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Abstract. Higher-Order Fixpoint Logic (HFL) is a modal specification
language whose expressive power reaches far beyond that of Monadic
Second-Order Logic, achieved through an incorporation of a typed λ-
calculus into the modal µ-calculus. Its model checking problem on fi-
nite transition systems is decidable, albeit of high complexity, namely
k-EXPTIME-complete for formulas that use functions of type order at
most k > 0. In this paper we present a fragment with a presumably easier
model checking problem. We show that so-called tail-recursive formulas
of type order k can be model checked in (k−1)-EXPSPACE, and also give
matching lower bounds. This yields generic results for the complexity of
bisimulation-invariant non-regular properties, as these can typically be
defined in HFL.

1 Introduction

Higher-Order Modal Fixpoint Logic (HFL) [18] is an extension of the modal
µ-calculus [9] by a simply typed λ-calculus. Formulas do not only denote sets
of states in labelled transition systems but also functions from such sets to sets,
functions from sets to functions on sets, etc. The syntax becomes a bit more
complicated because the presence of fixpoint quantifiers requires formulas to be
strongly typed in order to guarantee monotonicity of the function transformers
(rather than just set transformers) whose fixpoints are quantified over.

HFL is an interesting specification language for reactive systems: the abil-
ity to construct functions at arbitrary type levels gives it an enormous expres-
sive power compared to the µ-calculus, the standard yardstick for the expressive
power of bisimulation-invariant specification languages [7]. HFL has the power to
express non-MSO-definable properties [11, 18, 13] like certain assume-guarantee
properties; all context-free and even some context-sensitive reachability proper-
ties; structural properties like being a balanced tree, being bisimilar to a word,
etc. As a bisimulation-invariant fixpoint logic, HFL is essentially an extremely
powerful logic for specifying complex reachability properties.

There is a natural hierarchy of fragments HFLk formed by the maximal
function order k of types used in a formula where HFL0 equals the modal µ-
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calculus. The aforementioned examples are all expressible in fragments of low
order, namely in HFL1 or in exceptional cases only HFL2.

Type order is a major factor for model-theoretic and computational proper-
ties of HFL. It is known that HFLk+1 is strictly more expressive than HFLk.
The case of k = 0 is reasonably simple since the expressive power of the modal
µ-calculus, i.e. HFL0 is quite well understood, including examples of properties
that are known not to be expressible in it. The aforementioned tree property of
being balanced is such an example [4]. For k > 0 this follows from considerations
in computational complexity: model checking HFLk is k-EXPTIME-complete [3]
and this already holds for the data complexity. I.e. each HFLk, k ≥ 1, contains
formulas which express some decision problem that is hard for deterministic k-
fold exponential time. Expressive strictness of the type order hierarchy is then
a direct consequence of the time hierarchy theorem [6] which particularly shows
that k-EXPTIME ( (k + 1)-EXPTIME.

Here we study the complexity of HFL model checking w.r.t. space usage.
We identify a syntactical criterion on formulas – tail-recursion – which causes
space-efficiency in a relative sense. It has been developed for PHFL, a polyadic
extension of HFL, in the context of descriptive complexity. Extending Otto’s
result showing that a polyadic version of the modal µ-calculus [1] captures the
bisimulation-invariant fragment of polynomial time [14], PHFL0 ≡ P/∼ in short,
it was shown that PHFL1 ≡ EXPTIME/∼ [12], i.e. polyadic HFL formulas of
function order at most 1 express exactly the bisimulation-invariant graph prop-
erties that can be evaluated in deterministic exponential time. Tail-recursion
restricts the allowed combinations of fixpoint types (least or greatest), modality
types (existential or universal), Boolean operators (disjunctions and conjunc-
tions) and nestings of function applications. Its name is derived from the fact
that a standard top-down evaluation algorithm working on states of a transition
system and formulas can be implemented tail-recursively and, hence, intuitively
in a rather space-efficient way. In the context of descriptive complexity, it was
shown that the tail-recursive fragment of PHFL1 captures polynomial space
modulo bisimilarity, PHFL1

tail ≡ PSPACE/∼ [12].
These results can be seen as an indication that tail-recursion is indeed a

synonym for space-efficiency. In this paper we show that this is not restricted
to order 1. We prove that the model checking problem for the tail-recursive
fragment of HFLk+1 is k-EXPSPACE-complete. This already holds for the data
complexity which yields a strict hierarchy of expressive power within HFLtail, as
a consequence of the space hierarchy theorem [16].

