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Abstract. This paper analyses the computational complexity of the
model checking problem for Higher Order Fixpoint Logic – the modal
µ-calculus enriched with a typed λ-calculus. It is hard for every level of
the elementary time/space hierarchy and in elementary time/space when
restricted to formulas of bounded type order.

1 Introduction

Temporal logics are well-established tools for the specification of correctness
properties and their verification in hard- and software design processes. One
of the most famous temporal logics is Kozen’s modal µ-calculus Lµ [16] which
extends multi-modal logic with extremal fixpoint quantifiers. Lµ subsumes many
other temporal logics like CTL∗ [10], and with it CTL [9] and LTL [19], as well
as PDL [12]. Lµ can be embedded into infinitary modal logic. Hence, it does
not distinguish between bisimilar models which is a desired property of a logic
specifying program behaviour. The model checking problem for Lµ on finite
transition systems is in NP∩co-NP, and the best deterministic algorithms are
exponential in the alternation depth of the input formula only.

On the other hand, Lµ is equi-expressive to the bisimulation-invariant frag-
ment of Monadic Second Order Logic over trees or graphs [11, 15]. Since the latter
is equi-expressive to Rabin tree automata, properties expressed by formulas of
the modal µ-calculus are only regular. There are, however, many interesting cor-
rectness properties of programs that are not regular. Examples include uniform
inevitability [8] which states that a certain event occurs globally at the same
time in all possible runs of the system; counting properties like “at any point
in a run of a protocol there have never been more send - than receive-actions”;
formulas saying that an unbounded number of data does not lose its order during
a transmission process; etc.

When program verification was introduced to computer science, programs
as well as their correctness properties were mainly specified in temporal logics.
Hence, verification meant to check formulas of the form ϕ → ψ for validity, or
equally formulas of the form ϕ∧ψ for satisfiability. An intrinsic problem for this
approach and non-regular properties is undecidability. Note that the intersection
problem for context-free languages is already undecidable [1].



One of the earliest attempts at verifying non-regular properties of programs
was Non-Regular PDL [13] which enriches ordinary PDL by context-free pro-
grams. Non-Regular PDL is highly undecidable, hence, the logic did not receive
much attention for program verification purposes. Its model checking problem,
however, remains decidable on finite transition systems.

Although the theoretical complexity of the model checking problem is nor-
mally below that of its satisfiability problem, it often requires a lot more time or
space to do model checking. This is simply because the input to a model checker
is usually a lot bigger compared to that of a satisfiability checker. Hence, the
feasibility of model checking is very much limited by the state space explosion
problem: real-world examples result in huge transition systems that are very hard
to model check simply because of their sheer size. However, in recent years var-
ious clever techniques have been invented that can cope with huge state spaces,
starting with local model checking, and resulting in symbolic methods like BDD-
based [4] or bounded model checking [6]. They are also a reason for the shift in
importance from the satisfiability checking to the model checking problem for
program verification.

More expressive power naturally comes with higher complexities. But with
good model checking techniques at hand, verifying non-regular properties has
become worthwhile again. This is for example reflected in the introduction of
Fixpoint Logic with Chop, FLC, [18] which extends Lµ with a sequential com-
position operator. It is capable of expressing many non-regular – and even non-
context-free – properties, and its model checking problem on finite transition
systems is decidable in deterministic exponential time [17].

Another logic capable of expressing non-regular properties is the Modal Iter-
ation Calculus, MIC, [7] which extends Lµ with inflationary fixpoint quantifiers.
Similar to FLC, the satisfiability checking problem for MIC is undecidable but
its model checking problem is decidable in deterministic polynomial space [7].

In order to achieve non-regular effects in FLC, the original Lµ semantics is
lifted to a function from sets of states to sets of states. This idea has been followed
consequently in the introduction of Higher Order Fixpoint Logic, HFL, [23] which
incorporates a typed λ-calculus into the modal µ-calculus. This gives it even more
expressive power than FLC. HFL is, for example, capable of expressing assume-
guarantee-properties. Still, HFL’s model checking problem on finite transition
systems remains decidable. This has been stated in its introductory work [23]
but no analysis of its computational complexity has been done so far.

