fori=1,...,k is
a vector over QF of length 1+|Q*|. Its first component is (g;, Vi, Ri), followed
by (r,7',R") if r € Ry, or by v otherwise, for all r € Q™ increasingly.

Note that from any transition in B its generating transition in A can be recon-
structed.

Lemma A.3. If A is satisfiable then so B is.

Proof. Suppose that A accepts a tree t 4. Let ¢/, be the tree t 4 but additionally
annotated with configurations of A witnessing that t 4 is accepted by A. Starting
from the root, the tree ¢/, is successively rearranged to a tree tz accepted by
B. Let a node v be given. If at v the automaton A does an internal operation
or a pop operation then this nodes remains. Now, assume that A does a push
operation along v to a child w. Consider the occurrences of all pop operations
corresponding to the push operation from v to w on all branches arising from
w. Let R be the states reached by A as a result of the exhibited pop operation.
Hence, for any r € R there is a subtree ¢, below w annotated with the state 7.
For all r € Q“, increasingly, the node v got the following subtree as a sibling. If
r € R then we take ¢, and otherwise some (infinite) tree. The new sibling are
inserted right after v and a head of its siblings in the first place.

The construction ensures that the resulting tree is accepted by B. Indeed,
let 7 be a path starting in ¢¥. If 7 touches v, it keeps doing so. Hence, the
path is accepted. Otherwise, the path corresponds to a branch in A where the
immediate run corresponding to a maximally matching word [2] are omitted. For
each such word, a branch is forked, cf. the first component of the w;s in Def. A.2.
Hence, 7 corresponds to a branch in A. However, the positions of the maximally
matching words are not taken into account for the acceptance condition. But,
this restriction is just the stair parity condition. Hence, 7 is accepted.

Definition A.4. Let C be a parity tree automaton over X with states Q and
transitions §. A triple (V, E,r,f) is a finite interpretation for C iff V is a finite
set of nodes, £ : V — V7T is a successor function with ordered children, r € V

23

is its root, and £:'V — (Q x X)) is a labeling function which in conform with
C. That is, E(vo) = (v1,...,vpn) and £(v;) = (¢, ;) for all i € {0,...,n} imply
(o, a0, (a1,...,qn)) €90, for any vo,...,vn €V, qo,...,qn € Q, and ag, ... ,a, €
Y. Such a finite interpretation is a finite model of C iff C accepts the tree resulting
from unrolling (V, E,r,£) at its root. The labels of this tree follow the X-part of
L.

Theorem A.5. Any satisfiable parity tree automaton has a finite model.

Proof. The emptiness problem can be reduced to the question whether or not
the automaton player has a winning strategy for a finite parity game [20]. The set
of winning position is computable. Hence, fixing one outgoing edge of a position
of the automaton player leads directly to the claimed graph.

Finally, the translation in Def. A.2 and the reduction in Lem. A.3 can be
reversed.

Definition A.6. Let G = (V,E,r,{) a finite model of B. Then G induces an
oVPS P := (V,I'P 6T r), where the stack alphabet 'Y is (Q — V) U {L}. The
transition relation 6° is given as follows. Letv € V be labeled with (_,a) € Qx X.
For any a € X, 6¥ contains (v,a, E(v)). And for any a € Y., 6 contains
(v,a, L, E(v)) and (v,a,p, p(v)) for any function p : Q — V. As for the push
operations, let E(v) = vy ...vg and let v; = v;,...,v;q| for each i, due to the
conformity of G with B. Then 67 contains (v,a, ((p1,v1,0),- -, (Pk,Vk0))) where
pi 1 Q@ — V is some (fized) function such that p;(q) = v;,q if the X-part of £(v; 4)
is not v'.

Because, in the tree resulting from unrolling G, no rooted branch reaches the
state v/, transitions leaving this state need not be translated.

Theorem A.7. Let G be a finite model of B. Then the oVPS P is a model of
A.

