
Collapses of Fixpoint Alternation Hierarchies in Low

Type-Levels of Higher-Order Fixpoint Logic

Florian Bruse1, Martin Lange1, and Etienne Lozes2

1 School of Electr. Eng. and Computer Science, University of Kassel, Germany
2 I3S, Université Nice Sophia Antipolis, France

1 Higher-Order Fixpoint Logic

Higher-Order Fixpoint Logic (HFL) [10] is an extension of the modal µ-calculus Lµ [7] by means
of a typed λ-calculus. Its formulas not only denote predicates but also higher-order objects like
predicate transformers etc. Semantics is given via higher-order functions, ordered pointwise
to form complete lattices so that least and greatest fixpoint quantifiers can also be used over
higher-order predicates.

HFL obtains great expressive power in this way, as also indicated by its complexities: model
checking is non-elementary [1], satisfiability is undecidable [9, 10]. Its lack of the finite model
property (FMP) makes it inherently a logic for infinite-state systems; there is a close correspon-
dence between HFL model checking on finite-state systems and Lµ model checking on recursion
schemes [6]. This uses principles which, intuitively, swap non-regularity on the model side for
non-regularity on the logic side. This cannot be done straight-forwardly because of the much
richer fixpoint quantifier structure in HFL formulas compared to the plain greatest fixpoint
semantics in recursion schemes. In order to make the link between higher-order model checking
and model checking higher-order fixpoint logic even tighter we aim to understand the nature
of fixpoint alternation in HFL, i.e. the effects on expressiveness for formulas with entangled
fixpoint quantifiers of different kinds.

It turns out that the picture for HFL is a lot more complex than that for Lµ where the
alternation hierarchy is known to be strict in general [2] and to collapse only over classes of
“simple” structures, c.f. [5, 4]. The type-order of functions plays a dominant role in questions
after the hierarchy. It is strict up to HFL2, where HFLk denotes the fragment that uses functions
of order at most k [3]. Due to bisimulation-invariance, strictness already holds over the class of
trees but not necessarily over finite models due to the lack of the FMP.

This paper presents some principles which can be used to eliminate fixpoint alternation at
the expense of an increase in type order. They are, however, only applicable over particular
classes of (infinite) structures. Let T∼fin denote the class of transition systems that have finite
bisimulation quotients and, for all k ≥ 0, Tkfin the class of transition systems over which all
fixpoint iterations definable in HFLi stabilise after finitely many steps. It is not hard to see
that we have

T0
fin ⊇ T1

fin ⊇ · · · ⊇
⋂
i∈N

Tifin ⊇ T∼fin . (1)

We briefly sketch the logic HFL. For a more detailed description, including a formal definition
of the semantics via pointwise ordered monotone functions in complete lattices, see [10]. HFL
incorporates a simple type system with a single base type •, interpreted via sets of states in a
transition system, and a binary type constructor→ for building functions. The order of a type
is defined via ord(•) = 0 and ord(σ → τ) = max{ord(τ), 1 + ord(σ)}. HFL admits negation
normal form (NNF) [8]. We use this here and introduce the syntax without an explicit negation

Collapses of Fixpoint-Alternation Hierarchies in Low Type-Levels of HFL F. Bruse, M. Lange, E. Lozes

operator, but we shall be cavalier about this for the sake of readability. Formulas are of the
form

ϕ := p | p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µXτ .ϕ | νXτ .ϕ | λXτ .ϕ | ϕ ϕ

where X is a variable, p is an atomic proposition interpreted by a set of states in an LTS, a is
an action interpreted as a set of edges in an LTS, and τ is a type. The fragment HFLk, k ≥ 0,
consists of all formulas of type • which use types of order at most k.

The formula λf•→•.λX•.f 〈a〉X for instance has type (• → •) → • → • and is therefore
not of the base type itself. Hence, it can only occur as a subformula where it can be used to
modify a predicate transformer f by prepending a modal diamond-operation to its arguments.
The formula (µf•→•.λX•.X ∨ (f [a]X) ∨ (f [b]X)) p belongs to HFL1. Using the principles of
fixpoint unfolding and β-reduction one can see that it is equivalent to the formula

∨
w∈{a,b}∗ [w]p

of infinitary modal logic (which describes the non-universality problem for NFA).
For a last example, suppose ϕ(X) is a Lµ- or, equivalently HFL0-formula with a free predi-

cate variable X. Note that its occurrences are necessarily positive if ϕ is in NNF. Consider the
HFL1 formula1

GFP0
ϕ :=

(
µf•→•.λX•.(X ∧2∗(X → ϕ(X))) ∨ f ϕ(X)

)
>

where 2∗ψ := νY •.ψ∧
∧
a[a]Y checks that ψ holds on all reachable states. Again, using fixpoint

unfolding, one can see that GFP0
ϕ checks whether there is some n ∈ N such that the current state

s satisfies ϕn(>) and all reachable states satisfy ϕn(>) → ϕn+1(>), indicating that the nth
approximation of the fixpoint coincides with the (n + 1)th on those states that are reachable
from the current one. By bisimulation-invariance, non-reachable states do not contribute to
the fixpoint’s value. Hence, this shows that greatest fixpoints at type order 0 which can be
approximated with finitely many iterations, can be replaced uniformly by least fixpoints at type
order 1 (with an embedded but not entangled greatest fixpoint formula at type order 0).