Here we set out to answer the open question concerning the complexity of
HFL’s model checking problem. We start by recalling the logic and giving a few
examples in Section 2. Section 3 presents a reduction from the satisfiability prob-
lem for First Order Logic over finite words to HFL’s model checking problem.
Consequently, the latter is hard for every level of the elementary time/space
hierarchy. I.e. there is no model checking algorithm for HFL that runs in time
given by a tower of exponentials whose height does not depend on the input
formula. The reduction even yields a non-elementary lower complexity bound
for transition systems of fixed size. This lower bound can also be obtained – as



(var) Γ,Xv : τ ` X : τ if v ∈ {0,+} (neg)
Γ− ` ϕ : Prop

Γ ` ¬ϕ : Prop

(or)
Γ ` ϕ : Prop Γ ` ψ : Prop

Γ ` ϕ ∨ ψ : Prop
(mod)

Γ ` ϕ : Prop

Γ ` 〈a〉ϕ : Prop

(abs)
Γ,Xv : σ ` ϕ : τ

Γ ` λ(Xv : σ).ϕ : (σv → τ)
(fix )

Γ,X+ : τ ` ϕ : τ

Γ ` µ(X : τ).ϕ : τ

(app+)
Γ ` ϕ : (σ+ → τ) Γ ` ψ : σ

Γ ` (ϕ ψ) : τ
(app−)

Γ ` ϕ : (σ− → τ) Γ− ` ψ : σ

Γ ` (ϕ ψ) : τ

(app0)
Γ ` ϕ : (σ0 → τ) Γ ` ψ : σ Γ− ` ψ : σ

Γ ` (ϕ ψ) : τ
(prop)

Γ ` p : Prop

Fig. 1. Type inference rules for HFL.

a referee pointed out – from a result by Statman who investigated complexity
issues of λ-calculi without fixpoint operators that can be seen as fragments of
HFL [21].

Section 4 shows that HFL’s model checking problem is indeed in elementary
time when the order of the function types occurring in the input formulas is
bound. We conclude in Section 5 with a discussion concerning the use of HFL
as a specification formalism for program correctness.

2 Preliminaries

Let P = {p, q, . . .} be a set of atomic propositions, A = {a, b, . . .} be a finite set
of action names, and V = {X,Y,X1, . . .} a set of variable names. For simplicity,
we fix P, A, and V for the rest of the paper.

A v ∈ {−,+, 0} is called a variance. The set of HFL-types is the smallest set
containing the atomic type Prop and being closed under function typing with
variances, i.e. if σ and τ are HFL-types and v is a variance, then σv → τ is an
HFL-type..

Formulas of HFL are given by the following grammar:

ϕ ::= q | X | ¬ϕ | ϕ ∨ ϕ | 〈a〉ϕ | ϕ ϕ | λ(Xv : τ).ϕ | µ(X : τ).ϕ

where τ is an HFL-type and v is a variance. We use the standard abbreviations:
tt := q∨¬q for some q ∈ P, ff := ¬tt, ϕ∧ψ := ¬(¬ϕ∧¬ψ), [a]ψ := ¬〈a〉¬ψ, and
νX.ϕ := ¬µX.¬ϕ[¬X/X]. We will assume that any variable without an explicit
type annotation is of the ground type Prop. Also, if a variance is ommited it is
implicitely assumed to be 0.

A sequence Γ of the form Xv1
1 : τ1, . . . , Xvn

n : τn where Xi are variables, τi
are types and vi are variances is called a context (we assume all Xi are distinct).



T [[Γ ` q : Prop]]η = {s ∈ S | q ∈ L(s)}
T [[Γ ` X : τ ]]η = η(X)

T [[Γ ` ¬ϕ : Prop]]η = S − T [[Γ− ` ϕ : Prop]]η

T [[Γ ` ϕ ∨ ψ : Prop]]η = T [[Γ ` ϕ : Prop]]η ∪ T [[Γ ` ψ : Prop]]η

T [[Γ ` 〈a〉ϕ : Prop]]η = {s ∈ S | s a−→ t for some t ∈ T [[Γ ` ϕ : Prop]]η}
T [[Γ ` λ(Xv : τ).ϕ : τv → τ ′]]η = F ∈ T [[τv → τ ′]] s.t. ∀d ∈ T [[τ ]]

F (d) = T [[Γ,Xv : τ ` ϕ : τ ′]]η[X 7→ d]

T [[Γ ` ϕ ψ : τ ′]]η =
ąT [[Γ ` ϕ : τv → τ ′]]η

ć
(T [[Γ ′ ` ψ : τ ]]η)

T [[Γ ` µ(X : τ)ϕ : τ ]]η =
d
T [[τ ]]{d ∈ τ |
T [[Γ,X+ : τ ` ϕ : τ ]]η[X 7→ d] ≤T [[τ ]] d}

Fig. 2. Semantics of HFL

An HFL-formula ϕ has type τ in context Γ if the statement Γ ` ϕ : τ can be
inferred using the rules of Figure 1. We say that ϕ is well-formed if Γ ` ϕ : τ for
some Γ and τ .

