
A Game Based Approach to CTL∗

Model Checking

Martin Lange

LFCS, Division of Informatics
The University of Edinburgh

King’s Buildings, Mayfield Road
Edinburgh EH9 3JZ

Scotland, UK
martin@dcs.ed.ac.uk

Supervisor Colin Stirling
LFCS, Division of Informatics
The University of Edinburgh

Keywords: model checking, verification, parallel processes, concurrent systems,
games, temporal logic, full branching time, CTL∗, interactive plays

Abstract. We introduce a definition of model checking games for the
full branching time logic CTL∗ and sketch a proof of their correctness.
These games are a helpful technique for using model checking in the
verification of concurrent systems, because they may not only show that
a specified property is violated, but also why it is.

1 Verification of Concurrent Systems

Mathematically, model checking is the process of deciding whether a structure
as an interpretation satisfies a formula. This makes it a useful and broadly ac-
cepted technique for verifying parallel processes. However, verification of concur-
rent systems is often done in combination with specification in the framework
of developing them. For such a process a simple yes/no answer, that a model
checking algorithm usually yields, is not sufficient. Moreover, techniques that
show why or where a certain property is violated, are required.

2 The Game Based Approach

Model checking games being played by two players on the structure and the
formula provide the feature that has been outlined in the first section. Answering
the question about the property being fulfilled turns out to be equivalent to
finding a winning strategy for one of the players. Once such a strategy is found,
i.e. computed by a verification tool for example, it can be used to enable an
interactive play between the tool and the developer.

In this case we will deal with transition systems and the full branching time
logic CTL∗ [2] only, although there are other models for concurrency, too. CTL∗

subsumes other temporal logics like LTL [5] and CTL [1] syntactically, and thus
the results on the games for CTL∗ easily carry over to these other logics as well.

On the other hand, CTL∗ can be translated into the modal µ-calculus [3], for
which such model checking games already exist [6]. However, using those games
for checking properties being specified in CTL∗ exhibits a major disadvantage.
The play does not proceed on subformulas of the original formula. That makes
it hard to understand why a certain property is violated.

After recalling the syntax and semantics of CTL∗, we will give a definition
of how model checking games for CTL∗ may look like. The first goal is to prove
their correctness, i.e. to show that the mentioned equivalence between winning
strategies on the games’ side and the satisfaction on the logical side really holds.
The proof of this theorem is expected to be constructive, so that it already
sketches an algorithm for deciding the model checking problem. The algorithm
ought to be local, i.e. it must be possible to expand the transition system step
by step throughout the model checking process. Its time complexity is expected
to be exponential, for the problem was shown to be PSPACE-complete [4].

The desired interactive games that can be played by a verification tool and
its user usually rely on the data structures that were used by the model checking
algorithm. In this case playing means following a path through a graph, following
the game rules and a winning strategy. Yet it is not known whether the strategies
for these games are history free or not.

There is a fairly simple way of defining games for CTL∗ following exactly the
semantics. This would involve players to choose whole paths in the transition
system which contradicts the locality and would result in a horrendous space
complexity as well. Hence, another requirement to the games is the ability to
choose paths stepwise. Indeed, we will call this the main requirement.

3 Model Checking Games for CTL�
Let Prop = {tt, ff, Q1, Q1, . . .} be a set of propositional constants. A transition
system T is a triple (S, T, L) with (S, T) being a directed graph. L : S → 2Prop

labels the states, such that for all s ∈ S: tt ∈ L(s), ff 6∈ L(s) and Q ∈ L(s) iff
Q 6∈ L(s). We assume that every state in the graph has a successor. The syntax
of CTL∗ is defined by

ϕ ::= Q | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | Eϕ | Aϕ

where Q ranges over Prop. The set of subformulas Sub(ϕ) for a given ϕ is
defined in the usual way. Additionally, X(ϕUψ), ϕ∧X(ϕUψ), ψ∨(ϕ∧X(ϕUψ))
are subformulas of ϕUψ, too. Similarily,X(ϕRψ), ϕ∨X(ϕRψ), ψ∧(ϕ∨X(ϕRψ))
are subformulas of ϕRψ as well.

