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Abstract. The paper studies the expressivity, relative succinctness and
complexity of satisfiability for hybrid extensions of the branching-time
logics CTL and CTL+ by variables. Previous complexity results show
that only fragments with one variable do have elementary complexity.
It is shown that H1CTL+ and H1CTL, the hybrid extensions with one
variable of CTL+ and CTL, respectively, are expressively equivalent but
H1CTL+ is exponentially more succinct than H1CTL. On the other hand,
HCTL+, the hybrid extension of CTL with arbitrarily many variables
does not capture CTL∗, as it even cannot express the simple CTL∗ prop-
erty EGFp. The satisfiability problem for H1CTL+ is complete for triply
exponential time, this remains true for quite weak fragments and quite
strong extensions of the logic.

1 Introduction

Reasoning about trees is at the heart of many fields in computer science . A
wealth of sometimes quite different frameworks has been proposed for this pur-
pose, according to the needs of the respective application. For reasoning about
computation trees as they occur in verification, branching-time logics like CTL
and tree automata are two such frameworks. In some settings, the ability to
mark a node in a tree and to refer to this node turned out to be useful. As
neither classical branching-time logics nor tree automata provide this feature,
many different variations have been considered, including tree automata with
pebbles [8,22,25], memoryful CTL∗ [15], branching-time logics with forgettable
past [17,18], and logics with the “freeze” operator [12]. It is an obvious question
how this feature can be incorporated into branching-time logics without losing
their desirable properties which made them prevailing in verification [23].

This question leads into the field of hybrid logics, where such extensions of
temporal logics are studied [3]. In particular, a hybrid extension of CTL has
been introduced in [25]. As usual for branching-time logics, formulas of their
hybrid extensions are evaluated at nodes of a computation tree, but it is possible
to bind a variable to the current node, to evaluate formulas relative to the root
and to check whether the current node is bound to a variable. As an example,
the HCTL-formula ↓x@rootEF(p ∧ EFx) intuitively says “I can place x at the
current node, jump back to the root, go to a node where p holds and follow some
(downward) path to reach x again. Or, equivalently: “there was a node fulfilling
p in the past of the current node”.
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Fig. 1. Expressivity and complexity of satisfiability for hybrid branching-time logics.
The lines indicate strict inclusion, unrelated logics are incomparable.

In this paper we continue the investigation of hybrid extensions of classi-
cal branching-time logics started in [25]. The main questions considered are
(1) expressivity, (2) complexity of the satisfiability problem, and (3) succinctness.
Figure 1 shows our results in their context.

Classical branching-time logics are CTL (with polynomial time model check-
ing and exponential time satisfiability) and CTL∗ (with polynomial space model
checking and doubly exponential time satisfiability test). As CTL is sometimes
not expressive enough1 and CTL∗ is considered too expensive for some applica-
tions, there has been an intense investigation of intermediate logics. We take up
two of them here: CTL+, where a path formula is a Boolean combination of basic
path formulas2 and ECTL, where fairness properties can be stated explicitly.

Whereas (even simpler) hybrid logics are undecidable over arbitrary transi-
tion systems [1], their restriction to trees is decidable via a simple translation
to Monadic Second Order logic. However, the complexity of the satisfiability
problem is high even for simple hybrid temporal logics over the frame of natural
numbers: nonelementary [9] , even if only two variables are allowed [21,25]. The
one variable extension of CTL, H1CTL, behaves considerably better, its satis-
fiability problem can be solved in 2EXPTIME [25]. This is the reason why
this paper concentrates on natural extensions of this complexity-wise relatively
modest logic. Even H1CTL can express properties that are not bisimulation-
invariant (e.g., that a certain configuration can be reached along two distinct
computation paths) and is thus not captured by CTL∗. In fact, [25] shows that
H1CTL captures and is strictly stronger than CTL with past, another extension
of CTL studied in previous work [14]. One of our main results is that H1CTL
(and actually even HCTL+) does not capture ECTL (and therefore not CTL∗) as
it cannot express simple fairness properties like EGFp. To this end, we introduce
a simple Ehrenfeucht-style game (in the spirit of [2]). We show that existence of
a winning strategy for the second player in the game for a property P implies
that P cannot be expressed in HCTL+.