For a variance v, we define its complement v− as + if v = −, as −, if v = +,
and 0 otherwise. For a context Γ = Xv1

1 : τ1, . . . , Xvn
n : τn, the complement Γ−

is defined as Xv−1
1 : τ1, . . . , X

v−n
n : τn.

A (labelled) transition system is a structure T = (S, { a−→}, L) where S is
a finite set of states, a−→ is a binary relation on states for each a ∈ A, and
L : S → 2P is a labeling function denoting the set of propositional constants
that are true in a state.

The semantics of a type w.r.t. a transition system T is a complete lattice,
inductively defined on the type as

T [[Prop]] = (2S ,⊆)
T [[σv → τ ]] = (T [[σ]])v → T [[τ ]]

Here, for two partial orders τ̄ = (τ,≤τ ) and σ̄ = (σ,≤σ), σ̄ → τ̄ denotes the par-
tial order of all monotone functions ordered pointwise, and, τ̄v denotes (τ,≤v

τ ).
≤+

τ is ≤τ , a ≤−τ b iff b ≤τ a, and ≤0
τ =≤τ ∩ ≤−τ .

An environment η is a possibly partial map on the variable set V. For a
context Γ = Xv1

1 : τ1, . . . , Xvn
n : τn, we say that η respects Γ , denoted by η |= Γ ,

if η(Xi) ∈ T [[τi]] for i ∈ {1, . . . , n}. We write η[X 7→ a] for the environment
that maps X to a and otherwise agrees with η. If η |= Γ and a ∈ T [[τ ]] then
η[X 7→ a] |= Γ,X : τ , where X is a variable that does not appear in Γ .

For any well-typed term Γ ` ϕ : τ and environment η |= Γ , Figure 2 defines
the semantics of ϕ inductively to be an element of T [[τ ]]. In the clause for function
application (ϕ ψ) the context Γ ′ is Γ if v ∈ {+, 0}, and is Γ− if v = −.



We consider fragments of formulas that can be typed using types of restricted
order only. Let

ord(Prop) := 1 ord(α→ β) := max(ord(α) + 1, ord(β))

and HFLk := { ϕ ∈ HFL | ϕ can be typed using types τ with ord(τ) ≤ k for all
subformulas only }.

Example 1. The following HFL formula expresses the non-regular property “on
any path the number of a’s seen at any time never exceeds the number of b’s
seen so far.”

νX.[a]ff ∧ [b]
((
ν(Z : Prop → Prop).λY.([a]Y ∧ [b] (Z (Z Y ))

)
X

)

Note how function composition is used to “remember” in the argument to Z how
many times a b-action has been seen along any path. Every b-action gives the
potential to do another a-action later on which is remembered in the additional
application of Z. And every a-action “uses up” one Z. If there have been as
many a’s as b’s then the current state must be in the semantics of X again,
hence, cannot do another a-action, etc.

Example 2. Let 2n
0 := n and 2n

m+1 := 22n
m . For any n ∈ N, there is an HFL

formula ϕn expressing the fact that there is a maximal path of length 21
n (number

of states on this path) through a transition system. It can be constructed using
a typed version of the Church numeral 2. Let P0 = Prop and Pi+1 = Pi → Pi.
For i ≥ 1 define ψi of type Pi+1 as follows

ψi := λ(F : Pi).λ(X : Pi−1).F (F X)

Then
ϕn := ψn ψn−1 . . . ψ1

(
λX.〈−〉X) (

[−] ff
)

where 〈−〉ϕ :=
∨

a∈A〈a〉ϕ and [−]ϕ :=
∧

a∈A[a]ϕ. Note that for any n ∈ N, ϕn is
of size polynomial in n. This indicates that HFL is able to express computations
of Turing Machines of arbitrary elementary complexity. The next section shows
that this is indeed the case.