In Sect. 2 we recall HFL and apply the concept of tail-recursion, originally
developed for a polyadic extension, to this monadic logic. In Sect. 3 we present
upper bounds; matching lower bounds are presented in Sect. 4.

2 Higher-Order Fixpoint Logic

Labeled Transition Systems. Fix a set P = {p, q, . . . } of atomic propositions
and a set A = {a, b, . . . } of actions. A labeled transition system (LTS) is a tuple
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T = (S, { a−→}a∈A, `), where S is a set of states, a−→ is a binary relation for
each a ∈ A and ` : S → P(P) is a function assigning, to each state, the set of
propositions that are satisfied in it. We write s

a−→ t to denote that (s, t) ∈ a−→.

Types. The semantics of HFL is defined via complete function lattices over a
transition system. In order to guarantee monotonicity (and other well-formedness
conditions), formulas representing functions need to be strongly typed according
to a simple type system. It defines types inductively from a ground type via
function forming: the set of HFL-types is given by the grammar

τ ::= • | τv → τ

where v ∈ {+,−, 0} is called a variance. It indicates whether a function uses its
argument in a monotone, antitone or arbitrary way.

The order ord(τ) of a type τ is defined inductively as ord(•) = 0, and ord(σ →
τ) = max(1 + ord(σ), ord(τ)).

The function type constructor → is right-associative. Thus, every type is of
the form τv11 → . . . τvmm → •.

Formulas. Let P and A be as above. Additionally, let Vλ = {x, y, . . . } and
Vfp = {X,Y, . . . } be two sets of variables. We only distinguish them in order to
increase readability of formulas, referring to Vλ as λ-variables and Vfp as fixpoint
variables. The set of (possibly non-well-formed) HFL formulas is then given by
the grammar

ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ | [a]ϕ | x | λ(xv : τ). ϕ | ϕϕ
| X | µ(X : τ). ϕ | ν(X : τ). ϕ

where p ∈ P, a ∈ A, x ∈ Vλ, X ∈ Vfp, τ is an HFL-type and v is a variance.
Derived connectives such as ⇒,⇔,>,⊥ can be added in the usual way, but we
consider ∧, [a] and ν to be built-in operators instead of derived connectives. The
set of subformulas sub(ϕ) of a formula ϕ is defined in the usual way. Note that
fixpoint variables need no decoration by a variance since they can only occur in
a monotonic fashion.

The intuition for the operators not present in the modal µ-calculus is as
follows: λ(x : τ). ϕ defines a function that consumes an argument x of type τ and
returns what ϕ evaluates to, x returns the value of λ-variable x, and ϕ ψ applies
ψ as an argument to the function ϕ. If a formula consists of several consecutive
λ abstractions, we compress the argument display in favor of readability. For
example, λ(x : τ). λ(y : σ). ψ becomes λ(x : τ, y : σ). ψ or even λ(x, y : τ). ψ if
τ = σ.

A sequence of the form Xv1
1 : τ1, . . . , X

vn
n : τn, x

v′1
1 : τ ′1, . . . , x

v′j
j : τ ′j where the

Xi are fixpoint variables, the xj are λ-variables, the τi, τ
′
j are types and the vi, v

′
j

are variances, is called a context. We assume that each fixpoint variable and each
λ-variable occurs only once per context. The context Γ is obtained from Γ by
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Γ ` p : •
Γ ` ϕ : •