Proof. In the unrolled tree of P, any maximal path 7 which starts at the root
is infinite, following the labeling function. Analogously to the proof of Lem. A.3,
such a path meets the stair parity condition. Indeed, it suffices to consider the
interrupted path which skips the minimally matching words in the factorization
of (the word labeling) 7. Such an interrupted path corresponds to a path in G
meeting the parity condition of B. Hence, 7 fulfills the stair parity condition
for A.

As for the underdetermination of the functions p; in the case X: if the X-
part of £(v; 4) is v/, the value of p;(g) is irrelevant as the function will be never
evaluated at ¢—as long as only rooted paths are considered. This is ensured by
the condition “g; € R” in the case X, of Def. A.2 and by the conformity of G
with B.

This completes the proof of Lemma A.1 and therefore Thm. 4.7 Part 3. a

24

B Proofs omitted in Section 5

B.1 Proof of Thm. 5.3
Theorem. The following items hold.

1. CTL[DFA, NFA] satisfiability is hard for 2EXPTIME.
2. CTL[DVPA, NFA] satisfiability is hard for SEXPTIME.

The reduction uses the alternating tiling problem.

Definition B.1. The alternating tiling problem is the following. Given a set
T of tiles, HV C T?, s € T, f: N — N, and a: T — {0,1,2} such that
H CH{(t,t') | a(t) = a(t’)} decide whether there is a tiling tree. That is, a finite
tree such that

— any node is labeled with ty, ..., t,, for m=f(|T)),

— t1 = s for the root,

— t;Htipq for all 1 <i < m,

— the node has a(t,,) successors, and

— for each successor labeled with ty,...,t. holds t;Vt, for all1 <i<m.

The function « realizes alternation. Note that, if the range of « is {0, 1} the
definition corresponds the usual one version for one player [31]. Therefore, we
refer to a node in a tiling tree as a row and to its components as columns. So,
H represent the horizontal and V the vertical matching relation.

To describe the complexity of alternating tiling we assume a reasonable en-
coding of T, H et cetera. In particular, the function f is given as a term. As we
want to characterize complexity classes far beyond EXPTIME the usual corridor
tiling [31] does not suffice because an explicit naming of the width would require
to much space.

Combining the technique of tiling and alternation [8], we obtain the following
characterization.

Lemma B.2. The class of alternating tiling problems where their functions f
is exponential is 2EXPTIME-complete. Similar, the restriction to doubly expo-
nential functions is complete for SEXPTIME.

In Def. B.1, the restriction on H with respect to « is not necessary for
the completeness for the respective completity class. However, it simplifies that
subsequent hardness proof for CTL[DFA,NFA].

Proof (of Thm. 5.3(1)). Given an alternating tiling problem consisting of T', H,
V, s, f and « as in Def. B.1 such that f is exponential. Set n:=|T'|, m:=f(n) and
let m’ be the number of bits to count from 0 to m—1, that is n’:=[log,(m—1)]+1.
Note that n’ is polynomially bounded in n. W.lo.g. T ={1,...,n}.

It is pretty easy to find a CTL-formula ¢ such that any of its models looks like
an tiling tree (up to bisimulation). Thereto, the tiles are encoded by propositions,
say t1,...,t,. Any sequent of tiles in a node of the tree is represented by a chain

25

of nodes in the model of the respective length. The length is ensured by a binary
counter with n’ bits. In (pure) CTL all properties can specified except for the
constraint on V. Therefore, the formula would need to look about m steps into
the future while have a size polynomial in n.