3 The Lower Complexity Bound

Let Σ be a finite alphabet. Formulas of FO in negation normal form over words
in Σ∗ are given by the following grammar.

ϕ ::= x ≤ y | x < y | Pa(x) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ

where x, y are variables and a ∈ Σ.
A word w ∈ Σ∗ of length n is a function of type {0, . . . , n− 1} → Σ. Thus,

w(i) denotes the i-th letter of w. FO formulas are interpreted over words in the



usual way, written w |=η ϕ for a word w, a formula ϕ and an environment η
evaluating the free variables in ϕ by positions in w.

Let Σ0 and Π0 be the set of all quantifier-free formulas of FO. Σk+1 is the
closure of Σk ∪ Πk under the boolean operators and existential quantification.
Similarly, Πk+1 is constructed from Σk ∪ Πk using universal quantification in-
stead.

Let DTime(f(n)) and DSpace(f(n)) be classes of languages that can be de-
cided by a deterministic Turing Machine in time, resp. space, f(n) where n
measures the length of the input word to the machine. The k-th level of the
elementary time/space hierarchy is

kExpTime =
⋃

c,d∈N
DTime(2c nd

k ), kExpSpace =
⋃

c,d∈N
DSpace(2c nd

k )

Furthermore, the elementary time/space hierarchy is

ElTime :=
⋃

k∈N
kExpTime =

⋃

k∈N
kExpSpace

The standard translation of an FO formula into a finite automaton [3] and the
encoding of space-bounded Turing Machine computations in FO [22, 20] yield
the following results.

Theorem 1. An FO sentence ϕ ∈ Σk+1 of length n has a model iff it has a
model of length 2n

k .

Theorem 2. For all k ≥ 1: The satisfiability problem for FO formulas in Σk+1

is hard for kExpSpace.

We will use these results to prove kExpSpace hardness of HFL. Our first step
is to translate the problem of deciding whether a given binary word w of length
2n

k is a model of an FO sentence ϕ into the HFL model checking problem.
Let us fix n and define Tn to be a transition system with states Sn =

{0, 1, . . . , n − 1}, an empty labeling (we will not use propositional constants)
and a cyclic next state relation →⊆ Sn × Sn given by 0 → n− 1 and i→ i− 1
for i = 1, ..., n− 1.

We represent the Boolean values false and true by the two elements of B =
{∅, Sn} ⊂ Tn[[Prop]]. In the sequel we will implicitly assume that all semantic
interpretations are w.r.t Tn and omit it in front of semantic brackets. Hence we
can write [[ff]] and [[tt]] for the representations of false and true, respectively.

Let Nn
0 = {{0}, {1}, . . . , {n − 1}} and let Nn

k+1 = Nn
k → B. Clearly, each

Nn
k has exactly 2n

k elements which we will use to represent numbers in the range
0, . . . ,2n

k−1. We have alsoNn
k ⊆ [[Nk]] whereN0 = Prop andNk+1 = Nk → Prop.

Note that the elements of Nn
k+1 = Nn

k → B can be equivalently viewed as
predicates over Nn

k , subsets of Nn
k or binary words of length 2n

k .
For a number j ∈ {0, 1, . . . ,2n

k − 1} let [[j]]k be the element of Nn
k representing j

defined inductively by [[j]]0 = {j} and

[[j]]k(x) :=

{
[[tt]] if x = [[i]]k−1 and ji = 1,
[[ff]] o.w.



where ji is the i-th bit in the binary representation of j. For a binary word w of
length 2n

k let [[w]]k := [[
∑

i wi · 2i]]k+1.
The possibility of a compact encoding of FO logic in HFL relies on the existence
of polynomially sized HFL formulas describing basic operations on numbers rep-
resented as elements of Nn

k . We define

inck : Nk → Nk , eqk : Nk → Nk → Prop , searchk : (Nk → Prop) → Prop

adhering to the following specifications.

[[inck]] [[j]]k = [[j + 1]]k , [[eqk]] [[j]]k [[i]]k =
{

[[tt]] , iff j = i
[[ff]] , o.w.

For a predicate p ∈ Nn
k+1,

[[searchk]] p =

{
[[tt]] iff exists x ∈ Nn

k s.t. p(x) = [[tt]]
[[ff]] o.w.

The search function searchk can be implemented using inck and recursion. A
helper function search′k P x applies P to the successive numbers, starting from
x, taking the union of the results.

searchk := λ(P : Nk → Prop).search′k P ⊥k

search′k := λ(P : Nk → Prop). µ(Z : Nk → Prop).
λ(X : Nk). (P X) ∨ (Z (inck X)).

