Formal Language Constrained Reachability and
Model Checking Propositional Dynamic Logics*

Roland Axelsson! and Martin Lange?

! Dept. of Computer Science, University of Munich, Germany
2 School of Electr. Eng. and Computer Science, University of Kassel, Germany

Abstract. We show interreducibility under (Turing) reductions of low
polynomial degree between three families of problems parametrised by
classes of formal languages: the problem of reachability in a directed
graph constrained by a formal language, the problem of deciding whether
or not the intersection of a language of some class with a regular language
is empty, and the model checking problem for Propositional Dynamic
Logic over some class of formal languages. This allows several decidability
and complexity results to be transferred, mainly from the area of formal
languages to the areas of modal logics and formal language constrained
reachability.

1 Introduction

This paper investigates three families of decision problems from the domains of
formal language theory, digraph reachability, and model checking. Each family
is parametrised by a class £ of formal languages which can be any class but we
are mainly concerned with known and natural classes like the regular, context-
free, context-sensitive languages, and also some equally natural but lesser known
classes. We will always assume that there is a finite representation of any member
of that class, for instance a finite-state automaton for a regular language or
a context-free grammar for a context-free language, etc. The three families of
problems are the following.

i) REG-Intersection for £: determine for a given language L € £ and a regular
language R, whether or not L N R is empty.

i) L-Reachability: decide for a given directed graph with edge labels and node
predicates whether or not there is a path from a designated source node to a
designated target area s.t. the path is described by a given language L € L.

iii) Model checking PDL[L]: decide for a given state of a Kripke structure and
a given formula of Propositional Dynamic Logic over £ whether or not the
state satisfies the formula.

* The European Research Council has provided financial support under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 259267.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 45-[57] 2011.
© Springer-Verlag Berlin Heidelberg 2011

46 R. Axelsson and M. Lange

These problems have been considered each on its own so far, and the state of
the art in knowing about decidability and complexity of these problems is the
following.

(i) Closure under intersection with a regular language and decidability of the
emptiness problem are two of the most important features usually investigated
with any class of formal languages. Note that a class that is closed under in-
tersections with regular languages and has a decidable emptiness problem also
has a decidable REG-intersection problem. The converse need not necessarily
be the case but to the best of our knowledge there is no natural class which
would witness this. It can safely be said that the REG-intersection problem is
well-understood in the domain of formal languages.

(i) Digraph reachability is of course one of the most fundamental problems in
computer science and related disciplines. The use of constraints restricting the
paths under which certain vertices should be reachable has been outlined for
multi-modal path planning for instance [B]. Complexity and decidability issues
have been investigated with respect to a class of formal languages used to con-
strain the paths. It has been found that using context-free languages as opposed
to no languages or regular ones increases the complexity from NLOGSPACE to
PTIME, and using context-sensitive languages, this problem becomes unde-
cidable [5]. To the best of our knowledge, the space between context-free and
context-sensitive languages has not been looked at from the perspective of for-
mal language constrained reachability problems.

(iii) Propositional Dynamic Logic (PDL) has been introduced by Fischer and
Ladner [8] as a modal logic for reasoning about programs. Various applications
of PDL have been identified, for instance in program verification because of its
similarity to the branching-time temporal logic CTL and its apparent relation to
Hoare logic; in knowledge representation and artificial intelligence because the
test-free fragment for example turns out to equal the description logic ALC:cq
[10], because it can be used to reason about knowledge [6] or about actions [25],
etc. While much attention is being paid to its satisfiability problem, its model
checking problem also has applications. It mainly occurs in automatic program
verification, and certain inference problems in description logics for example
can be reduced to model checking problems and then be tackled using database
technology [3].

The original PDL is in fact PDL over regular programs—here written as
PDL[REG]|—since the programs which are interpreted as binary relations on
program states, are built from atomic ones using the constructors union, com-
position and iteration. Such programs are denoted syntactically using regular
expressions, and it is imminent that other formalisms for describing formal lan-
guages can be used instead, too.

Variants of PDL over richer classes of formal languages have been studied
with a focus on their satisfiability problems [I2/T3IT4ITT]. This is undecidable for
PDL[CFL] — PDL over context-free languages — already [12]. On the other hand,
model checking for PDL[CFL] is PTIME-complete [18] as it is for PDLIREG]

Formal Language Constrained Reachability 47

[8], and larger classes as parameters have not been considered yet under this
aspect.