In [25] it is also shown that the satisfiability problem for H1CTL∗ has nonele-
mentary complexity. We show here that the huge complexity gap between

1 Some things cannot be expressed at all, some only in a very verbose way.
2 Precise definitions can be found in Section 2.
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H1CTL and H1CTL∗ does not yet occur between H1CTL and H1CTL+: we
prove that there is only an exponential complexity gap between H1CTL and
H1CTL+, even when H1CTL+ is extended by past modalities and fairness op-
erators. We pinpoint the exact complexity by proving the problem complete for
3EXPTIME.

The exponential gap between the complexities for satisfiability of H1CTL and
H1CTL+ already suggests that H1CTL+ might be exponentially more succinct
than H1CTL. In fact, we show an exponential succinctness gap between the two
logics by a proof based on the height of finite models. It should be noted that
an O(n)!-succinctness gap between CTL and H1CTL was established in [25]. We
mention that there are other papers on hybrid logics and hybrid tree logics that
do not study expressiveness or complexity issue, e.g., [10,20].

The paper is organized as follows. Definitions of the logics we use are in
Section 2. Expressivity results are presented in Section 3. The complexity results
can be found in Section 4, the succinctness results in Section 5. Proofs omitted
due to space constraints can be found in the full version of this paper [13].

Note. We mourn the loss of Volker Weber, who died suddenly and unexpectedly
on the 7th of April 2009. He was 30 years old. Volker contributed a lot to the
present paper which we prepared and submitted after his death.

2 Definitions

Tree logics. We first review the definition of CTL and CTL∗ [5]. Formulas of
CTL∗ are composed from state formulas ϕ and path formulas ψ. They have the
following abstract syntax.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ

We use the customary abbreviations Fψ for �Uψ and Gψ for ¬F¬ψ. The
semantics of formulas is defined inductively. The semantics of path formulas is
defined relative to a tree3 T , a path π of T and a position i ≥ 0 of this path.
E.g., T , π, i |= ψ1Uψ2 if there is some j ≥ i such that T , π, j |= ψ2 and, for each
l, i ≤ l < j, T , π, l |= ψ1. The semantics of state formulas is defined relative to
a tree T and a node v of T . E.g., T , v |= Eψ if there is a path π in T , starting
from v such that T , π, 0 |= ψ. A state formula ϕ holds in a tree T if it holds in
its root. Thus, sets of trees can be defined by CTL∗ state formulas.

CTL is a strict sub-logic of CTL∗. It allows only path formulas of the forms
Xϕ and ϕ1Uϕ2 where ϕ,ϕ1, ϕ2 are state formulas. CTL+ is the sub-logic of
CTL∗ where path formulas are Boolean combinations of formulas of the forms
Xϕ and ϕ1Uϕ2 and ϕ,ϕ1, ϕ2 are state formulas.

3 In general, we consider finite and infinite trees and, correspondingly, finite and in-
finite paths in trees. It should always be clear from the context whether we restrict
attention to finite or infinite trees.
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Hybrid logics. In hybrid logics, a limited use of variables is allowed. For a
general introduction to hybrid logics we refer to [3]. As mentioned in the intro-
duction, we concentrate in this paper on hybrid logic formulas with one variable
x. However, as we also discuss logics with more variables, we define hybrid logics
HkCTL∗ with k variables. For each k ≥ 1, the syntax of HkCTL∗ is defined by
extending CTL∗ with the following rules for state formulas.

ϕ ::= ↓xi ϕ | xi | @xi ϕ | root | @root ϕ

where i ∈ {1, . . . , k}. The semantics is now relative to a vector u = (u1, . . . , uk)
of nodes of T representing an assignment xi 	→ ui. For a node v and i ≤ k we
write u[i/v] to denote (u1, . . . , ui−1, v, ui+1, . . . , uk). For a tree T a node v and
a vector u, the semantics of the new state formulas is defined as follows.