Formula ⊥k : Nk represents 0 and is defined as

⊥0 := [−] ff, ⊥k := λ(X : Nk−1). ff for k > 0.

Functions eqk and inck are defined by induction on k. For k = 0 we set

eq0 := λX.λY.(X ↔ Y ) inc0 := λX.〈−〉X

For k > 0, function eqk is implemented by searching for an argument at which
two number representations differ:

eqk := λ(X : Nk).λ(Y : Nk).¬(
searchk−1 λ(I : Nk−1).¬(X I ↔ Y I)

)

Function inck is the usual incrementation of a number in binary representation.
The helper function inc′k x i adds one to the i-th bit of n and possibly the following
bits if the carry-over occurs.

inck := λ(X : Nk). inc′k X ⊥k−1

The value of [[inc′k]] [[x]]k [[i]]k−1 is a function which for each j returns the j-th bit
of x+2i (encoded as [[tt]] or [[ff]]). For j = i the corresponding bit is ¬xi. If there



is no carry-over (xi = 0) then the remaining bits are unchanged. Otherwise the
remaining bits are the same as in x+ 2i+1.

inc′k := λ(X : Nk). µ(Z : Nk−1 → Nk). λ(I : Nk−1).
λ(J : Nk−1). if (eqk−1 J I)

(¬(X I))(
if ¬(X I) (X J) (Z (inck−1 I) J)

)

where if := λP.λQ.λR. (P ∧Q) ∨ (¬P ∧R).
Note that the lengths of inck, eqk and searchk as strings can be exponential

in k. However, the number of their subformulas is only polynomial in k.

Lemma 1. For any k ≥ 0, any i ∈ {0, . . . ,2n
k − 1}, and any p ∈ N n

k → B we
have: [[search′k]] p [[i]]k = [[tt]] iff p([[j]]k) = [[tt]] for some i ≤ j < 2n

k .

Proof. Simply because [[search′k]] p [[i]]k ≡
2n

k−1⋃
j=i

p([[j]]k). ut

Lemma 2. For any k, eqk, inck ∈ HFLk+1 and searchk, search
′
k ∈ HFLk+2.

Proof. It is easy to see that ord(Nk) = k. The type Nk → Nk → Prop of eqk has
order k + 1 and, by induction hypothesis, eqk doesn’t contain any subformulas
of a higher order. Similar, the type of inck which is Nk → Nk has order k + 1,
the same as the order of the type Nk → Nk−1 → Nk of inc′k. By induction,
neither inck nor inc′k contain a subformula of a higher order. Finally, inspecting
the definitions of searchk and search′k we can see that they contain no subformula
whose type has order higher than k + 2. ut
Let ϕ be an FO sentence. For given k we translate ϕ into an HFLk+2 formula
trk(ϕ) : Nk+1 → Prop s.t. for any word w of length 2n

k , w is a model of ϕ iff(Tn[[trk(ϕ)]]
)

(Tn[[w]]k) = Tn[[tt]].

trk(x ≤ y) := λ(w : Nk+1). search′k x (λ(u : Nk). eqk u y)
trk(P0(x)) := λ(w : Nk+1).¬(w x)
trk(P1(x)) := λ(w : Nk+1). (w x)
trk(∃x.ϕ) := λ(w : Nk+1). searchk (λ(x : Nk). trk(ϕ) w)

trk(¬ϕ) := λ(w : Nk+1).¬(trk(ϕ) w)
trk(ϕ ∨ ψ) := λ(w : Nk+1). (trk(ϕ) w) ∨ (trk(ψ) w)

Note that free variables of ϕ become free variables of type Nk in trk(ϕ).

Lemma 3. For any FO sentence ϕ the translation trk(ϕ) is a predicate. That
is, Tn[[trk(ϕ)]] is an element of Nn

k+2 – a function which when applied to an
argument from Nn

k+1 returns either Tn[[tt]] or Tn[[ff]].

Proof. This follows from the fact that, by their specifications, searchk and search′k
are predicates. Hence trk(ϕ) is a predicate as a Boolean combination of predi-
cates.



Lemma 4. For any k and ϕ, trk(ϕ) ∈ HFLk+2.

Proof. Follows immediately from Lemma 2.

