
Temporal Logics for Non-Regular Properties:
Model Checking

Martin Lange

Institut für Informatik, Ludwig-Maximilians-Universität München, Germany
Martin.Lange@ifi.lmu.de

Abstract

The modal µ-calculus captures exactly the bisimulation-invariant regular tree lan-
guages. Hence, properties expressed in formulas of its fragments like LTL or CTL
for instance are only regular. We present temporal logics whose expressive power
reaches beyond that of the modal µ-calculus and survey known result about these
with a focus on their model checking problems — due to the undecidability of
satisfiability.

1 Introduction

Temporal logics or, more generally, modal logic with recursion mechanism are
used in computer science for program verification [1,22]. Regardless of whether
verification is done in terms of model or satisfiability checking, the focus has
been on logics that are fragments of or can be embedded into Kozen’s modal
µ-calculus Lµ: LTL [19], CTL [5], CTL∗ [6], or even PDL [7], etc.

There are equivalence preserving translations forth and back between for-
mulas of the modal µ-calculus and various types of finite tree automata or
Monadic Second Order Logic [10,11,20]. Hence, all properties expressed in
the aforementioned logics are regular in the sense that the set of tree or word
models of these formulas form an ω-regular language.

In fact, the expressive power of these four logics for example is strictly
below that of full ω-regularity: for instance LTL defines only the star-free
properties on ω-words [8,21], and on infinite trees, CTL is weaker than CTL∗

which coincides with the bisimulation invariant fragment of Monadic Path
Logic [17]. All of them, including PDL, can be embedded into the first level
of the alternation hierarchy within the modal µ-calculus [2].

Nevertheless, much attention is being payed to these weak logics when
it comes to automatic verification. This is (partially) explained by two ob-
servations: (1) Increasing expressive power naturally comes with increasing
computational complexity and vice-versa. In automatic verification, where

input sizes are typically very large, weak logics may be the only choice. (2)
Properties expressed in stronger logics of regular properties than those, i.e. in
higher levels of Lµ’s alternation hierarchy are usually examples of the form:
something must hold infinitely often unless something else holds infinitely un-
less something else . . . (to be read right-associatively).

This does not mean that considering even larger classes of properties will
result in even more pathological examples. In fact, there are properties that
are inexpressible in Lµ but which are interesting for the verification of trans-
mission protocols for example: “never more out- than in-actions”, unlimited
counting, repetition of sequences of actions, etc.

In Section 2 we will briefly describe four temporal logics that are capable
of expressing non-regular properties. As mentioned above, higher expressive
power requires higher computational complexity. The model checking prob-
lems for these logics are, in this order, complete for PTIME, PSPACE, EX-
PTIME, and non-elementary. The price to pay w.r.t. satisfiability is even
higher: all these logics are highly undecidable. Intuitively, in order to achieve
non-regular effects one has to be able to model context-freeness. Further-
more, sensible specification logics feature a ∧-construct. But the intersection
problem for context-free languages is undecidable.

Undecidability also restricts the model checking problem to finite struc-
tures. Checking non-regular properties on finite structures is not an oxy-
moron. Note that on a structure of fixed size, mutli-modal logic even suffices
to express every possible µ-calculus definable property. But the formula would
depend on the structure and it is desirable to have properties formalised in-
dependently of the underlying structure to be tested. The same holds for
non-regular properties. Such logics provide independence of the underlying
models and in same cases even succinctness over logics for regular properties.

2 Temporal Logics for Non-Regular Properties

2.1 Transition Systems

Let P = {p, q, . . .} be a finite set of atomic proposition, and let Σ = {a, b, . . .}
be a finite set of atomic action names. A transition system is a tuple T =
(S, { a−→ | a ∈ Σ}, s0, L) where S is the set of states, a−→ for any a ∈ Σ is a
binary relation on states called the transitions, s0 ∈ S is a designated starting
state, and L : S → 2P labels the states with propositions.

The four logics that are presented in the following are all interpreted over
transition systems.

2.2 Non-Regular PDL

Propositional Dynamic Logic, as introduced by Fisher and Ladner [7] building
on a proposal by Pratt is multi-modal logic over an infinite set of transition
relations that form a Kleene Algebra. It was originally introduced to describe

properties of regular programs, i.e. programs built from atomic ones using the
regular operations union, sequential composition and Kleene star.