Γ ` 〈a〉ϕ : •
Γ ` ϕ : •
Γ ` [a]ϕ : •

Γ ` ϕ : •
Γ ` ¬ϕ : •

Γ ` ϕ : • Γ ` ψ : •
Γ ` ϕ ∨ ψ : •

Γ ` ϕ : • Γ ` ψ : •
Γ ` ϕ ∧ ψ : •

v ∈ {+, 0}
Γ , xv : τ ` x : τ

Γ , X+ : τ ` X : τ

Γ, xv : σ ` ϕ : τ

Γ ` λ(xv : σ). ϕ : σv → τ

Γ,X+ : τ ` ϕ : τ

Γ ` µ(X : τ). ϕ : τ

Γ,X+ : τ ` ϕ : τ

Γ ` ν(X : τ). ϕ : τ

Γ ` ϕ : σ+ → τ Γ ` ψ : σ

Γ ` ϕ ψ : τ

Γ ` ϕ : σ− → τ Γ ` ψ : σ

Γ ` ϕ ψ : τ

Γ ` ϕ : σ0 → τ Γ ` ψ : σ Γ ` ψ : σ

Γ ` ϕ ψ : τ

Fig. 1. The HFL typing system

replacing all typing hypotheses of the form X+ : τ by X− : τ and vice versa, and
doing the same for λ-variables. An HFL-formula ϕ has type τ in context Γ if
Γ ` ϕ : τ can be derived via the typing rules in Fig. 1. A formula ϕ is well-formed
if Γ ` ϕ : τ can be derived for some Γ and τ . Note that, while fixpoint variables
may only be used in a monotonic fashion, contexts with fixpoint variables of
negative variance are still necessary to type formulas of the form µ(X : •). ¬¬X.
In some examples, we may sometimes omit type and/or variance anotations.

Moreover, we also assume that in a well-formed formula ϕ, each fixpoint
variable X ∈ Vfp is bound at most once, i.e., there is at most one subformula of
the form µ(X : τ). ψ or ν(X : τ). ψ. Then there is a function fp : Vfp → sub(ϕ)
such that fp(X) is the unique subformula σ(X : τ). ϕ′ with σ ∈ {µ, ν}. Note that
it is possible to order the fixpoints in such a formula as X1, . . . , Xn such that
fp(Xi) /∈ sub(fp(Xj)) for j > i.

The order of a formula ϕ is the maximal type order k of any type used in a
proof of ∅ ` ϕ : •. With HFLk we denote the set of all well-formed HFL formulas
of ground type whose order is at most k. In particular, HFL0 is the modal µ-
calculus Lµ. The notion of order of a formula can straightforwardly be applied
to formulas which are not of ground type •. We will therefore also speak of the
order of some arbitrary subformula of an HFL formula.

Semantics. Given an LTS T , each HFL type τ induces a complete lattice JτKT
starting with the usual powerset lattice of its state space, and then lifting this to
lattices of functions of higher order. When the underlying LTS is clear from the
context we only write JτK rather than JτKT . We also identify a lattice with its
underlying set and write f ∈ JτK for instance. These lattices are then inductively
defined as follows:

– J•KT is the lattice P(S) ordered by the inclusion relation ⊆,
– Jσv → τKT is the lattice whose domain is the set of all (if v = 0), resp.

monotone (if v = +), resp. antitone (if v = −) functions of type JσKT → JτKT
ordered pointwise, i.e. f vσv→τ g iff f(x) vτ g(x) for all x ∈ JσKT .
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JΓ ` p : •Kη = {s ∈ S | P ∈ `(s)}
JΓ ` ϕ ∨ ψ : •Kη = JΓ ` ϕ : •Kη ∪ JΓ ` ψ : •Kη
JΓ ` ϕ ∧ ψ : •Kη = JΓ ` ϕ : •Kη ∩ JΓ ` ψ : •Kη
JΓ ` 〈a〉ϕ : •Kη = {s ∈ S | ex. t ∈ JΓ ` ϕ : •Kη s.t. s

a−→ t}

JΓ ` [a]ϕ : •Kη = {s ∈ S | f.a. t ∈ S with s
a−→ t holds t ∈ JΓ ` ϕ : •Kη}

JΓ ` x : τKη = η(x)

JΓ ` X : τKη = η(X)

JΓ ` λ(xv : σ) : σv → τKη = f ∈ Jσv → τK s.t. f.a. y ∈ JσK. f(y)

= JΓ, xv : σ ` ϕ : τKη[x7→y]
JΓ ` ϕψ : τKη = JΓ ` ϕ : σv → σKη (JΓ ` ψ : σKη)

JΓ ` µ(X : τ).ϕ : τKη =
l
{d ∈ JτK | JΓ,X : τ+ ` ϕ : τKη[X 7→d] vτ d}

JΓ ` ν(X : τ).ϕ : τKη =
⊔
{d ∈ JτK | d vτ JΓ,X : τ+ ` ϕ : τKη[X 7→d]}

Fig. 2. Semantics of HFL

Given a context Γ , an environment η that respects Γ is a partial map from
Vλ∪Vfp such that η(x) ∈ JτK if Γ ` x : τ and η(X) ∈ Jτ ′K if Γ ` x : τ ′. From now
on, all environments respect the context in question. The update η[X 7→ f ] is
defined in the usual way as η[X 7→ f ](x) = η(x), η[X 7→ f ](Y ) = η(Y ) if Y 6= X
and η(Y ) = f if X = Y . Updates for λ-variables are defined analogously.