In this paper we show that these problems are (Turing-)interreducible to each
other in polynomial time: one reduction is a genuine Turing reduction of quadratic
time, the others are many-one reductions of linear time. The constructions are
simple, and so are their proofs of correctness. However, these simple construc-
tions pave the way for a number of new decidability and complexity results on
formal language constrained reachability analysis as well as on model checking
extensions of Propositional Dynamic Logic. As a consequence, the gap between
decidability and undecidability in terms of the class of formal languages used as
the parameter has been narrowed down significantly: with the results obtained
here we now know that it lies between a large subclass of CSL known as the
multi-stack visibly pushdown languages (MVPL) and CSL itself.

The paper is organised as follows. Sect. [introduces the three problems for-
mally. Sect. Bl motivates the study of the interconnection between these three
problems and their respective areas by presenting exemplary applications of
these problems. It gives a brief insight into the fact that these three problems,
despite being very much related as decision problems, have been studied inde-
pendently in different domains. Sect. [proves the interreducibility. New decid-
ability and complexity results about model checking and reachability problems
are derived in Sect. [l from corresponding language-theoretic problems using this
interreducibility. Finally, Sect. [l provides a summary of the complexity and de-
cidability results known in these areas.

2 Preliminaries

Classes of formal languages and their representations. Let X be a finite alphabet.
As usual, a formal language is a L € X, and a class of formal languagesis a £ C
2% We do not want to advertise nor restrict the use of a particular specification
formalism for formal languages like automata, grammars, algebraic expressions,
systems of equations, etc. We therefore identify a class £ of formal languages
with a class of its acceptors and restrict our attention to classes which can be
represented by such acceptors. This means that we can assume a size measure
|L| which is a finite value for any L, even though it may contain infinitely
many words. For instance, for £ = REG this may be the size of a smallest
nondeterministic finite automaton recognising L.

We make another very reasonable assumption on each L£: given an L € L, its
alphabet must be computable in time O(|L[)[] We write X(L) to denote the
alphabet that is underlying L.

The REG-intersection problem for classes of formal languages. Remember that
the non-emptiness problem for a class £ of languages is the following: given a

1 This is true of virtually all known specification formalisms for formal languages and
only precludes strange acceptors like encrypted strings representing automata, etc.

48 R. Axelsson and M. Lange

suitably represented L € £, decide whether or not L # (). Furthermore, a class
L is closed under intersections with regular languages if for every L € £ and
every regular language R we have LN R € L. These are combined into a decision
problem which is of particular interest here. We assume familiarity with the
theory of regular languages. Note that L(.A) denotes the language recognised by
the automaton A.

Definition 1. The problem of non-emptiness of intersection with a reqular lan-
guage — REG-intersection problem for short — for £ is the following: given a
suitably represented L € £ and a non-deterministic finite automaton (NFA) A
over X, decide whether or not L N L(A) # 0.

Clearly, if a class of languages is closed under intersections with regular languages
and has a decidable non-emptiness problem, then its REG-intersection problem
is decidable, too. The converse may not be true in generalE Furthermore, if a
class of languages is closed under intersections with regular languages but has
an undecidable non-emptiness problem (like CSL for instance) then its REG-
intersection problem is necessarily also undecidable.

Kripke structures, labeled digraphs, and words. Let X be a finite set of symbols
and P be a countably infinite set of propositional constants. A Kripke structure
is a triple T = (S, —,), where S is a set of states, = C S x X' X S is a transition
relation and £ : S — 2% labels each state with a set of propositions that are true
in that state. We write s — ¢ instead of (s, a,t) € —. We will restrict ourselves
to finite Kripke structures, i.e. those for which |S| is finite.

The accessibility relation — is inductively extended to words over X as follows.

s—t iff s=t

st iff Jue S with s u and u—>t¢

An edge-labeled directed graph is a Kripke structure 7 as above such that £(s) = ()
for all s € §. In the following, when we speak of a graph it is implicitly to be
understood as an edge-labeled directed graph. We will denote such a structure
like a Kripke structure but leaving out the labeling function, i.e. as 7 = (S, —).

The L-reachability problem for a class of formal languages L.