T , v,u |= ↓xi ϕ if T , v,u[i/v] |= ϕ
T , v,u |= xi if v = ui

T , v,u |= @xi ϕ if T , ui,u |= ϕ
T , v,u |= root if v is the root of T
T , v,u |= @root ϕ if T , r,u |= ϕ, where r is the root of T

Similarly, the semantics of path formulas is defined relative to a tree T , a path
π of T , a position i ≥ 0 of π and a vector u. Intuitively, to evaluate a formula
↓xi ϕ one puts a pebble xi on the current node v and evaluates ϕ. During the
evaluation, xi refers to v (unless it is bound again by another ↓xi-quantifier).

The hybrid logics HkCTL+ and HkCTL are obtained by restricting HkCTL∗

in the same fashion as for CTL+ and CTL, respectively. The logic HCTL is the
union of all logics HkCTL, likewise HCTL+ and HCTL∗.

(Finite) satisfiability of formulas, the notion of a model and equivalence of
two (path and state) formulas ψ and ψ′ (denoted ψ ≡ ψ′) are defined in the
obvious way. We say that a logic L′ is at least as expressive as L (denoted as
L ≤ L′) if for every ϕ ∈ L there is a ϕ′ ∈ L′ such that ϕ ≡ ϕ′. L and L′ have
the same expressive power if L ≤ L′ and L′ ≤ L. L′ is strict more expressive
than L if L ≤ L′ but not L′ ≤ L.

Size, depth and succinctness. For each formula ϕ, we define its size |ϕ| as
usual and its depth d(ϕ) as the nesting depth with respect to path quantifiers.

The formal notion of succinctness is a bit delicate. We follow the approach
of [11] and refer to the discussion there. We say that a logic L is h-succinct in
a logic L′, for a function h : N → R, if for every formula ϕ in L there is an
equivalent formula ϕ′ in L′ such that |ϕ′| ≤ h(|ϕ|). L is F-succinct in L′ if L is
h-succinct in L′, for some h in function class F . We say that L is exponentially
more succinct than L′ if L is not h-succinct in L′, for any function h ∈ 2o(n).

Normal forms. We say that a HkCTL formula is in E-normal form, if it does
not use the path quantifier A at all. A formula is in U-normal form if it only
uses the combinations EX, EU and AU (but not, e.g., EG and AX).
Proposition 1. Let k ≥ 1. For each HkCTL formula ϕ there is an equiva-
lent HkCTL-formula of linear size in U-normal form and an equivalent HkCTL-
formula in E-normal form.
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3 Expressivity of HCTL and HCTL+

3.1 The Expressive Power of HCTL+ Compared to HCTL

Syntactically CTL+ extends CTL by allowing Boolean combinations of path
formulas in the scope of a path quantifier A or E. Semantically this gives CTL+

the ability to fix a path and test its properties by several path formulas. However
in [6] it is shown that every CTL+-formula can be translated to an equivalent
CTL-formula. The techniques used there are applicable to the hybrid versions
of these logics.

Theorem 2. For every k ≥ 1, HkCTL has the same expressive power as
HkCTL+.

Proof (Sketch). For a given k ≥ 1 it is clear that every HkCTL-formula is also a
HkCTL+-formula. It remains to show that every HkCTL+-formula can be trans-
formed into an equivalent HkCTL-formula. In [6] , rules for the transformation of
a CTL+ formula into an equivalent CTL formula are given. Here, we have to con-
sider the additional case in which a subformula in the scope of the ↓x-operator
is transformed. However, it is not hard to see that the transformation extends
to this case as any assignment to a variable x can be viewed as a proposition
that only holds in one node. It should be noted that for a HkCTL+-formula ϕ
the whole transformation constructs a HkCTL-formula of size 2O(|ϕ| log |ϕ|). �


The transformation algorithm in Theorem 2 also yields an upper bound for the
succinctness between H1CTL+ and H1CTL.