Harel, Pnueli and Stavi extended this to Propositional Dynamic Logic of
Non-Regular Programs (PDL[CFG]) [9] by allowing programs to be built from
atomic ones using the full power of context-free grammars.

Definition 2.1 Formulas of PDL[CFG] are given by the following grammar.

ϕ ::= q | ϕ ∨ ϕ | ¬ϕ | 〈G〉ϕ

where q ∈ P and G is a context-free grammar over the alphabet Σ. As usual,
we write L(G) to denote the language generated by G.

The semantics of PDL[CFG] is defined as follows.

T , s |= q iff q ∈ L(s)

T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ

T , s |= ¬ϕ iff T , s 6|= ϕ

T , s |= 〈G〉ϕ iff ∃w ∈ L(G),∃t ∈ S, s.t. s w−→ t

where the transition relations are lifted to words in Σ∗ in a natural way:

s ε−→ t iff s = t

s aw−−→ t iff ∃u, s.t. s a−→ u and u w−→ t

Example 2.2 Consider the context-free grammar G over the alphabet Σ =
{a, b} given by the production rule

S → b | aSS

Note that L(G) = {w | ∀u, v ∈ Σ∗ : w = uv ⇒ |u|a ≤ |u|b}. This is easily seen
to be a non-regular language. Moreover, L(G) describes the undesired runs of
a buffer if, for example, b = out and a = in. Hence, the PDL[CFG] formula
[G]ff := ¬〈G〉(q ∨ ¬q) specifies that on all paths in a transition system the
number of b-transitions never exceeds the number of a-transitions.

Theorem 2.3 [12] The model checking problem for PDL[CFG] is PTIME-
complete.

2.3 The Modal Iteration Calculus

Definition 2.4 Let (V,≤) be a complete lattice with bottom element ⊥ and
suprema t, and let f : V → V be any function an V , not necessarily monotone.
For limit ordinals λ and arbitrary ordinals α define

f 0 := ⊥ , fα+1 := fα t f(fα) , fλ :=
⊔

α<λ

fα

Then the trans-finite sequence f 0, f 1, . . . , fω, fω+1, . . . trivially forms in in-
creasing chain of elements in V and eventually there is an α s.t. fα = fα+1.
This is called the inflationary fixpoint of f , denoted inff , and it is easy to
see that it is indeed a fixpoint of f : f(inff) = inff .

Inflationary fixpoints are as interesting from a computational point of view
as least fixpoints are. They can serve as quantifiers whose definition already
yields a method for computing them.

Inspired by the (perhaps surprising) result that First-Order Logic with
Least Fixpoints LFP is equi-expressive to First-Order Logic with Inflation-
ary Fixpoints IFP, Dawar, Grädel and Kreutzer defined the Modal Iteration
Calculus MIC which extends the modal µ-calculus with inflationary fixpoint
constructs [3].

Definition 2.5 Let V = {X,Y, . . .} be a set of second-order variables. For-
mulas of MIC are given by the following grammar.

ϕ := q | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | inf(X1 ← ϕ1, . . . , Xn ← ϕn)

where q ∈ P , a ∈ Σ, and X,X1, . . . , Xn ∈ V . The semantics of a MIC formula
is defined using environments ρ that interpret the free variables in a formula
by a subset of S, e.g.

[[〈a〉ϕ]]ρ := {s ∈ S | ∃t ∈ S, s a−→ t and t ∈ [[ϕ]]ρ}
[[inf(X1 ← ϕ1, . . . , Xn ← ϕn)]]ρ :=

π1

(
inf(λ(S1, . . . , Sn).([[ϕn]]ρ[S1/X1,...,Sn/Xn], . . . , [[ϕn]]ρ[S1/X1,...,Sn/Xn]

)

etc., where π1 projects a tuple onto its first component.

A fragment of MIC worth mentioning is 1MIC. It is obtained by re-
placing the syntax rule for arbitrary inflationary fixpoint by a rule for non-
simultaneous fixpoint quantifiers only: infX ← ϕ.