Theorem 1. The HFL0- or Lµ-alternation hierarchy collapses to the alternation-free fragment
in HFL1 over T0

fin.

2 The Collapse of the Order-1 Hierarchy in HFL2

Let λx•.ϕ(F) be an HFL1-formula with a free predicate F of type • → •. Consider the formula

GFP1
ϕ :=

(
µg(•→•)→•→•.λF •→•λx•.

(
F x ∧H (λz•.F z → (λx•.ϕ(F)) z)

)
∨ (g ϕ(F))x

)
λy•.>

where H(•→•)→• will be defined below. It does not contain λx•.ϕ(F) or g. Hence, GFP1
ϕ

is alternation-free if ϕ is so. It follows the pattern of GFP0
ϕ encoding Kleene’s Theorem: to

compute the greatest fixpoint of the order-2 function F 7→ λx•.ϕ(F), start with the top element
of the respective lattice, namely λy•.>, and apply λx•.ϕ(F) until the iteration stabilises. This is
what the right disjunct (g ϕ(F))x of the formula above does. The conjunction on the left returns
the value of the fixpoint at the argument x via F x and verifies that the fixpoint iteration has
actually stabilised. This is more complex now; in order to check that a Lµ fixpoint has stabilised
it suffices to encode set inclusion. An HFL1 fixpoint is a predicate transformer, though. To
check that its iteration has stabilised, we need to verify that two consecutive approximations
agree as functions, i.e. on all possible arguments, which are all subsets of the underlying LTS.
Enumerating all subsets of an LTS is impossible, though, since some may not be HFL-definable.

This problem can be resolved in the following way.

1The implicit negation in the use of → can be eliminated, but at significant cost to readability.

2

Collapses of Fixpoint-Alternation Hierarchies in Low Type-Levels of HFL F. Bruse, M. Lange, E. Lozes

Lemma 2. Let T ∈ T1
fin, νF.λX.ϕ be an HFL1-fixpoint formula of type • → •, and F iT denote

its i-th approximant over T for i ∈ N. If F i+1
T (S) ⊇ F iT (S) for all state sets S definable in

modal logic, then the inclusion also holds for arbitrary HFL1-definable state sets.

Intuitively, this holds because the value of a greatest fixpoint on some HFLk-definable ar-
gument depends on the value of the fixpoint on some other arguments which are accessed via
HFLk-formulas. Hence, they must be HFLk-definable, too. Thus, it is sufficient to test for sta-
bilisation only on HFLk-definable arguments. For k ≥ 2 these are not easy to enumerate either
because of the use of fixpoint formulas and unbounded variables. Over each fixed structure in
T1

fin, though, any HFL1 formula is equivalent to a fixpoint-free formula since all fixpoint defini-
tions can be replaced by some finite approximation. Using β-reduction, we even get equivalence
to a formula of modal logic (ML).

Now consider the fixpoint formula H(•→•)→• defined as

H = νH(•→•)→•. λt•→•. (t p) ∧ (t p) ∧ (H λx•. t(〈a〉x)) ∧ (H λx•. t([a]x))

∧
(
H λx•1. (H λx•2. t (x1 ∨ x2))

)
∧
(
H λx•1. (H λx•2. t (x1 ∧ x2))

)
,

where w.l.o.g. we restrict attention to a single atomic proposition p and action a. For any given
χ•→•, one can show that H χ ≡

⋂
ψ∈ML(χψ). For example, consider ψ = 〈a〉p and any χ•→•.

Using fixpoint unfolding and β-reduction, we obtain that H χ ≡ χp∧· · ·∧(H λx•. χ(〈a〉x))∧· · · ,
which further expands to χp ∧ · · · ∧

(
χ 〈a〉p ∧ · · ·

)
∧ · · · .

Coming back to GFP1
ϕ, the macro H is used in the clause H (λz•.F z → (λx•.ϕ(F)) z).

By the above characterisation, this is equivalent to
⋂
ψ∈ML(λz•.F z → (λx•.ϕ(F)) z)ψ, which

tests for every ML-definable set, represented by the defining formula, whether the fixpoint has
stabilised at this set. With Lem. 2 we then obtain the following.

Theorem 3. The HFL1-alternation hierarchy collapses to the alternation-free fragment in
HFL2 over T1

fin.

Note that the collapse is not achieved by replacing HFL1 formulas of the form νF •→•.ϕ
by semantically equivalent formulas in HFL2 using at most least fixpoints. The HFL2 formula
GFP1

ϕ defines a function of type • → • and uses only least fixpoints, but it agrees with νF •→•.ϕ

on all HFL1-definable arguments, not necessarily on arbitrary ones. This, however, is sufficient
to obtain Thm. 3 above.