The semantics of an HFL formula is defined inductively as per Fig. 2. We
write T , s |=η ϕ : τ if s ∈ JΓ ` ϕ : τKη for suitable Γ and abbreviate the special
case with a closed formula of ground type writing T , s |= ϕ instead of T , s |=∅
ϕ : •.

The Tail-Recursive Fragment. In general, a tail-recursive function is one
that is never called recursively in an intermediate step of the evaluation of its
body, either for evaluating a condition on branching, or for evaluating an argu-
ment of a function call. Tail-recursive functions are known to be more space-
efficient in general as they do not require a call stack for their evaluation.

The notion of tail-recursion has been transposed to the framework of higher-
order fixpoint logics, originally for a polyadic extension of HFL [12]. The adap-
tation to HFL is straight-forward, presented in the following. Intuitively, tail-
recursion restricts the syntax of the formulas such that fixpoint variables do not
occur freely under the operators ∧ and [a], nor in an operand position.

Definition 1. An HFL formula ϕ is tail-recursive if the statement tail(ϕ, ∅) can
be derived via the rules in Fig. 3. HFLktail consists of all tail-recursive formulas
in HFLk.

Note that these rules do not treat conjunctions symmetrically. For instance,
µX.p ∨ (q ∧ 〈−〉X) – the straight-forward translation of the CTL reachability
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tail(p, X̄) tail(x, X̄)

X ∈ X̄
tail(X, X̄)

tail(ϕ, ∅)
tail(¬ϕ, X̄)

tail(ϕ, X̄) tail(ψ, X̄)

tail(ϕ ∨ ψ, X̄)

tail(ϕ, ∅) tail(ψ, X̄)

tail(ϕ ∧ ψ, X̄)

tail(ϕ, X̄)

tail(〈a〉ϕ, X̄)

tail(ϕ, ∅)
tail([a]ϕ, X̄)

tail(ϕ, X̄) tail(ψ, ∅)
tail(ϕ ψ, X̄)

tail(ϕ, X̄)

tail(λ(x : τv).ϕ, X̄)

tail(ϕ, X̄ ∪ {Z})
tail(µ(Z : τ).ϕ, X̄)

tail(ϕ, X̄ ∪ {Z})
tail(ν(Z : τ).ϕ, X̄)

Fig. 3. Derivation rules for establishing tail-recursiveness. The set X̄ denotes the set
of allowed free fixpoint variables of the formula in question.

property E(q U p) – is tail-recursive, but µX.p ∨ (〈−〉X ∧ q) is not tail-recursive
because the rule for ∧ in Fig. 3 only allows recursive calls to fixpoint variables
via the right conjunct of a conjunction. Of course, adding one more rule to
Fig. 3, one could make HFLtail closed under commutations of ∧ operands, the
only important point is that all of the free recursive variables occur on at most
one side of each ∧.

Example 2. The HFL1 formula
(
νF.λx.λy.(x⇒ y) ∧ (F 〈a〉x 〈b〉y)

)
> 〈b〉> has

been introduced for expressing a form of assume-guarantee property [18]. This
formula is tail-recursive, as one can easily check.

The property of being a balanced tree can also be formalised by a tail-
recursive HFL1 formula:

(
µF.λx.[−]⊥ ∨ (F [−]x)

)
⊥.

In the next section, we will see that these properties and any other express-
ible in HFL1

tail can be checked in polynomial space, thus improving a known
exponential time upper bound [3, 2].