Definition 2. Let £ be a class of languages over Y. The L-reachability problem
is the following: given a graph 7 = (S, —), a state s € S, a set of target states
T C S and a suitably represented L € L, decide whether or not there is a w € L
andateT st s——t.

We also say that T" is L-reachable from s in 7 if these form a positive instance
of the L-reachability problem.

2 However, we are unaware of any (necessarily strange) class of languages that wit-
nesses the failure of the converse direction. It also does not matter for our purposes
here.

Formal Language Constrained Reachability 49

Propositional Dynamic Logic over a class of formal languages. Formulas of
Propositional Dynamic Logic (with tests) over a class £ of formal languages
over some finite alphabet X — PDL[L] — are defined recursively as the least
set Form satisfying the following.

(i) P € Form
(ii) If ¢ € Form and ¢ € Form then —¢ € Form and ¢ V ¢ € Form.
(i) If L is a language over the alphabet X U {47 | ¢y € Form} s.t. |X(L)| < oo
and ¢ € Form then (L)p € Form.

We use the usual abbreviations: tt := gV —q for some g € P, ff := —tt, p A :=
(o V), ¢ — = —p V, [L]p := =(L)-p. We define || as the number
of different subformulas of ¢ plus the sum over all |L| s.t. (L) is a subformula
of ¢ for some .

Suppose L is a language over X' U {¢? | ¢ € &} for some finite ¢ C Form. We
then write Tests(L) for this set @. By the assumption made above about L being
represented reasonably, we can also assume that Tests(L) can be computed in
time O(||L]).

Formulas of PDL[L] are interpreted in states s of X-labeled Kripke structures
T = (S, —,¢) as follows.

T,s=q iff gel(s)
T,sE-p iff T,slgp
T,sEpvy ff T,sEporT,sE1
T,s k= {(L)p iff therearew € L and t € S s.t. s—='t and 7,t |= ¢ where
=" = = U{(u,Y?u) |u e S,y € Tests(L), and T,u = 9}

Definition 3. The model checking problem for PDL[L] is the following: given a
Kripke structure 7 = (S, —, ¢), a state s € S and a formula ¢ € PDL[L], decide
whether or not 7, s | ¢ holds.

3 Applications

We will briefly give some examples of the use of the three problems introduced
in the previous section showing that each of them has attracted interest inde-
pendent of the others.

Verification of Programs with Stack Inspection. In order to detect access viola-
tions in safety critical routines, inspection of the call stack may become necessary,
e.g. in case of nested calls, where the initial call came from a method without
the required permission. This has been implemented for instance in the runtime
access control mechanism of JDK 1.2. In [22], such programs are modeled as the
set of possible sequences of the call stack w.r.t. the program flow, called traces.
The set of possible traces Ly, is an indexed language. The class IL of indexed
languages [1] forms a subclass of the context-sensitive languages which properly

50 R. Axelsson and M. Lange

includes the context-free languages and possesses some nice closure properties
and decidability results.

One considers a regular language Lsyfe representing the set of safe traces. The
verification itself is then performed by checking L, C Lgafe, i.€. Ly N Leate = 0.
and therefore is an instance of the REG-intersection problem for IL. Note that
REG is closed under complement.

CFL- and REG-Reachability. The REG-reachability problem is at the core of
several applications in network routing and intermodal route planning for in-
stance [5]. It is known that the reachability problem in directed graphs when
constrained with a regular language is not more difficult than the plain di-
graph reachability problem, i.e. NLOGSPACE-complete. However, it becomes
PTIME-complete when the constraints are formed by context-free languages [5].
Such reachability problems, in particular for context-free languages have impor-
tant applications in static analysis [26]. CFL-reachability for instance is used
in type-based polymorphic flow analysis [7], field-sensitive points-to analysis or
interprocedural dataflow analysis [27].

It is worth investigating decidability and complexity issues for classes beyond
CFL which may allow more refined program analyses. Only little is known in this
area so far, namely it is known that CSL-reachability is undecidable [B] which is
very easily seen to be the case.