Finally, the pattern of H can be extended to

H2 = νH
((•→•)→•)→•
2 . λt(•→•)→•. (t (λx•. p)) ∧ (t (λx•. p)) ∧ (t (λx•. x))

∧
(
H2 λf

•→•. t(λx•. 〈a〉(f x))
)
∧
(
H2 λf

•→•. t(λx•. [a](f x))
)

∧
(
H2 λf

•→•
1 . (H2 λx

•→•
2 . t (λx•. (f1 x)∨f2 x))

)
∧
(
H2 λf

•→•
1 . (H2 λx

•→•
2 . t (λx•. (f1 x)∧f2 x))

)
,

which enumerates all HFL1 formulas of the form λx•. ϕ where ϕ is an ML formula that may
also contain x. Similar reasoning as above yields that for a collapse result, it is enough to test
for fixpoint stabilisation on these formulas. Using

GFP2
ϕ :=

(
µgτ .λF τ

′
λf (•→•.

(
F f∧H2 (λf ′•→•.F f ′ → (λf•→•.ϕ(F)) f ′)

)
∨(g ϕ(F)) f

)
λf (•→•).>

with τ ′ = ((• → •)→ •) and τ = τ ′ → (• → •)→ •, we obtain the following result.

Theorem 4. The HFL2-alternation hierarchy collapses to the alternation-free fragment in
HFL3 over T2

fin.

3

Collapses of Fixpoint-Alternation Hierarchies in Low Type-Levels of HFL F. Bruse, M. Lange, E. Lozes

3 Discussion

Thms. 1, 3 and 4 extend results for Lµ that yield a collapse of the alternation hierarchy over
special classes of structures. The picture for the entire HFL is much farther from completion:
we have strictness in HFLk for k ≤ 2 over the class of all structures but a collapse for HFLk

inside HFLk+1 over the classes Tkfin, for k ∈ {0, 1, 2}. For k ≥ 3, the set of formulas to test on
for stabilisation is not necessarily free of λ abstractions, and established results on the number
of variables used in λ expressions of type order 3 prohibit such an extension without further
inspection of the set of formulas to test on.

It should be noted that a hierarchy collapse over the classes Tkfin is not the same as the
(trivial) collapse over a single structure with finite closure ordinals (where every formula is
equivalent to a fixpoint free formula that defines the same set). The translations presented here
yield alternation-free formulas that are uniformly equivalent over the full classes T0

fin,T1
fin and

T2
fin.

One can construct non-trivial infinite structures in T0
fin \T∼fin; it appears that Tkfin is a rather

rich class of structures beyond finite structures. We suspect in fact that all the inclusions stated
in Eq. 1 are strict. A formal proof would advance the current understanding of the expressive
power of type-order fragments of HFL significantly and therefore add to the understanding of
the interplay between program logics and higher-order features.

At last, it is also not clear how fixpoint alternation behaves over the class of all structures
above type level 2. Moreover, optimality of the constructions here is also open; it is still possible
that the alternation hierarchy for HFLk already collapses inside HFLk for certain k and Tkfin or
a subclass thereof.

References

[1] R. Axelsson, M. Lange, and R. Somla. The complexity of model checking higher-order fixpoint
logic. Logical Methods in Computer Science, 3:1–33, 2007.

[2] J. C. Bradfield. The modal µ-calculus alternation hierarchy is strict. In CONCUR’96, volume
1119 of LNCS, pages 233–246. Springer, 1996.

[3] F. Bruse. Alternation is strict for higher-order modal fixpoint logic. In GandALF’16, volume 226
of EPTCS, pages 105–119, 2016.

[4] J. Gutierrez, F. Klaedtke, and M. Lange. The µ-calculus alternation hierarchy collapses over
structures with restricted connectivity. Theoretical Computer Science, 560(3):292–306, 2014.

[5] R. Kaivola. Axiomatising linear time mu-calculus. In CONCUR’95, volume 962 of LNCS, pages
423–437. Springer, 1995.

[6] N. Kobayashi, É. Lozes, and F. Bruse. On the relationship between higher-order recursion schemes
and higher-order fixpoint logic. In POPL’17, pages 246–259. ACM, 2017.

[7] D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, December 1983.

[8] E. Lozes. A type-directed negation elimination. In FICS’15, volume 191 of EPTCS, pages 132–142,
2015.

[9] M. Müller-Olm. A modal fixpoint logic with chop. In STACS’99, volume 1563 of LNCS, pages
510–520. Springer, 1999.

[10] M. Viswanathan and R. Viswanathan. A higher order modal fixed point logic. In CONCUR’04,
volume 3170 of LNCS, pages 512–528. Springer, 2004.

4

	Higher-Order Fixpoint Logic
	The Collapse of the Order-1 Hierarchy in HFL[2]
	Discussion