Example 3. Consider reachability properties of the form “there is a maximal
path labelled with a word from L” where L ⊆ Σ∗ is some formal language.
For context-free languages the logic formalising such properties is Propositional
Dynamic Logic of Context-Free Programs [5]. It can be model checked in poly-
nomial time [10]. However, formal-language constrained reachability is not re-
stricted to context-free languages only. Consider the reachability problem above
for L = {anbncn | n ≥ 1}. It can be formalised by the HFL2 formula

(
µF.λf.λg.λh.λx.f(g(h(x))) ∨ (F (λx.f 〈a〉x) (λx.g 〈b〉x) (λx.h 〈c〉x)

)
id id id [−]⊥

with type x : •; f, g, h : τ1 := •+ → • and F : τ+1 → τ+1 → τ+1 → •+ → •. Again,
one can check that it is tail-recursive. Since it is of order 2, Thm. 5 yields that
the corresponding reachability problem can be checked using exponential space.
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3 Upper Bounds in the Exponential Space Hierarchy

Consider an HFL fixpoint formula of the form ψ = σ(X : τ).ϕ and its finite
approximants defined via

X0 :=

{
⊥ , if σ = µ,

> , otherwise
and Xi+1 := ϕ[Xi/X] .

where ϕ[Xi/X] denotes the simultaneous replacement of every free occurrence
of X by Xi in ϕ.

It is known that over a finite LTS T = (S, { a−→}, `), ψ is equivalent to
Xm, where m is the height ht(τ) of the lattice of τ . Generally, ht(τ) is k-fold
exponential in the size of |S| for k = ord(τ) [3]. Note that a k-fold exponentially
large number can be represented by (k − 1)-fold exponentially many bits.

For an HFLktail formula ϕ, we define its recursion depth rd(ϕ):

rd(p) = rd(X) := 0

rd(ϕ1 ∨ ϕ2) := max(rd(ϕ1), rd(ϕ2))

rd(ϕ1 ∧ ϕ2) := max(rd(ϕ2), 1 + rd(ϕ1))

rd(ϕ1 ϕ2) := max(rd(ϕ1, 1 + rd(ϕ2))

rd(〈a〉ϕ) = rd(λX.ϕ) = rd(µX.ϕ) = rd(νX.ϕ) := rd(ϕ)

rd(¬ϕ) = rd([a]ϕ) := 1 + rd(ϕ)

The recursion depth of a formula measures the number of times that a top-
down nondeterministic local model-checking procedure has to maintain calling
contexts. For example, when verifying whether a state is a model of a disjunction,
it is sufficient to nondeterministically guess a disjunct and continue with it; the
other disjunct is irrelevant. For a conjunction, the procedure also descends into
one of the conjuncts first, but has to remember, e.g., the environment at the
conjunction itself in case the procedure has to backtrack. Note that the recursion
depth of a formula is linear in its size.

We combine the bounded number of calling contexts and the above unfolding
property into a model-checking algorithm that avoids the enumeration of full
function tables for fixpoint definitions of the highest order by only evaluating it
at arguments actually occurring in the formula. Unfolding a fixpoint expression
is results in the evaluation of the same fixpoint at different arguments, and the
unfolding property allows to give an upper bound on the number of unfoldings
needed. Tail-recursiveness ensures that this procedure proceeds in a mostly linear
fashion, since the number of calling contexts that need to maintained at any given
moment during the evaluation is bounded by the recursion depth of the formula
in question.

For the remainder we fix a formula ψ ∈ HFLktail and an LTS T = (S, { a−→}, `).
We present two mutually recursive functions check and buildFT. The function
check(s, ϕ, (f1, . . . , fn), η, cnt) consumes a state s ∈ S, a subformula ϕ of ψ,
a list of function tables, an environment η and a partial function cnt from Vfp
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to N and checks whether s |=η (· · · (ϕfn) · · · f1) if all free fixpoint variables X
of ϕ are replaced by Xcnt(X) in a suitable order. The function buildFT(ϕ, η)
consumes a subformula ϕ of ψ and an environment η and builds the complete
function table of ϕ with respect to η, i.e., computes JϕKη.

The definition of check(s, ϕ, (f1, . . . , fn), η, cnt) depends on the form of ϕ:

– If ϕ is an atomic formula, return true if s |= ϕ and false otherwise.
– If ϕ = ϕ1 ∨ ϕ2, guess i ∈ {1, 2} and return check(s, ϕi, (f1, . . . , fn), η, cnt).
– If ϕ = ϕ1∧ϕ2, note that rd(ϕ1) < rd(ϕ) and that ϕ1 has no free fixpoint vari-

ables. Return false if check(s, ϕ1, (f1, . . . , fn), η, ∅) returns false. Otherwise,
return check(s, ϕ2, (f1, . . . , fn), η, cnt).