Corollary 3. H1CTL+ is 2O(n log n)-succinct in H1CTL.

3.2 Fairness Is Not Expressible in HCTL+

In this subsection, we show the following result.

Theorem 4. There is no formula in HCTL+ which is logically equivalent to

E
∞
Fp.

Here, T , v,u |= E
∞
Fϕ if there is a path π starting from v that has infinitely

many nodes v′ with T , v′,u |= ϕ. As an immediate consequence of this theorem,
HCTL+ does not capture CTL∗.

In order to prove Theorem 4, we define an Ehrenfeucht-style game that cor-
responds to the expressive power of HCTL. A game for a different hybrid logic
was studied in [2]. We show that if a set L of trees can be characterized by a
HCTL-formula, the spoiler has a winning strategy in the game for L. We expect
the converse to be true as well but do not attempt to prove it as it is not needed
for our purposes here.

Let L be a set of (finite or infinite) trees. The HCTL-game for L is played by
two players, the spoiler and the duplicator. First, the spoiler picks a number k
which will be the number of rounds in the core game. Afterwards, the duplicator
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chooses two trees, T ∈ L and T ′ �∈ L. The goal of the spoiler is to make use of
the difference between T and T ′ in the core game.

The core game consists of k rounds of moves, where in each round i a node
from T and a node from T ′ are selected according to the following rules. The
spoiler can choose whether she starts her move in T or in T ′ and whether she
plays a node move or a path move.

In a node move she simply picks a node from T (or T ′) and the duplicator
picks a node in the other tree. We refer to these two nodes by ai (in T ) and a′i
(in T ′), respectively, where i is the number of the round.

In a path move, the spoiler first chooses one of the trees. Let us assume she
chooses T , the case of T ′ is completely analogous. She picks an already selected
node aj of T , for some j < i and a path π starting in aj. However, a node aj

can only be selected if there is no other node al, l < i below aj . The duplicator
answers by selecting a path π′ from a′j . Then, the spoiler selects some node a′i
from π′ and the duplicator selects a node ai from π.

The duplicator wins the game if at the end the following conditions hold, for
every i, j ≤ k:

– ai is the root iff a′i is the root;
– ai = aj iff a′i = a′j ;
– for every proposition p, p holds in ai iff it holds in a′i;
– there is a (downward) path from ai to aj iff there is a path from a′i to a′j ;
– aj is a child of ai iff a′j is a child of a′i.

Theorem 5. If a set L of (finite and infinite) trees can be characterized by a
HCTL-formula, the spoiler has a winning strategy on the HCTL-game for L.

The proof of Thm. 5 is by induction on the structure of the HCTL-formula [13].
Now we turn to the proof of Thm. 4. It makes use of the following lemma

which is easy to prove using standard techniques (see, e.g., [19]). The lemma
will be used to show that the duplicator has certain move options on paths
starting from the root. The parameter Sk given by the lemma will be used below
for the construction of the structures Bk.

For a string s ∈ Σ∗ and a symbol a ∈ Σ let |s| denote the length of s and |s|a
the number of occurrences of a in s.

Lemma 6. For each k ≥ 0 there is a number Sk ≥ 0 such that, for each s ∈
{0, 1}∗ there is an s′ ∈ {0, 1}∗ such that |s′| ≤ Sk and s ≡k s

′.

Here, ≡k is equivalence with respect to the k-round Ehrenfeucht game on strings
(or equivalently with respect to first-order sentences of quantifier depth k). It
should be noted that, if k ≥ 3 and s ≡k s

′, then the following conditions hold.

– s ∈ {0}∗ implies s′ ∈ {0}∗.
– If the first symbol of s is 1 the same holds for s′.
– If s does not have consecutive 1’s, s′ does not either.
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We fix some Sk, for each k.
The proof of Thm. 4 uses the HCTL-game defined above. Remember that the

spoiler opens the game with the choice of a k ∈ N and the duplicator responds
with two trees T ∈ L and T ′ �∈ L. We want to show that the duplicator has a
winning strategy so we need to construct such trees, and then need to show that
the duplicator has a winning strategy for the k-round core game on T and T ′.