Example 2.6 Take the MIC formula

inf(X ← q ∨ (〈−〉tt ∧ [−](X ∧ ¬Y)), Y ← X ∧ ¬q)
This expresses uniform inevitability : the formula is satisfied in a state s of a
transition system iff there is a k ∈ N s.t. on all paths beginning in s, q holds
after k steps. No finite tree automaton recognises this language [4].

Theorem 2.7 [3] The model checking problem for MIC is PSPACE-complete.

2.4 Fixpoint Logic with Chop

Müller-Olm’s Fixpoint Logic with Chop (FLC) extends the modal µ-calculus
with a sequential composition operator [18]. This makes it possible to achieve
context-free, and because of the presence of intersection, even certain context-
sensitive effects.

Definition 2.8 Let V = {X, Y, . . .} be a set of third-order variables for func-
tions from sets of states to sets of states. Formulas of FLC are given by the
following grammar.

ϕ ::= q | ¬q | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ;ϕ | 〈a〉 | [a] | τ | µX.ϕ | νX.ϕ

where q ∈ P , a ∈ Σ and X ∈ V . Note that the semantics of a modal µ-
calculus formula is a predicate, a subset of the state space. In order to cope
with sequential composition, the semantics of FLC lifts the modal µ-calculus
semantics straight-forwardly to the space of monotone predicate transform-
ers. For details we refer to [18]. A game-based characterisation of the FLC
semantics has been given in [13].

Example 2.9 The following FLC formula expresses “all finite paths are of
the form ww for some w ∈ Σ∗”.

ϕ :=
∧

(a,b)∈Σ2,a6=b

ψa;ψb; 〈−〉; tt where ψx := νX.[x] ∧ [−];X; [−]

where tt := q ∨ ¬q for some q. This is based on the usual trick which shows
that the complement of the non-context-free language {ww | w ∈ Σ∗} is
context-free.

Theorem 2.10 [16,14] The model checking problem for FLC is EXPTIME-
complete.

2.5 Higher-Order Fixpoint Logic

The idea of obtaining more expressiveness by employing higher-order con-
structs has been followed consequently by Viswanathan and Viswanathan in
the introduction of Higher Order Fixpoint Logic (HFL) [23]. It is a hybrid of
the modal µ-calculus and a simply typed λ-calculus.

Types of HFL formulas are given by the grammar

τ ::= Pr | τ → τ

where the atomic type Pr stands for predicates, and function types are under-
stood canonically. Variables in HFL formulas occur either only positively, or
only negatively, or without any constraint. Thus, a variance is a σ ∈ {+,−, ?}.
The syntax of HFL is then given by the following grammar.

ϕ ::= q | ϕ ∨ ϕ | ¬ϕ | X | 〈a〉ϕ | ϕ ϕ | λXσ.ϕ | µX.ϕ

Typing rules ensure the well-formedness of formulas. For a detailed definition
of HFL including its straight-forward typing rules see the introductory paper
[23]. We also refer to this for the exact definition of the semantics which is
given through liftings of predicates to monotone higher order functions on

some set of states of a transition system. Monotonicity is guaranteed by the
typing rules: fixpoint variables may only occur positively in their defining
fixpoint body.

Example 2.11 An example of a class of properties that can be formalised in
HFL has been given by Viswanathan and Viswanathan []: assume-guarantee
properties. A state satisfies the formula νX.ϕ . νY.ψ iff for all α ∈ Ord: if s
satisfies ναX.ϕ then s also satisfies να+1Y.ψ. In other words, if we assume ϕ
to hold α many times then we must guarantee ψ at least α + 1 many times.
This property is expressed by the HFL formula

(νZ.λX.λY.(¬X ∨ Y) ∧ Z ϕ ψ) tt ψ

where the greatest fixpoint quantifier ν is abbreviated as usual through least
fixpoints and negation.

Theorem 2.12 [15] The model checking problem for HFL is non-elementary
but elementary for every HFLk.

References

[1] Clarke, E. M., E. A. Emerson and A. P. Sistla, Automatic verification of finite
state concurrent systems using temporal logic specifications, in: Proc. 10th Symp.
on Principles of Programming Languages, POPL’83 (1983), pp. 117–126.

[2] Dam, M., CTL∗ and ECTL∗ as fragments of the modal µ-calculus, TCS 126
(1994), pp. 77–96.