Lemma 5. Let ϕ be an FO formula with variables x1, . . . , xl. For any word w
of length 2n

k and FO-environment η we have

w |=η ϕ iff
(Tn[[trk(ϕ)]]ρ

)
(Tn[[w]]k) = Tn[[tt]]

where ρ is an HFL environment given by ρ(xi) = Tn[[η(xi)]]k.

Proof. By induction on the structure of ϕ. We fix n and k and as before omit
Tn in front of semantic brackets.
Case ϕ = xi ≤ xj: Then [[trk(ϕ)]]ρ = [[search′k]] [[a]]k p where a = η(xi), b =
η(xj) and predicate p is given by p(x) = [[eqk]]x [[b]]k. We have w |=η ϕ iff a ≤ b
iff exists a ≤ c < 2n

k s.t. p([[c]]k) = [[tt]] iff [[search′k]] [[a]]k p = [[tt]], by Lemma 1.
Case ϕ = ∃x.ψ: Then [[trk(ϕ)]]ρ = [[searchk]] p where p([[i]]k) = [[trk(ψ)]]ρ[x 7→
[[i]]k] [[w]]k. By the specification of searchk and induction hypothesis we have
([[trk(ϕ)]]ρ) [[w]]k = [[tt]] iff p([[i]]k) = [[tt]] for some i iff w |=η[x 7→i] ψ iff w |=η ϕ.

Case ϕ = P0(xi): Then w |=η ϕ iff wη(xi) = 0 iff [[w]]k [[η(xi)]]k = [[ff]] iff
([[trk(ϕ)]]ρ) [[w]]k = [[tt]].

The case of ϕ = P1(xi) is analogous. The cases of ϕ = ¬ψ and ϕ = ψ1 ∨ ψ2

follow immediately from the induction hypothesis. ut
The model checking problem for HFLk is the following:

Given an HFLk sentence ϕ : Prop, a transition system T and a set of
states A decide whether or not T [[ϕ]] = A.

Lemma 6. The satisfiability problem for FOk is polynomially reducible to the
model checking problem for HFLk+2.

Proof. First note that we can restrict ourselves to the satisfiability problem for
FOk over the binary alphabet Σ = {0, 1} because any other alphabet can be
encoded by Σ at a logarithmic expense only.

Given an FOk formula ϕ of length n we can construct in polynomial time and
space an instance of the HFLk+2 model checking problem consisting of a formula
ϕ′ = searchk+1 trk(ϕ), transition system Tn and the set Tn[[tt]] = {0, 1, . . . , n−1}.
Note that ϕ′ ∈ HFLk+2 by Lemmas 2 and 4. From Lemmas 1, 3 and 5 it follows
that Tn[[ϕ′]] = Tn[[tt]] iff ϕ has a model of size 2n

k which, by Theorem 1, is
equivalent to ϕ having a model. ut

Theorem 2 together with the reduction of Lemma 6 yields the following result.

Theorem 3. The model checking problem for HFLk+3 is hard for kExpSpace
under polynomial time reductions.

Corollary 1. The model checking problem for HFL is not in ElTime.



Note that the reduction only uses modal formulas 〈−〉ϕ and [−]ϕ because 2n
k

is an upper bound on a minimal model for an FO sentence in Σk+1 of length
n. However, 2n

k = 21
k+log∗ n. This enables us to use modality-free formulas and

transition systems of fixed size 1 in the reduction. The price to pay is that,
in order to achieve kExpSpace-hardness, one needs formulas with unrestricted
types. At least it shows (again) that HFL model checking is not in ElTime for
fixed and arbitrarily small transition systems already.

4 The Upper Complexity Bound

In the following we will identify a type τ and its underlying complete lattice
induced by a transition system T with state set S. In order to simplify notation
we fix T for the remainder of this section.

Suppose |S| = n for some n ∈ N. We define the order ord(τ) of a type τ , its
size #(τ), as well as rp(τ) – a space measure for the representation of one of its
elements.

#(Prop) := 2n #(α→ β) := #(β)#(α)

rp(Prop) := n rp(α→ β) := #(α) · rp(β)

Lemma 7. (a) For any HFL type τ over a transition system of size n there are
only #(τ) many different elements of τ .
(b) An element x of any HFL type τ can be represented using space rp(τ).
(c) #(τ) ≤ 2n

ord(τ)+1 and rp(τ) ≤ 2n
ord(τ).