– If ϕ = 〈a〉ϕ′, guess t with s a−→ t and return check(t, ϕ′, (f1, . . . , fn), η, cnt).
– If ϕ = [a]ϕ′, note that rd(ϕ′) < rd(ϕ) and that ϕ′ has no free fixpoint vari-

ables. Iterate over all t with s a−→ t. If check(t, ϕ′, (f1, . . . , fn), η, ∅) returns
false for at least one such t, return false. Otherwise, return true.

– If ϕ = ¬ϕ′, note that rd(ϕ′) < rd(ϕ) and that ϕ′ has no free fixpoint
variables. If check(s, ϕ′, (f1, . . . , fn), η, ∅) returns true, return false and vice
versa.

– If ϕ = ϕ′ ϕ′′, note that rd(ϕ′′) < rd(ϕ) and that ϕ′′ has no free fixpoint vari-
ables. Compute fn+1 = buildFT(ϕ′′, η) and return check(s, ϕ′, (f1, . . . , fn,
fn+1), η, cnt).

– If ϕ = x, return true if s ∈ (· · · (η(x) fn) · · · f1), return false otherwise.
– If ϕ = λx.ϕ′, return check(s, ϕ′, (f1, . . . , fn−1), η[x 7→ fn], cnt).
– If ϕ = µ(X : τ).ϕ′, return check(s, ϕ′, (f1, . . . , fn), η, cnt[X 7→ ht(τ)]).
– If ϕ = ν(X : τ).ϕ′, return check(s, ϕ′, (f1, . . . , fn), η, cnt[X 7→ ht(τ)]).
– If ϕ = X, return false if cnt(X) = 0 and X is a least fixpoint variable, return

true if cnt(X) = 0 and X is a greatest fixpoint variable, otherwise, return
check(s, fp(X), (f1, . . . , fn), η, cnt′), where cnt′(Y ) = cnt(Y ) if Y 6= X and
cnt′(X) = cnt(X)− 1.

The definition of buildFT(ϕ, η) is rather simple: If ϕ : τn → · · · → τ1 →
•, iterate over all s ∈ S and all (fn, . . . , f1) ∈ JτnK × · · · × Jτ1K and call
check(s, ϕ, (f1, . . . , fn), η, ∅) for each combination. This will yield the function
table JϕKη via JϕKη = {f ∈ Jτn → · · · → τ1 → •K | (· · · (f fn) · · · f1) = {s ∈ S |
check(s, ϕ, (f1, . . . , fn), η, ∅) = true}}.

Theorem 4. Let ψ ∈ HFLtail. Then check(s, ψ, ε, ∅, ∅) returns true iff T , s |= ψ.

Proof (Sketch). Fix an order of the fixpoint variables of ψ as X1, . . . , Xm such
that fp(Xi) /∈ sub(fp(Xj)) if j > i. Note that this also orders the possible values
of cnt by ordering them lexicographically and assuming that undefined values
are larger than ht(τ) for any τ appearing in ψ.

Consider a subformula ϕ of ψ. Given a partial map cnt made total as in the

previous paragraph, we write ϕcnt to denote ϕ[X
cnt(X1)
1 /X1, . . . , X

cnt(Xn)
n /Xn],

i.e, the result of simultaneously replacing free fixpoint variables of ϕ by their
approximants as per cnt such that none of them occur free anymore.

In fact, check(s, ϕ, (f1, . . . , fn), η, cnt) returns true iff s ∈ JϕcntKη fn · · · f1
assuming that buildFT(ϕ, η) computes JϕKη. It is easy to see that the statement
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in the theorem follows from this. The proof itself is a routine induction over
the syntax of ψ to show that the above invariant is maintained. In each step,
the procedure either passes to a proper subformula and maintains the value of
cnt and recursion depth, or, in case of fixpoint unfoldings, properly decreases
cnt but keeps recursion depth, or, in case of calls that are not tail-recursive,
passes to a formula with properly reduced recursion depth. Moreover, in the
case of function application, the call to buildFT will result in calls to check
with properly reduced recursion depth, and buildFT just computes a tabular
representation of the HFL semantics. Hence, the procedure eventually halts and
works correctly. ut

Theorem 5. The model checking problem for HFLk+1
tail is in k-EXPSPACE.