The semantics of a CTL∗ formula is explained using paths π = s0s1 . . . sn . . .

of a transition system. With π(i) we denote the suffix of π beginning with the
the state si.

2

– T , π |= Q iff Q ∈ L(s0)
– T , π |= ϕ ∧ ψ iff T , π |= ϕ and T , π |= ψ

– T , π |= ϕ ∨ ψ iff T , π |= ϕ or T , π |= ψ

– T , π |= Aϕ iff for all paths σ = s0σ
′ implies T , σ |= ϕ

– T , π |= Eϕ iff there exists a path σ = s0σ
′ and T , σ |= ϕ

– T , π |= Xϕ iff T , π(1) |= ϕ

– T , π |= ϕUψ iff there exists i ∈ IN s.t. T , π(i) |= ψ and for all j < i :
T , π(j) |= ϕ

– T , π |= ϕRψ iff for all i ∈ IN : T , π(i) |= ψ or there exists a j ≤ i s.t.
T , π(j) |= ϕ

A formula ϕ is called a state formula if ϕ ≡ Aϕ.1 In the following we will
deal with state formulas only. Also, we will write T , s0 |= ϕ in these cases.
Formulas not being state formulas are called path formulas. They will still occur
as subformulas of state formulas.

The games are played by two players, namely I and II.2 It is player II’s task
to show that a formula is fulfilled whereas player I tries to show the opposite. A
game may consist of several plays, and a play is a finite sequence of configurations
following certain rules. A configuration is an element of {I, II} × S × Sub(ϕ) ×
2Sub(ϕ).

Take ϕ := A(XQ ∨XQ). In a naive version of games one might keep record
of the A-quantifier, making player I to choose the next state whenever the play
reaches an X-formula because it is a universal move and thus has to be done
by player I. The next playing position would be the ∨, so that player II, doing
existential moves, selects XQ for example. Now player I might be able to choose
a next state in which Q might not be valid. Indeed, player I would always win
starting from a state that has two distinct successors, of which exactly one
satisfies Q. However, the formula is a tautology, so player II should be able to
win every game regardless of how the transition system looks like. This ambiguity
arises from the fact that following the semantics the path must have been chosen
by player I already when player II chooses at the ∨ position. We overcome this
by allowing player II in this case to redo her move after player I has done his.

Given a transition system T with starting state s and a state formula ϕ every
play of the game ΓT (s, ϕ) begins with the configuration I, s ⊢ [ϕ]. In general, a
configuration looks like p, t ⊢ [ψ], Ψ , where p is a player called the pathplayer,
t ∈ S, {ψ}∪Ψ ⊆ Sub(ϕ). In this case, ψ is called to be in focus. The game rules
are given in figure 1 and are to be read downwards. For example,

I, s ⊢ [ϕ0 ∨ ϕ1], Φ
I, s ⊢ [ϕi], ϕ1−i, Φ

II

means: If the current configuration is the upper one then player II performs a
choice on the formula and the next configuration will be the lower one.

1 Hence, it is always possible to bring a state formula into the form Aϕ.
2 In the following “he” will denote player I whereas “she” will stand for either player

II or a general case.

3

(1)
I, s ⊢ [ϕ0 ∧ ϕ1], Φ

I, s ⊢ [ϕi], Φ
I (2)

II, s ⊢ [ϕ0 ∨ ϕ1], Φ

II, s ⊢ [ϕi], Φ
II

(3)
I, s ⊢ [ϕ0 ∨ ϕ1], Φ

I, s ⊢ [ϕi], ϕ1−i, Φ
II (4)