Model Checking PDL[CFL] in Abstract Interpretation. Consider the following
system of mutually recursive functions where “+” denotes nondeterministic
choice, “;” denotes sequential composition, and “term” denotes an anonymous
terminating function.

fo:=fo;f3 +fosf

fri=f3;f1 + o3 f3 4+ f1:f3

fo :=f1;f + fo;f3 + term

f3 := f1;f; + term

The function fy is the entry point of the system. Suppose we were interested
in detecting whether on all possible system executions the call of f3 is preceded
by a successful return of f; (security check). Note that the stack behaviour,
i.e. the sequences of function calls and returns is non-regular in general (for
a non-fixed number of functions). We state the property we wish to verify as
the regular expression Lgyfe = X*c1 X*ri X*c3X™, where a call of function f;
is indicated by c;, a return by r; respectively. It is possible to use abstract
interpretation and overapproximate the system of recursive function into a one-
state transition system with looping transitions for all elements in Y. In order
to restrict this overapproximation to non-spurious runs one can consider the
context-free grammar

Fy — coF2Fsro | coFaFiro

Fi\ — a1 F3Firy | et FoFsry | e FiFsrm
Fy — coF1 Fory | caFoFsro | corg

F3 — csF1Firs | c3rs

Formal Language Constrained Reachability 51

which is straight-forwardly derived from the recursive functions. Safety of the
system is then established by checking the PDL[CFL] property @safe = —(L(G)N
Leafe)tt. It is easy to see that the only state s does not satisfy efe: Fo =
coFy Firg =3 cocacaracsrsroFirg. Every derivation continuing from this point
will end in a violation of Lg,se, because every derivation from Fi will be prefixed
by c;1.

4 The Connection between the Three Problems

We first show that the three problems defined in Sect. 2] are interreducible onto
each other. This is done as follows.

O(n?)
L — reachability ==—= model checking PDL[L]
O(n)
O(n) l To(n)

REG-intersection for £

A single line from X to Y denotes a many-one reduction from X into Y transfer-
ing lower bounds along the arrow and upper bounds in the opposite direction. A
double line denotes a Turing reduction transferring only an upper bound down
the arrow but not a lower bound up the arrow.

We will begin with the forth and back between L-reachability and model
checking PDL[£] (Lemmas [Tl and 2]), and then show the linear-time equivalence
of L-reachability and REG-intersection for £ (Lemmas B and M]). Note that a
circular series of reductions would not save any effort since the reduction from
REG-intersection to model checking is very easily obtained as the composition
of the two arrows via reachability. Moreover, a reduction from model checking to
REG-intersection would also only be a Turing reduction, and it is not conceptu-
ally simpler than the composition of the two respective arrows via reachability.

4.1 Forth and Back between Graphs and Formulas

Lemma 1. Let L be a class of languages. The L-reachability problem reduces in
linear time to the model checking problem for PDL[L].

Proof. Let T = (S,—) be a graph, s € S and T C S. Now take a proposition gr
and let P := {qr}. Define 7" = (§,—,¢') st. forall u € S: qgr € ¢'(u) iff u e T.
It is not hard to see that, for any L € L, there is a w € L and a t € T with
s = tiff 7', s = (L)gr. Furthermore, both 7’ and (L)qr can be constructed in
time O(|T| + |L])-

The converse direction is not necessarily true. There does not seem to be a
generic many-to-one reduction from the model checking problem for PDL[L] to
a single instance of the L-reachability problem. However, a Turing reduction is
possible. The following algorithm solves the model checking problem for PDL[L]

52 R. Axelsson and M. Lange

given a procedure Reach which takes as arguments a graph 7, an L-language,
and a set U of target states and returns the set of all states which have an
L-successor in U in this graph.

MC-PDL(7, ¢) =
let (§,—,¢) =7 in
case @ of
¢ i{seS|qels)
—~ : S\ MC-PDL(T, ¢)

¢1 V 1/)2 : MC—PDL(T, ’l/)l) @] MC—PDL(T, 1/)2)
(LY :let —' = — U {(u,¥?u)| ¢ € Tests(L),
u € MC-PDL(T %) }
in Reach((S,—'), L, MC-PDL(T ,¢))

Lemma 2. Let L be a class of languages. The model checking problem for
PDL[L] Turing-reduces to the L-reachability problem in quadratic time.

Proof. Tt is not hard to see that algorithm MC-PDL can be made to run in time
O(|T| - |¢|) when regarding Reach as an orcale. Using a dynamic programming
approach one can restrict the numbers of recursive calls to one per subformula
or test occurring in the input formula. Also, set operations and updates of the
labeling function can be made to run in time O(|7|). By assumption, Tests(L)
can be computed in time O(|L|) for every L occurring in ¢.