The V-constraint refers only to any those two immediately consecutive posi-
tions on which the counter has the same value. To bridge between those two po-
sitions, a proof obligation is created by an AUA-subformula. The key idea is that
for the correctness we can replace A by the deterministic automaton obtained
from the standard powerset-construction [27]. In other words, we are allowed to
construct an exponentially sized automaton but which has a small description.
The mentioned obligation reflects the value of the counter and the expected tile
at the second position. However, its creating requires that the outgoing edge is
replaced by a chain of edges. Fach edge copies another bit from the counter to
the proof obligation. As long as the nodes of the model represent the same row,
the programmed proof obligation are not armed, that is, they can not reach any
final state. The change to the next row arms the obligations. Along the path
to the second position, at every tile position an appendix in the model checks
every proof obligation. If the current value of the counter does not match the
stored value in the obligation the model ensures that the obligation is satisfied
trivially. Otherwise, the (only remaining) obligation matches the chosen tile with
the expected tile. Finally at every second change of the row, the model disposes
of the proof obligations.

Formally, we will construct a formula ¢ over the alphabet

Y:={nextCol,nextRow, ifNeq, then,else} U I

where I':={bit? | i € [n],b € B}. As boolean values we use 0 and 1. The label
nextCol separates two columns in the same row, and nextRow indicates a new
node in the tiling tree. The set I is used to program the proof obligations, which
are verified with help of ifNeq, then and else. Besides the already mentioned
propositions t1, ..., t, for tiles, we use c1, ..., c,y=:c as an n’ bit counter ranging
from 0 to m — 1. Arithmetical operations involving this counter are described
informally in quotes because these only plays a minor role. However, these oper-
ations have short encodings as CTL-formulas, that is, their size is polynomially
bounded in n/. Additionally, the proposition dir is used to force two sons when-
ever a gets two.

Define p°:=—p and p':=p for any proposition p. For a label a € ¥ and a CTL-
formula 1, 1X%):=EX*tt A AX*t) denotes that there is at least one a-successor and
1 hold at these successors. Moreover, instead of automata we also use regular
expressions as annotations to CTL-formulas.

The tiling problem is translated into the formula

@ = “o =07 A AG{S} ux {nextCol,nextRow}qp

where 1 is the conjunction of the following lines and the automaton A is depicted
in Fig. 3.

26

bit;ib,nextCol,nextRow,ifNeq bit
nextRow

~",then

|
e} ifNeq O
o S
'._.g nextCol nextRow then Q
E R \
nextRow nextRow
ifNeq

e

[

=
,g @ e else @

B)

P else

Fig. 3. Automaton A. Overlined labels mean their complement with respect to . The
individual part is present for any ¢ € [n] and for any b € B. So, it has 10n + 3 states
where 2n are initial ones.

\/ t; \ /\ _|tj (1>

i€[n) JEMN{i}
A N\ — ax (2)
i€[n’] bEB
Exiflea (3)
/\ /\ cé’ _, pxifVeq I~ pybit! o (4)
ie[n’] beB
AXj_fNeq rm !Xthendispose (5)
pxifieq I then!xelse(—\dispose A AXff) (6)
/\ (AxifNeq I'™ then elseti) ot (7)
i€[n]
/\ t; — AFA \/ t; V dispose (8)
i€[n],a(i)#0 JE[n],iVj
“ecm—1" — \/ ti A AXF" !XnextColtj (9)
i,j€[n],iHj
“e<m—17 — “pxlmextColy — o4 17 (10)

“‘e=m—1"A \/ t; | — AXT" 1XPeRROY (qigpose A ‘e =07) (1)
i€[n],a(i)>0

27

‘e=m-1"n \/ t]|— /\ X" EXeRvgirt (12)
i€[n],a(i)=2 beB
“e=m—1"A \/ t; | — Ex*fNeaelsegigspose (13)

i€[n],a(i)=0

The formula ¢ is obviously a CTL[DFA NFA]-formula and its size is polyno-
mially bounded in n.

The formula (1) ensures that exactly one tile is chosen, (2) programs the proof
obligation (for the V-constraint) generated by (8). The verification is performed
by (3)-(7). The formulas (9)—(12) ensure that the columns of a node in the
tiling tree are enumerated, and that the tree is branching with respect to .. The
formula (13) is the counterpart to (9) and just ensures that proof obligation at
the leaves are satisfied. (Alternatively, (2)—(7) could be excluded for the very
last column.)