[3] Dawar, A., E. Grädel and S. Kreutzer, Inflationary fixed points in modal
logic, in: L. Fribourg, editor, Proc. 15th Workshop on Computer Science Logic,
CSL’01, LNCS (2001), pp. 277–291.

[4] Emerson, E. A., Uniform inevitability is tree automaton ineffable, Information
Processing Letters 24 (1987), pp. 77–79.

[5] Emerson, E. A. and J. Y. Halpern, Decision procedures and expressiveness in
the temporal logic of branching time, Journal of Computer and System Sciences
30 (1985), pp. 1–24.

[6] Emerson, E. A. and J. Y. Halpern, “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic, Journal of the ACM 33 (1986),
pp. 151–178.

[7] Fischer, M. J. and R. E. Ladner, Propositional dynamic logic of regular
programs, Journal of Computer and System Sciences 18 (1979), pp. 194–211.

[8] Gabbay, D., A. Pnueli, S. Shelah and J. Stavi, The temporal analysis of fairness,
in: Proc. 7th Symp. on Principles of Programming Languages, POPL’80 (1980),
pp. 163–173.

[9] Harel, D., A. Pnueli and J. Stavi, Propositional dynamic logic of nonregular
programs, Journal of Computer and System Sciences 26 (1983), pp. 222–243.

[10] Janin, D. and I. Walukiewicz, Automata for the µ-calculus and related results, in:
J. Wiedermann and P. Hájek, editors, Proc. 20th Symp. on Math. Foundations
of Computer Science, MFCS’95, LNCS 969 (1995).

[11] Kaivola, R., On modal µ-calculus and Büchi tree automata, Information
Processing Letters 54 (1995), pp. 17–22.

[12] Lange, M., Model checking propositional dynamic logic with all extras, Journal
of Applied Logic ??, pp. ??–??, accepted for publication.

[13] Lange, M., Local model checking games for fixed point logic with chop, in:
L. Brim, P. Jančar, M. Křet́ınský and A. Kučera, editors, Proc. 13th Conf.
on Concurrency Theory, CONCUR’02, LNCS 2421 (2002), pp. 240–254.

[14] Lange, M., Three notes on the complexity of model checking fixpoint logic with
chop (2005), (submitted).

[15] Lange, M. and R. Somla, The complexity of model checking higher order fixpoint
logic, in: J. Jedrzejowicz and A. Szepietowski, editors, Proc. 30th Int. Symp. on
Math. Foundations of Computer Science, MFCS’05, LNCS 3618 (2005), pp.
640–651.

[16] Lange, M. and C. Stirling, Model checking fixed point logic with chop, in:
M. Nielsen and U. H. Engberg, editors, Proc. 5th Conf. on Foundations
of Software Science and Computation Structures, FOSSACS’02, LNCS 2303
(2002), pp. 250–263.

[17] Moller, F. and A. Rabinovich, Counting on CTL*: On the expressive power of
monadic path logic, Information and Computation 184 (2003), pp. 147–159.

[18] Müller-Olm, M., A modal fixpoint logic with chop, in: C. Meinel and S. Tison,
editors, Proc. 16th Symp. on Theoretical Aspects of Computer Science,
STACS’99, LNCS 1563 (1999), pp. 510–520.

[19] Pnueli, A., The temporal logic of programs, in: Proc. 18th Symp. on Foundations
of Computer Science, FOCS’77 (1977), pp. 46–57.

[20] Rabin, M. O., Decidability of second-order theories and automata on infinite
trees, Trans. of Amer. Math. Soc. 141 (1969), pp. 1–35.

[21] Thomas, W., Star-free regular sets of ω-sequences, Information and Control 42
(1979), pp. 148–156.

[22] Vardi, M. Y. and P. Wolper, An automata-theoretic approach to automatic
program verification (preliminary report), in: Proc. 1st Symp. on Logic in
Computer Science, LICS’86, IEEE, Washington, DC, 1986 pp. 332–344.

[23] Viswanathan, M. and R. Viswanathan, A higher order modal fixed point logic,
in: P. Gardner and N. Yoshida, editors, Proc. 15th Int. Conf. on Concurrency
Theory, CONCUR’04, LNCS 3170 (2004), pp. 512–528.