Correctness of MC-PDL is straight-forward to show by induction on ¢: for all
states s of 7 we have: s € MC-PDL(T ,p) iff T, s |= .

4.2 Forth and Back between Graphs and Formal Languages

Lemmas [and 2 provide a connection between L-reachability and model check-
ing PDL[£]. This allows to transfer lower complexity bounds from the graph-
theoretic side to the logical side, and upper complexity bounds vice-versa. We
will provide a further link from the formal-language side, allowing to transfer
complexity results from that side — which are usually easier to achieve than for
the more specialised graph-theoretic or logical problems. This can also be viewed
as the aim to find a sufficient and necessary condition on the class £ of languages
that guarantees the model checking problem for PDL[L] to be decidable.

Lemma 3. Let L be a class of languages. The REG-intersection problem for L
reduces in linear time to the L-reachability problem.

Proof. Let A be an NFA (Q, X, 4, ginit, F) and L € L. Define a graph 74 :=
(Q,—) with s %t iff t € §(s,a) for any s,t € Q. Now note that L N L(A) # ()
iff there is a f € F s.t. g — f for some w € L iff F' is L-reachable from ¢ in
Ta. Clearly, [Ta| + |L| = O(JA[+ | L)

Lemma 4. Let L be a class of languages. The L-reachability problem reduces in
linear time to the REG-intersection problem for L.

Formal Language Constrained Reachability 53

Proof. Let T = (S,—) be a graph, s € S, T C S, and L € L. Define an NFA
Az s = (S8, 2,8,s,T) st. forall t € S and all a € X: §(¢,a) := {u | t > u}.
Now there is a w € L and a ¢t € T with s — ¢ iff there is a path in 7 from s to
some t € T s.t. the transition labels along that path form the word w. This is
the case iff w € L(Ar s1) N L. Hence, there is such a w iff LN L(Az 1) # 0.
Clearly, | Az o] + |L] = O(T| + |L1).

Theorem 1. The model checking problem for PDL[L] is equivalent under
quadratic-time Turing reductions to the REG-intersection problem for L.

Proof. Immediately from Lemmas [IH4]

5 New Decidability and Complexity Results on
Model Checking and Formal Language Constrained
Reachability

Thm. [allows many known results from the theory of formal languages to
be transfered to the model checking theory of PDL[L]. For example, regular
languages are closed under intersections and have a decidable non-emptiness
problem. Hence, their REG-intersection problem is decidable, too. In fact, it
is decidable in linear time which then yields quadratic-time decidability of the
model checking problem for PDL[REG]. This has of course been known for a
while [8]F

It is also known that CFL is closed under intersections with regular languages
and has a non-emptiness problem that is decidable in polynomial time. Hence,
Thm. [reproves that model checking for PDL[CFL] is also P-complete [I8].

Note that a Turing reduction, i.e. an algorithm using an oracle an arbitrary
number of times, is only needed in the embedding of the model checking problem
into the REG-intersection problem. The other direction is realised as an ordi-
nary reduction. Hence, complexity-theoretic hardness results can be transferred
in this direction, too. For example, the class CSL of context-sensitive languages
is closed under intersections with regular languages but its non-emptiness prob-
lem is undecidable. Hence, its REG-intersection problem is undecidable, too.
The same holds for the classes ACFL of alternating context-free languages [21]
and CL of conjunctive languages generated by conjunctive grammars [23I17].
Both extend the class of context-free languages by introducing conjunctions into
context-free grammars. It then also holds for their extension boolean grammars
which gives rise to boolean languages BL [24].

Corollary 1. Let L € {CSL,ACFL,CL,BL}. Then the model checking prob-
lems for PDL[L] as well as the L-reachability problem are undecidable.

3 Note that PDL[REG] is often said to be model checkable in linear time. However,
standard algorithms are only linear in the formula and in the structure but not in
both.

54 R. Axelsson and M. Lange

Note that the non-emptiness problem for context-sensitive languages is r.e. be-
cause the word problem is decidable. However, since the reduction in Lemma
is only a Turing-reduction, recursive enumerability does not extend to the model
checking problem. This would also contradict undecidability because model check-
ing problems for logics like PDL are closed under complement. Thus, if it was
r.e. it would also be co-r.e. and therefore decidable.