If we neglect the V-constraint, the reduction is sound and complete. As for
the V-constraint, we describe the life of a proof obligation on a tree model of ¢.
An excerpt is given in Fig. 4.

;40 sl 2.0
£Col bity bity bit3 £Col
nextCo! m @ nextCo @ 77777
U/ \ZJ
lifl\leq
bit(l) bit% bitg m then m else

Fig. 4. Excerpt of a model for ¢. This part depicts a single column which is neither
the first nor the last one of a row. The second line shows the appendix which verifies
the proof obligation for the V-constraint. At the node 1 the formulas t7, -}, c2 and
—c; shall hold, at the node 6 the proposition dispose, and at node 7 the proposition
tr.

Let @ be the set of states of A. If we say that there is a proof obligation in
a certain state Q' C @, we refer to the deterministic substitute of A obtained
from the powerset construction. Beginning at the node 1, the formula (8) admits
a proof obligation for t; V dispose (for some j € [n]) in the state {p? | i €
[n],b € B}. The intended trace is the first line in Fig. 4. After passing the label
nextRow the automaton reaches the state {¢® | i € [n],b € B,1 = ¢!}, that is,
the state reflect the content of the counter at node 1. As for the second line, the
proof obligation vanishes because dispose holds at the node 6. Moreover, the
obligation remains while passing another columns of the same row. Changing
the row for the first time, the obligation changes to {r? | i € [n],b € B,1 = c}}
where the node 1 refers to the node which admits the proof obligation. As long as
we follow the first line, the state remains until we change the row for the second
time. This brings the obligation in the state {{}. The formulas 5 and 13 offers a

28

node with models dispose and ensure that the proof obligation disappears. Note
that after the first change of the row there is also a node modelling dispose.
But the state of the obligation does not contain a final state of A at this time.
Now, we consider a proof obligation in the second line after passing nextCol
for the first time. The label ifNeq switches the state to {§,s | i € [n],b € B,1 |=
c?}. Again the node 1 refers to the node which admits the proof obligation. At
node 5 the obligation either reaches the state {§} or some proper super set. The
second case can only happen if the programmed counter and the counter of
the current column differ. In this case, the formula (5) disposes the obligation.
Otherwise, the state of the obligation does not contain a final state when reaching
the node 6. By (6) and (7), the tile ¢;—as represented by the obligation—must
be the tile of the current column. a

C Proofs omitted in Section 6

C.1 Proof of Thm. 6.3

Theorem. Model checking visibly pushdown automata against CTL[VPA,DVPA]
is in EXPTIME, and CTL[VPA,VPA] is in 2EXPTIME.

We split the proof into separate lemmas. For VPA rules we use the notation
(g,7,a,push(b),q"), (g,7,a,rew(d),q) and (q,7,a,pop,q’), and omit the input
character v for PDS rules.

Lemma C.1. Model checking CTLIVPA ,DVPA] over visibly pushdown automata
is in EXPTIME.

Proof. We reduce the model checking problem for CTL[VPA, DVPA] over VPA
to a Biichi game over a PDS. Since deciding the winner in such a game is EXP-
TIME [35], we obtain an EXPTIME algorithm for the model checking problem.

Without loss of generality, we assume all VPA have a bottom of stack symbol
that is neither popped nor pushed and are complete. We also assume all formulas
are in positive normal form.

The game has the following transitions. The state set and alphabet is defined
implicitly. We begin with some standard formula to game translation. The alpha-
bet becomes a set of pairs, (a,b). The first component corresponds to the model
VPA, the second to the formula VPA being evaluated. All states annotated begin
are controlled by the existential player. The universal positions are (s, 1 A ©2).
The following rules are for all characters a and b.

win, (a,b), rew((a, b)), win).

= (w ;
— ((s,)be-‘”" (a,b), rew((a, b)), win) if s satisfies the atomic proposition p.