We will use transition systems in order to finitely represent infinite trees. A
transition system is a K = (V,E, v0, �) where (V,E) is a directed graph, v0 ∈ V ,
and � labels each state v ∈ V with a finite set of propositions. The unraveling
T (K) is a tree with node set V + and root v0. A node v0 . . . vn−1vn is a child of
v0 . . . vn−1 iff (vn−1, vn) ∈ E. Finally, the label of a node v0 . . . vn is �(vn).

Inspired by [7] we define transition systems Ai, for each i ≥ 0, as depicted in
Fig. 2 (a). Nodes in which p holds are depicted black, the others are white (and
we subsequently refer to them as black and white nodes, respectively).

A0 : Ak : ⇒Ak−1

(a)

Bk : ⇒ANk

(b)

Fig. 2. Illustration of the definition of (a) Ak and (b) Bk. The path of white nodes in
Bk consists of Sk nodes. The double arrow ⇒ indicates that every white node on the
left is connected to every black node on the right.

Thus, A0 has a black (root) node and a white node with a cycle. Ai has a
black (root) node, a white node with a cycle and a copy of Ai−1. Furthermore,
there is an edge from the white node below the root of Ai to each black node in
the copy of Ai−1 (as indicated by ⇒). Let Ti := T (Ai). We first introduce some
notation and state some simple observations concerning the tree Ti.

(1) For a node v in Ti we denote the maximum number of black nodes on a path
starting in v (and not counting v itself) the height h(v) of v. Then the root
of Ti has height i.

(2) If u and v are black nodes of some Ti with h(u) = h(v) then the subtrees
T (u) and T (v) induced by u and v are isomorphic.

(3) The height of a tree is defined as the height of its root.
(4) A white node v of height i has one white child (of height i) and i black

children of heights 0, . . . , i− 1. A black node has exactly one white son.
(5) Each finite path π of Ti induces a string s(π) ∈ {0, 1}∗ in a natural way:

s(π) has one position, for each node of π, carrying a 1 iff the corresponding
node is black.

(6) The root of Ti has only one child. We call the subtree induced by this (white!)
child Ui. If v is a white node of height i then T (v) is isomorphic to Ui.
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Fig. 3. Illustration of the case where h(v) ≤ Nk−1. The colors of v and v′ are not
known a priori.

Next we define numbers Nk inductively as follows: N0 := 0 and Nk := Nk−1 +
max(S3, Sk) + 1.

The following lemma shows that the duplicator has a winning strategy in two
structures of the same kind, provided they both have sufficient depth.

Lemma 7. Let i, j, k be numbers such that i, j ≥ Nk. Then the duplicator has a
winning strategy in the k-round core game on (a) Ti and Tj, and (b) Ui and Uj.

Proof (Sketch). In both cases, the proof is by induction on k, the case k = 0
being trivial. We consider (a) first. Let k > 0 and let us assume that the spoiler
chooses v ∈ Ti in her first node move. We distinguish two cases based on the
height of v.

h(v) > Nk−1: Let π denote the path from r to v. By Lemma 6 there is a string
s′ with |s′| ≤ Sl such that s(π) ≡l s

′, where l = max(k, 3). Here, l ≥ 3
guarantees in particular that s′ does not have consecutive 1’s. As j ≥ Nk =
Nk−1 + Sl + 1, there is a node v′ of height ≥ Nk−1 in Tj such that the
path π′ from r′ to v′ satifies s(π′) = s′. The duplicator chooses v′ as her
answer in this round. By a compositional argument, involving the induction
hypothesis, it can be shown that the duplicator has a winning strategy for
the remaining k − 1 rounds.

h(v) ≤ Nk−1: Let π be the path from r to v, and u1 be the highest black node on
π with h(u1) ≤ Nk−1. Then we must have h(u1) = Nk−1 because π contains
black nodes of height up to i ≥ Nk. Hence, u1 has a white parent u2 s.t.
h(u2) > Nk−1. We determine a node u′2 in T ′ in the same way we picked
v′ for v in the first case. In particular, h(u′2) ≥ Nk−1 and for the paths ρ
leading from r to u2 and ρ′ leading from r′ to u′2 we have s(ρ) ≡k s(ρ′).