The limits of decidability lie somewhere between the context-free and the
context-sensitive ones. One class of languages that is known to contain CFL and
be contained in CSL itself is the class IL of indexed languages [1]. It is known that
indexed languages are closed under intersections with regular languages (with
polynomial blow-ups only) and that their non-emptiness problem is EXPTIME-
complete [1I28]. Hence, so is their REG-intersection problem. Applying Thm. [I]
again yields positive results for model checking and graph reachability.

Corollary 2. The model checking problem for PDL[IL] and the IL-reachability
problem are EXPTIME-complete.

There are other classes which contain CFL, have a decidable non-emptiness
problem and are closed under intersections with regular languages. For exam-
ple, there are mildly context-sensitive formalisms like the class LIL of linear
indezxed languages [9I30]. Again, they are closed under intersections with regular
languages and their non-emptiness problem is decidable — even in polynomial
time. Since the blow-up in the construction of intersecting a linear-indexed gram-
mar with a regular language is polynomial, their REG-intersection problem is
PTIME-complete as well. Thm. [l then transfers the upper bound to the cor-
responding model checking as well as graph reachability problem. A matching
lower bound follows trivially from the model checking problem for PDLREG]
or PDL[CFL] for instance. In [30] it is shown that linear indexed grammars are
equivalent under polynomial-time reductions to several other at first glance dif-
ferent formalisms, namely head grammars, combinatory categorical grammars
and tree adjoining grammars. We denote by HL, CCL and TAL the language
classes generated by those formalisms respectively.

Corollary 3. Let £ € {LIL,HL, CCL, TAL}. Then the model checking problem
for PDL[L] and the L-reachability problem are PTIME-complete.

Finally, another class of context-sensitive languages with nice algorithmic prop-
erties has recently been discovered: MVPL is the class of languages recognised by
multi-stack visibly pushdown languages [29]. Since it is closed under intersections
in general and subsumes REG it is closed under intersections with regular lan-
guages in particular. Furthermore, its emptiness problem is decidable in double
exponential time. A lower bound is currently not known. Thm. [Il then transfers
this upper bound to the model checking problem of PDL[MVPL)].

Corollary 4. The model checking problem for PDL[MVPL] and MVPL-reach-
ability are decidable in 2EXPTIME.

Formal Language Constrained Reachability 55

language class £ H REG-inters. for £ | L-reachability ‘ mod. check. PDL[L]
ACFL, CL, BL, CSL undec. [16] | undec. 1] ‘ undec. (here)

MVPL 2EXPTIME [29] 2EXPTIME (here)

IL EXPTIME-c [1],[28] EXPTIME-c (here)

LIL, HL, CCL, TAL || PTIME-c [I,] PTIME-c (here)
DCFL, CFL PTIME-c [l| [PTIME< [.l] PTIMECc [

SML, SSML, VPL PTIME-c 1,]

REG NLOGSPACE-c 5] | PTIME-c [8], folkl.

Fig. 1. Decidability and complexity results for REG-intersection, reachability and
model checking

6 Summary

Fig. [summarises the decidability and complexity results about the REG-
intersection problem for class £, the L-reachability problem, and the model
checking problem for PDL[L] with regards to some of the most popular classes
L between REG and CSL. For a complexity class C we write C-c to denote com-
pleteness for this class under the usual reductions. The table contains references
to the location where the results have been shown first. In case of completeness,
if two references are given then the first one concerns the upper, the second one
the lower bound. An arrow down states that the lower bound follows from the
line below, an arrow up states that the upper bound follows from the line above.
All the results of the two rightmost columns — apart from PTIME-hardness in
the case of L = REG — can be derived from Thm. [I] and the REG-intersection
column. The complexities in the last row of £L = REG do not coincide as op-
posed to the other rows because NLOGSPACE is presumably not closed under
quadratic-time reductions.