— ((s,~p)begin, (a, b),rew((a,b)),win) if s does not satisfy the atomic proposi-
tion p.

— ((s,01 V 92)"9" (a,b), rew((a, b)), (s, p;)?9™") for i € {1,2}.

((S P1 A 4102)})?9“7) (CL, b)a Tew((a'a b))v (57 $1 A 902))

— (5,1 A a), (@ D), rew((a,b)), (5, 91)P°%m) for i € {1,2}.

29

For path formulas, we form a product with the VPA labelling the formula.
We begin by adding a bottom of stack symbol to the stack in the formula VPA’s
component. For E(¢1U%¢,) we allow the existential player to decide whether to
complete the until formula or postpone completion until later. When postpon-
ing, the opponent can check whether the until will eventually be completed, or
whether the condition on the until holds. When progressing the game, the existen-
tial player is able to choose both the move of the formula VPA and the model
VPA. The existential positions are (s,E(¢1U%p3)) and (s, E(p1U%4¢s), move).
The universal positions are (s,E(¢1U%), wait).

P10%02))"9", (a,b), rew((a, 1), (s E(1U" 02).
01049 ,)), (a,b), rew((a ,b)), (s,)begm) for all a, b and ¢ is accepting.
), (a,b),rew((a, b)), (s, E((plU 1p9), wait)) for all a,b.
wlUAqwg),wazt) (a,b),rew(a), (s,p1)be9") for all a, b.
) b), rew(
)
(

S,

PRy

01049 05), wait), (a,b), rew((a, b)), (s, E(p1U44ps), move)) for all a,b.

s, E(¢p1U%py), move), (a,b), pus h((a V), (s',E(01U% 5))) whenever we

ave the rules (s,7, a, push(a’) ") and (q,7, b, push(b'),q’).

(5, E(p1U%a), move) (a,b),rew((a’, V), (s',E(p1U4 ©5))) whenever there

s (s,7,a,rew(a’),s") and (q,7,b,rew(t’),q").

- ((87 E(‘»OlUAQSOQ)a move)7 (a7 b),pop, (8/7 E(QPIUAQ/ 902))) whenever (87 v, @, pop, S/)
and (q,7,b,pop,q').

/-\AA/C-,J\/—\A
MMM o
aaaaa

€ 6
—=
o
5
=]
S
V)

=

e —

The remaining path formulas are similar, but the roles of the players are al-
tered accordingly. In the case A(¢1U%¢s), when satisfaction is postponed, since
the property must hold for all paths, first the opponent picks a transition of
the model, then the existential player picks a move in A. The existential po-
sitions are (s,A(¢1U%p5)) and (s, A(p1U%ags),ts). The universal positions are
(5,E(p1U%ps), wait). Note that A(¢1U4s) is an abbreviation for a =E(—¢p1R4A—s).
Due to the discussion in Section 2, correctness of the reduction relies on A being
deterministic.

— (5, Al@1UA92))P9™ (a,b), rew((a, 1)), (5, A(p1U” 4 03))).
(s, A((plUAﬂpg)), (a,b), rew((a,b)), (s, wg)begm) and ¢ is accepting.
(s, A(<p1U 109)), (a,b), rew((a, b)), (s, A(p1U q(pg)zwait)).
(S A((plU qSDQ)awaZt)a(a,),rew((a,b)),()begzn)
(s, A((flU 1py), wait), (a,b), rew((a,b)), (s, A(gplUsz) ts)) where ¢, is a tran-
ition from s, a.

((a,b), push((a’, 1)), (s', A(@1U47 3))) whenever we have

s = (8,7, a,push(a’),s’) and (q,~,b, push(V'),q").

(5, A(p1U290s), L), (a,b), rew((a’, 1)), (s', A(p1U™ 3))) whenever we have

s = (8,7,a,rew(a’),s') and (q,v,b, rew(d’),q).