Let u′1 be the black child of u′2 of height h(u1). As h(u1) = h(u′1) there is
an isomorphism σ between T (u1) and T (u2) and we choose v′ := σ(v). An
illustration is given in Figure 3.

The winning strategy of the duplicator for the remaining k − 1 rounds
follows σ on T (u1) and T (u2) and is analogous to the first case in the rest
of the trees. The case of path moves is very similar, see [13].

�

We are now prepared to prove Thm. 4.
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Proof (of Thm. 4). By Thm. 2 it is sufficient to show that no formula equivalent

to E
∞
Fp exists in HCTL. To this end, we prove that the duplicator has a winning

strategy in the HCTL-game for the set of trees fulfilling E
∞
Fp.

We define transition systems Bk, for k ≥ 0. As illustrated in Figure 2 (b), Bk

has a black root from which a path of length Sk of white nodes starts. The last
of these white nodes has a self-loop and an edge back to the root. Furthermore,
Bk has a copy of ANk

and there is an edge from each white node of the initial

path to each black node of the copy of ANk
. Clearly, for each k, T (Bk) |= E

∞
Fp

and T (Ak) �|= E
∞
Fp.

It can be shown that, for each k, the duplicator has a winning strategy in the
k-round core game on T = T (Bk) and T ′ = T (ANk

) [13]. �


4 Satisfiability of H1CTL+

Theorem 8. Satisfiability of H1CTL+ is hard for 3EXPTIME.

Proof. The proof is by reduction from a tiling game (with 3EXPTIME com-
plexity) to the satisfiability problem of H1CTL+. Actually we show that the
lower bound even holds for the fragment of H1CTL+ without the U-operator
(but with the F-operator instead).

An instance I = (T,H, V, F, L, n) of the 2EXP-corridor tiling game consists
of a finite set T of tile types, two relations H,V ⊆ T × T which constitute
the horizontal and vertical constraints, respectively, two sets F,L ⊆ T which
describe the starting and end conditions, respectively, and a number n given
in unary. The game is played by two players, E and A, on a board consisting
of 22n

columns and (potentially) infinitely many rows. Starting with player E
and following the constraints H , V and F the players put tiles to the board
consecutively from left to right and row by row. The constraints prescribe the
following conditions:

– A tile t′ can only be placed immediately to the right of a tile t if (t, t′) ∈ H .
– A tile t′ can only be placed immediately above a tile t if (t, t′) ∈ V .
– The types of all tiles in the first row belong to the set F .

Player E wins the game if a row is completed containing only tiles from L or if
A makes a move that violates the constraints. On the other hand, player A wins
if E makes a forbidden move or the game goes on ad infinitum.

A winning strategy for E has to yield a countermove for all possible moves of
A in all possible reachable situations. Furthermore, the starting condition and
the horizontal and vertical constraints have to be respected. Finally, the winning
strategy must guarantee that either player A comes into a situation where he
can no longer make an allowed move or a row with tiles from L is completed.

The problem to decide for an instance I whether player E has a winning
strategy on I is complete for 3EXPTIME. This follows by a straightforward
extension of [4].

�
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We can obtain, by simple instantiation, a consequence of this lower complexity
bound which will be useful later on in proving the exponential succinctness of
H1CTL+ in H1CTL.

Corollary 9. There are finitely satisfiable H1CTL+ formulas ϕn, n ∈ N, of size
O(n) s.t. every tree model Tn of ϕn has height at least 222n

.