References

1. Aho, A.V.: Indexed grammars - an extension of context-free grammars. J.
ACM 15(4), 647-671 (1968)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th Ann. ACM
Symp. on Theory of Computing (STOC 2004), pp. 202-211. ACM Press, New York
(2004)

3. Baader, F., Lutz, C., Turhan, A.-Y.: Small is again beautiful in description logics.
KI — Kiinstliche Intelligenz (2010) (to appear)

4. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Zeitschrift fiir Phonologie, Sprachwissenschaft und Kommunika-
tionsforschung 14, 113-124 (1961)

5. Barrett, C., Jacob, R., Marathe, M.: Formal-language-constrained path problems.
SIAM Journal on Computing 30(3), 809-837 (2000)

56

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Axelsson and M. Lange

Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

Féahndrich, M., Rehof, J.: Type-based flow analysis and context-free language
reachability. Mathematical Structures in Computer Science 18(5), 823-894 (2008)
Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences 18, 194-211 (1979)

Gazdar, G.: Applicability of indexed grammars to natural languages. In: Reyle, U.,
Rohrer, C. (eds.) Natural Language Parsing and Linguistic Theories, pp. 69-94.
Reidel, Dordrecht (1988)

De Giacomo, G., Lenzerini, M.: Boosting the correspondence between description
logics and propositional dynamic logics. In: Proc. of the 12th National Conference
on Artificial Intelligence (AAAT 1994), pp. 205-212. AAAI-Press/The MIT-Press
(1994)

Harel, D., Kaminsky, M.: Strengthened results on nonregular PDL. Technical Re-
port MCS99-13, Weizmann Institute of Science, Faculty of Mathematics and Com-
puter Science (1999)

Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logic of nonregular programs.
Journal of Computer and System Sciences 26(2), 222243 (1983)

Harel, D., Raz, D.: Deciding properties of nonregular programs. STAM J. Com-
put. 22(4), 857-874 (1993)

Harel, D., Singerman, E.: More on nonregular PDL: Finite models and Fibonacci-
like programs. Information and Computation 128(2), 109-118 (1996)

Hunt, H.B.: On the time and tape complexity of languages I. In: ACM (ed.) Conf.
Rec. of 5th Annual ACM Symp. on Theory of Computing (STOC 1973), pp. 10-19.
ACM Press, New York (1973)

Landweber, P.S.: Three theorems on phrase structure grammars of type 1. Inform.
and Control 6, 131-136 (1963)

Lange, M.: Alternating context-free languages and linear time p-calculus with se-
quential composition. In: Proc. 9th Workshop on Expressiveness in Concurrency
(EXPRESS 2002). ENTCS, vol. 68.2, pp. 71-87. Elsevier, Amsterdam (2002)
Lange, M.: Model checking propositional dynamic logic with all extras. Journal of
Applied Logic 4(1), 3949 (2005)

Loding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive pro-
grams. J. Log. Algebr. Program 73(1-2), 51-69 (2007)

Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85,
pp. 422-435. Springer, Heidelberg (1980)

Moriya, E.: A grammatical characterization of alternating pushdown automata.
TCS 67(1), 75-85 (1989)

Nitta, N., Seki, H., Takata, Y.: Security verification of programs with stack inspec-
tion. In: SACMAT, pp. 31-40 (2001)

Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519-535 (2001)

Okhotin, A.: Boolean grammars. Information and Computation 194(1), 19-48
(2004)

Prendinger, H., Schurz, G.: Reasoning about action and change. A dynamic logic
approach. Journal of Logic, Language and Information 5(2), 209-245 (1996)
Reps, T.: Shape analysis as a generalized path problem. In: Proc. ACM
SIGPLAN Symp. on Partial Evaluation and Semantics-Based Program Manipu-
lation, pp. 1-11 (1995)

27.

28.

29.

30.

Formal Language Constrained Reachability 57

Reps, T.W.: Program analysis via graph reachability. Information & Software Tech-
nology 40(11-12), 701-726 (1998)

Tanaka, S., Kasai, T.: The emptiness problem for indexed language is exponential-
time complete. Systems and Computers in Japan 17(9), 29-37 (2007)

La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: Proc. 22nd Conf. on Logic in Computer Science (LICS 2007),
pp. 161-170. IEEE, Los Alamitos (2007)

Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory 27, 27-511 (1994)

	Formal Language Constrained Reachability and Model Checking Propositional Dynamic Logics
	Introduction
	Preliminaries
	Applications
	The Connection between the Three Problems
	Forth and Back between Graphs and Formulas
	Forth and Back between Graphs and Formal Languages

	New Decidability and Complexity Results on Model Checking and Formal Language Constrained Reachability
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