(5, A(p1U900), t,), (a,), pop, (s, A(p1UA4 5))) whenever t, = (s,7,a,pop, s')
and (g,7,b,pop, q’).

s, A(p1UAy), t,)
a

~ =

(
(
(
(
= (
t
(
t
(

The release operators are defined analogously. We begin with E(¢;R4p3).
The existential positions are (s,E(p1R49¢3)) and (s,E(¢1R?9ps), move). The
universal positions are (s, E(<p1RAQ<p2) wait) and (s, E(<p1RAQ<p2) ts). Here we
also rely on the fact that the VPA in the formulas are deterministic.

30

(5, E(p1RA02))"9", (a,b), rew((a, 1), (s, E(piR ¢ 2)).
((S’E(%RA“@)%(), rew((a,b)), (s, p1)"51").

(5, E(@1RA1602)), (0, b), rew((0,), (5, E(p1RA7505), wait)).
((S,E(cleAqgog),wazt) (a,b),rew((a,b)), (s, ¢1)?9™) where ¢ is accepting.
({5, (iR) wait), a,b) rew((a.B), (5, Ap10402), move)).

((s,E(p1RA f‘upg) ,move), (a,b),rew((a,b)), (s,A(p1U%py),ts)) where t, is a
transition from s, a.

((s,E(@1RA), 1), (a,b), push((a’, V), (s',E(01RA ©5))) whenever we have
to = (5,70, push(a’), s') and (¢,7, b, push(t').).

((s,E(@1RA), 1), (a,b), rew((a’, b)), (s',E(p1RA ©5))) whenever we have
ts = (8,7, a,rew(a’),s’) and (q,7,b, Tew(b’) q).

((s,E(@1RA02), 1), (a,b), pop, (', E(p1RA 3))) whenever t, = (s, 7, a, pop, s')
(¢,7,b,p0p,).

And finally, A(p1R4py). The existential positions are (s, A(p1R44¢5)). The
universal positions are (s, E(p1R47 (), wait).

A
((SﬂA(SolRA(pﬂ)beqm () rew (avJ-))v(st(l(le ¢ 302»)'
((S7A((p1R'Aq‘p2)>7) rew((aab))’(s’(pl)begm)'
((S?A((lequpQ)%() TB’LU((7b))a(SaA(wlRl;Aq_()DQLwait))'.)
- S, ©1) a,))) g where g 1 pung.
((s, A(p1R*9p9) wazt) (a,b), rew(a), (s, p2)°29""™) where ¢ is accepting
— ((s,A(p1RA), wait), (a, b), push((a’,b’)),(s’,A(gleAq’cpg))) whenever we have
(8,7, a,push(a’), s)and(»7> b, push(b'), q').
s, A(p1 ,wait), (a,b), " b)), (s, A(p1R7 7 3))) whenever we have
((s, A(p1RA102), wait), (a, b), rew((a’, b)), (s, A(RA))) wh h
(s,7v,a,rew(a’),s") and (q,7,b,rew(d’),q").
S, ©1)])) 9) /7 ©1 Q2 whnenever (s, v, a, pop, s
((s, A(p1RY03), wait), (a,b), pop, (s', A(p1R™A ©3))) whenever (")

and (q,7,b, pop,q’).

The game has a Biichi winning condition. All states are accepting except for
states containing an U operator. Since these formulas must always eventually be
satisfied, they are not accepting. Since we assume all VPA are complete, play
will only get stuck when a literal is not satisfied, in which case the existential
player will lose.

Given a CTL[VPA] formula ¢ and a VPA B, we can check whether B satisfies
¢ by asking whether the existential player wins the game described above from
the control state (sg, p?°9"") with the initial stack contents. Such games can be
solved in EXPTIME [35]. O

Lemma C.2. Model checking CTL[VPA,VPA] over visibly pushdown automata
is in 2EXPTIME.

Proof. The proof follows from the exponential cost of determinising the VPA,
and Lemma C.1.]

31