Proof. It is not difficult to construct instances In, n ∈ N, of the 2EXP-tiling
game with |I| = O(n) over a set T of tiles with |T | = O(1) such that player
E has a winning strategy and any successful tiling of the 22n

-corridor requires
222n

rows. In order to achieve this, one encodes bits using tiles and forms the
constraints in a way that enforces the first row to encode the number 0 in binary
of length 22n

, and each other row to encode the successor in the natural number
of the preceding row, while winning requires the number 222n

to be reached. The
construction in the proof of Thm. 8 then maps each such In to a formula ϕn of
size O(n) that is finitely satisfiable such that every finite model Tn of ϕn encodes
a winning strategy for player E in the 22n

-tiling game. Such a strategy will yield
a successful tiling of the 22n

-corridor for any counterstrategy of player A, and
any such tiling is encoded on a path of Tn which contains each row of length 22n

as a segment of which there are 222n

many. Thus, Tn has to have height at least
22n · 222n

. �


Using the ideas of the transformation mentioned in Theorem 2 we can show that
the lower bound for H1CTL+ is optimal. Even for strictly more expressive logics
than H1CTL+ the satisfiability problem remains in 3EXPTIME.

Theorem 10. The satisfiability problem for H1CTL+ is 3EXPTIME-complete.

Proof. The lower bound follows from Thm. 8. The upper bound of 3EXPTIME

also holds when H1CTL+ is extended by the fairness operators
∞
F and

∞
G and the

operators Y (previous) and S (since) [14] which are the past counterparts of X
and U. The proof is by an exponential reduction to the satisfiability problem of
H1CTL extended by Y and S which is 2EXPTIME-complete [24]. It should be

noted that because of Thm. 4 the extension of H1CTL+ by
∞
F yields a strictly

more expressive logic. �


5 The Succinctness of H1CTL+ w.r.t. H1CTL

In Corollary 3 an upper bound of 2O(n log n) for the succinctness of H1CTL+ in
H1CTL is given. In this section we establish the lower bound for the succinctness
between the two logics. Actually we show that H1CTL+ is exponentially more
succinct than H1CTL. The model-theoretic approach we use in the proof is
inspired by [16]. We first establish a kind of small model property for H1CTL.

Theorem 11. Every finitely satisfiable H1CTL-formula ϕ with |ϕ| = n has a
model of depth 22O(n)

.
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Proof. In [24] it was shown that for every H1CTL-formula ϕ, an equivalent non-
deterministic Büchi tree automaton Aϕ with 22O(|ϕ|)

states can be constructed.
It is easy to see by a pumping argument that if Aϕ accepts some finite tree at
all, it accepts one of depth 22O(|ϕ|)

. It should be noted that the construction in
[24] only constructs an automaton that is equivalent to ϕ with respect to sat-
isfiability. However, the only non-equivalent transformation step is from ϕ to a
formula ϕ′ without nested occurrences of the ↓-operator (Lemma 4.3 in [24]). It
is easy to see that this step only affects the propositions of models but not their
shape let alone depth. �


Corollary 9 and Theorem 11 together immediately yield the following.

Corollary 12. H1CTL+ is exponentially more succinct than H1CTL.

6 Conclusion

The aim of this paper is to contribute to the understanding of one-variable
hybrid logics on trees, one of the extensions of temporal logics with reasonable
complexity. We showed that H1CTL+ has no additional power over H1CTL
but is exponentially more succinct, we settled the complexity of H1CTL+ and
showed that hybrid variables do not help in expressing fairness (as HCTL+

cannot express EGFp).
However, we leave a couple of issues for further study, including the following.

– We conjecture that the succinctness gap between H1CTL+ and H1CTL is
actually θ(n)!.

– We expect the HCTL-game to capture exactly the expressive power of HCTL.
Remember that here we needed and showed only one part of this equivalence.

– The complexity of Model Checking for HCTL has to be explored thoroughly,
on trees and on arbitrary transition systems. In this context, two possible
semantics should be explored: the one, where variables are bound to nodes
of the computation tree and the one which binds nodes to states of the
transition system (the latter semantics makes the satisfiability problem un-
decidable on arbitrary transition systems [2])
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