II, s ⊢ [ϕ0 ∧ ϕ1], Φ

II, s ⊢ [ϕi], ϕ1−i, Φ
I

(5)
p, s ⊢ [ϕUψ], Φ

p, s ⊢ [ψ ∨ (ϕ ∧X(ϕUψ))], Φ
(6)

p, s ⊢ [ϕRψ], Φ

p, s ⊢ [ψ ∧ (ϕ ∨X(ϕRψ))], Φ

(7)
I, s ⊢ [Xψ], ϕ0 ∧ ϕ1, Φ

I, s ⊢ [Xψ], ϕi, Φ
I (8)

II, s ⊢ [Xψ], ϕ0 ∨ ϕ1, Φ

II, s ⊢ [Xψ], ϕi, Φ
II

(9)
I, s ⊢ [Xψ], ϕ0 ∨ ϕ1, Φ

I, s ⊢ [Xψ], ϕ0, ϕ1, Φ
(10)

II, s ⊢ [Xψ], ϕ0 ∧ ϕ1, Φ

II, s ⊢ [Xψ], ϕ0, ϕ1, Φ

(11)
p, s ⊢ [Xχ], ϕUψ,Φ

p, s ⊢ [Xχ], ψ ∨ (ϕ ∧X(ϕUψ)), Φ
(12)

p, s ⊢ [Xχ], ϕRψ,Φ

p, s ⊢ [Xχ], ψ ∧ (ϕ ∨X(ϕRψ)), Φ

(13)
p, s ⊢ [Aϕ], Φ

I, s ⊢ [ϕ]
(14)

p, s ⊢ [Eϕ], Φ

II, s ⊢ [ϕ]

(15)
p, s ⊢ [ϕ], Aψ, Φ

p, s ⊢ [ϕ], Φ
p (16)

p, s ⊢ [ϕ], Eψ, Φ

p, s ⊢ [ϕ], Φ
p

(17)
p, s ⊢ [ϕ], Q, Φ

p, s ⊢ [ϕ], Φ
p (18)

p, s ⊢ [Xϕ0],Xϕ1, . . . ,Xϕk

p, t ⊢ [ϕ0], ϕ1, . . . , ϕk

p

(19)
p, s ⊢ [ϕ], ψ, Φ

p, s ⊢ [ψ], ϕ, Φ
p

Fig. 1. The game rules.

The player to do the next choice with one of the rules (1) – (18) is determined
by the pathplayer and the focus. After each move the pathplayer’s opponent is
allowed to reset the focus with rule (19). A play is finished if it has reached a
configuration

1. p, t ⊢ [Q], Φ, or
2. II, t ⊢ [χUψ], Φ (resp. I, t ⊢ [χRψ], Φ) after the play already went through the

same configuration and player I (resp. II) never applied rule (19) in between,
or

3. p, s ⊢ [ϕ], Φ for the second time possibly using rule (19) in between.

In the first case player II wins if Q ∈ L(s), otherwise player I wins. In the second
case player I wins if the formula in focus is χUψ, and player II if it is χRψ. In
the third case p wins.

The main purpose of the focus is to pick out a particular formula from the set
of formulas that are examined on a path, and to determine the winner. The set
of formulas can be seen as a kind of insurance for the pathplayer’s opponent and

4

are to be understood disjunctively if player I is the pathplayer, or conjunctively
if it is player II. By setting the focus to a specific formula a player indicates
which formula she wants to prove, respectively he wants to refute. Thus a player
wins if she is able to stick to a particular formula and loses if she uses the focus
resetting rule too excessively.

A player has a winning strategy for, or simply wins, a game if she can force
every play into a winning position for herself. A successful gametree for player p
is a tree in which all the paths are plays of a certain game. Moreover, whenever
a configuration requires p to make a choice then there is only one successor in
the tree unless it is a leaf. All choices of p’s opponent are preserved in the tree.

The main result is the following:

Theorem 1. Let T be a transition system with a state s and ϕ ∈ CTL∗. Then
T , s |= ϕ iff player II wins the game ΓT (s, ϕ).