Proof. Both can easily be proved by induction on the structure of τ . (a) Note
that Prop represents the power set of a state space. Hence, #(Prop) = 2n. Fur-
thermore, for two types τ1 and τ2 there are #(τ2)#(τ1) = #(τ1 → τ2) many
functions from τ1 to τ2.

(b) A subset of a state space of size n can be represented for example by
a boolean array of size n. In order to completely represent a function of type
τ1 → τ2 one needs to store for each element of τ1 a value from τ1. Hence, that
space is bounded by #(τ1) · rp(τ2) = rp(τ1 → τ2).

(c) The first inequality trivially holds for τ = Prop. Assuming that it holds
for types α and β with ord(α) = k and ord(β) = l we have

#(α→ β) = #(β)#(α) = 22n
l−1·2n

k ≤ 2(2n
m−1)

2 ≤ 22n
m = 2n

m+1

where m = max(k + 1, l) = ord(α → β). The other inequality follows from the
fact that rp(τ) = log2 #(τ) for any τ . ut
Theorem 4. For all k ∈ N, the model checking problem for HFLk and finite
transition systems is in (k + 1)ExpTime.

Proof. For a finite transition system T = (S, { a−→ | a ∈ A}, L) with |S| = n and
an HFL formula ϕ of type τ , we describe an alternating procedure for finding



the denotation of ϕ. The existential player ∃ proposes an element of τ as [[ϕ]]
and the universal player ∀ challenges her choice. The game proceeds along the
structure of ϕ in the following way.

If ϕ = λ(X : σ).ψ then ∀ chooses an entry in the table written by ∃ as a
value of ϕ. The entry consists of the value of X and the corresponding value of
ϕ. ∀ can invoke the verification protocol to check that this is the correct value
of ψ(X) when X has the value given by the entry.

For ϕ = ψ1 ψ2, ∀ can ask ∃ to write a table of ψ1. The first entry in the table
should contain a previously guessed value of ϕ as the function result. Now ∀ can
either verify that the whole table is correct or that the function argument in the
first entry corresponds to ψ2.

To verify a guess x of the value of ϕ = µ(X : τ).ψ first ∃ writes a table
of a function λ(X : τ).ψ with the first entry (x, x). Then ∀ can either verify
correctness of the whole table or indicate another entry (y, y) with y smaller
than x. When ϕ is a variable then it is enough to compare the value chosen by
∃ with the one stored in the variable environment.

In all other cases ϕ is of type Prop and its value is a bit vector of length n.
Correctness of Boolean operations can be easily verified by ∀ using additional
2n space for storing the values of the operands.

Clearly the space needed to perform the above procedure is bounded by the
maximal rp(σ) where σ is a type of a subformula of ϕ or 3n, whichever is bigger.
Hence, by Lemma 7 the model checking problem is in alternating 2n

k space thus
in (k + 1)ExpTime [5]. ut

5 Conclusion

We have shown that the model checking problem for HFL is hard for every
kExpTime and consequently of non-elementary complexity. Theoretically, it is
tempting to dismiss HFL as a specification formalism that can practically be
used. But the same argument would also rule out any practical implementation
of a satisfiability checker for Monadic Second Order Logic over words or trees
(MSO) since this problem has non-elementary complexity, too. However, the ver-
ification tool Mona [14] shows that in many practical cases satisfiability of MSO
formulas can be checked efficiently. This is mainly because of the use of efficiently
manipulable data structures like BDDs [2], and the fact that formulas used in
practical cases do not coincide with those that witness the high complexity.

Thus, the theoretical complexity bounds proved in this paper need to be seen
as a high alert warning sign for someone building a model checking tool based
on HFL. This will certainly require the use of efficient data structures as well as
other clever optimisations. However, only such an implementation will be able
to judge the use of HFL as a specification formalism properly.

The exact reason for the high complexity also remains to be analysed from
a theoretical point of view. This is begun in Corollary ?? showing that it is
only the formula part of the input. Furthermore, the reduction in Section 3
hints that in order to reach high levels in ElTime, one needs formulas of type
(. . . ((P → P) → P) → . . .) → P) which probably do not occur for natural



correctness properties anyway. It remains to be seen whether this is reflected on
the theoretical side, i.e. whether the model checking problem for HFL restricted
to formulas of order k type is complete for k′ExpTime for some k′ with a
constant distance to k.
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