The completeness proof uses a nested induction. The outer one is on the
pathquantifier depths of the formula and reduces the original goal to formulas
with one path quantifier only. It is justified by the following lemma which is not
hard to prove.

Lemma 1. In a game subformulas of the form Aψ and Eψ represent seperate
games and, thus, can be considered as atomic propositions.

The inner induction is on the syntactical structure of the remaining path-
formula being guarded by one quantifier. This splits up into the two distinguish-
able cases ϕ = Aψ and ϕ = Eψ. In any case, a successful gametree for player II
is constructed from the fact that the transition system models the formula. The
Eψ case is less problematic because one can assume the existence of one good
path only. However, in the Aψ case one has to deal with a set of paths that may
change throughout the induction step cases.

The soundness proof consists of a copy of the completeness proof with the
roles of the players and boolean connectives, etc. being switched, if determinancy
and duality of the games has been shown. Indeed, it is easy to prove the following
lemmas.

Lemma 2. Every play has a uniquely determined winner.

Lemma 3.

a) Player II wins the game ΓT (s, ϕ) iff player I does not win ΓT (s, ϕ).
b) For every game one of the players has a winning strategy.

Example 1. Take a transition system T with just one state s satisfying the
proposition Q and an edge from s to itself. The formula to be examined is
ϕ = E(QU(ffRQ)). T with state s satisfies ϕ. The successful gametree with
annotated rule numbers is given in fig. 2.

Player II wins the play of the leftmost branch because of winning condition
three, and the one right beside it because of condition two.

5

I, s ⊢ [E(QU(ffRQ))]
(14)

II, s ⊢ [QU(ffRQ)]
(5)

II, s ⊢ [(ffRQ) ∨ (Q ∧X(QU(ffRQ)))]
(2)

II, s ⊢ [ffRQ]
(6)

II, s ⊢ [Q ∧ (ff ∨X(ffRQ))]
(4)

II, s ⊢ [Q], ff ∨X(ffRQ)
(19)

II, s ⊢ [ff ∨X(ffRQ)], Q
(17)

II, s ⊢ [ff ∨X(ffRQ)]
(2)

II, s ⊢ [X(ffRQ)]
(18)

II, s ⊢ [ffRQ]

II, s ⊢ [ff ∨X(ffRQ)],Q
(17)

II, s ⊢ [ff ∨X(ffRQ)]
(2)

II, s ⊢ [X(ffRQ)]
(18)

II, s ⊢ [ffRQ]

Fig. 2. A successful gametree.

It remains to examine the nature of winning strategies, as to say whether
they are history-free or not. If they are then the winning strategy simply is the
set of all edges (C,C′) in the tree, such that the winner of the play has to do a
choice in the configuration C. If they are not, meaning that certain choices done
by the winner depend on recent choices of her own, then the strategy might be
representable by a set of finite parts of paths in the gametree only.

References

1. E.M. Clarke and E.A. Emerson. Synthesis of Synchronization Skeletons for Branch-
ing Time Temporal Logic. In Logics of Programs: Workshop, volume 131 of Lecture
Notes in Computer Science, Yorktown Heights, New York, May 1981. Springer-
Verlag.

2. E. Allen Emerson and A. Prasad Sistla. Deciding full branching time logic. Infor-
mation and Control, 61(3):175–201, June 1984.

3. Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, December 1983.

4. Faron Moller and Graham M. Birtwistle. Logics for concurrency: structure versus
automata, volume 1043 of Lecture Notes in Computer Science. Springer-Verlag Inc.,
New York, NY, USA, 1996.

5. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sympo-
sium on the Foundations of Computer Science (FOCS-77), pages 46–57, Providence,
Rhode Island, October 31–November 2 1977. IEEE, IEEE Computer Society Press.

6. C. Stirling. Games for bisimulation and model checking, June 1997. Notes for
Mathfit instructional meeting on games and computation, Edinburgh
http://www.dcs.ed.ac.uk/home/cps/mathfit.ps.

6