Proof. By Savitch’s Theorem [15] and Thm. 4, it suffices to show that the non-
deterministic procedure check can be implemented to use at most k-fold expo-
nential space for formulas in HFLk+1

tail .

The information required to evaluate check(s, ϕ, (f1, . . . , fn), η, cnt) takes k-
fold exponential space: references to a state and a subformula take linear space,
each of the function tables f1, . . . , fn appears in operand position and, hence,
is a function of order at most k, which takes k-fold exponential space. An envi-
ronment is just a partial map from Vλ to more function tables, also of order at
most k. Finally, cnt stores |Vfp| many numbers whose values are bounded by an
(k+ 1)-fold exponential. Hence, they can be represented as k-fold exponentially
long bit strings.

During evaluation, check operates in a tail-recursive fashion for most oper-
ators, which means that no stack has to be maintained and the space needed
is restricted to what is described in the previous paragraph. A calling context
(which is just an instance of check as described above, with an added loga-
rithmically sized counter in case of [a]ϕ) has to be preserved only at the steps
where the recursion depth decreases. In the case of negation, it is not necessary
to maintain the complete calling context. Instead, the nondeterministic proce-
dure for the negated subformula is called and the return value is inverted. By
Savitch’s Theorem, the procedure can actually be implemented to run deter-
ministically with the same space requirements, and, hence, is safe to call in a
nondeterministic procedure.

Since the recursion depth of an HFLktail-formula is linear in the size of the
formula, only linearly many such calling contexts have to be stored at any given
point during the evaluation, which does not exceed nondeterministic k-fold ex-
ponential space. Moreover, Savitch’s Theorem has to be applied only linearly
often on any computation path. ut

Note that occurrences of negation do not lead to proper backtracking to a
calling context, but rather mark an invocation of Savitch’s Theorem. Hence, the
definition of recursion depth could be changed to not increase at negation. We
chose to include applications of Savitch’s Theorem into the definition of recursion
depth for reasons of clarity.
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4 Matching Lower Bounds

A typical k-EXPSPACE-complete problem (for k ≥ 0) is the order-k corridor
tiling problem [17]: A tiling system is of the form K = (T,H, V, tI , t�, tF ) where
T is a finite set of tile types, H,V ⊆ T × T are the so-called horizontal and
vertical matching relations, and tI , t�, tF ∈ T are three designated tiles called
initial, blank and final.

Let 2n0 = n and 2nk+1 = 22
n
k . The order-k corridor tiling problem is the

following: given a tiling system K as above and a natural number n encoded
unarily, decide whether or not there is some m and a sequence ρ0, . . . , ρm−1 of
words over the alphabet T , with |ρi| = 2nk for all i ∈ {0, . . . ,m − 1}, and such
that the following four conditions hold. We write ρ(j) for the j-th letter of the
word ρ, beginning with j = 0.

– ρ0 = tIt� . . . t�
– For each i = 0, . . . ,m−1 and j = 0, . . . , 2nk−2 we have (ρi(j), ρi(j+1)) ∈ H.
– For each i = 0, . . . ,m− 2 and j = 0, . . . , 2nk − 1 we have (ρi(j), ρi+1(j)) ∈ V .
– ρm−1(0) = tF

Such a sequence of words is also called a solution to the order-k corridor tiling
problem on input K and n. The i-th word in this sequence is also called the i-th
row.

Proposition 6 ([17]). For each k ≥ 0, the order-k corridor tiling problem is
k-EXPSPACE-hard.

In the following we construct a polynomial reduction from the order-k cor-
ridor tiling problem to the model checking problem for HFLk+1

tail . Fix a tiling
system K = (T,H, V, tI , tF ) and an n ≥ 1. W.l.o.g. we assume |T | ≤ n, and we
fix an enumeration T = {t0, . . . , t|T |−1} of the tiles such that t0 = tI , t|T |−2 = t�,
and t|T |−1 = tF .

We define the transition system TK,n = (S, { a−→}a∈A, `) as follows:

– S = {0, . . . , n− 1},
– A = {h, v, e, u, d} with h−→ = {(i, j) | (ti, tj) ∈ H} (for “horizontal”), v−→ =
{(i, j) | (ti, tj) ∈ V } (for “vertical”), e−→ = {0, . . . , n − 1} × {0, . . . , n − 1}
(for “everywhere”),

u−→ = {(i, j) | 0 ≤ i < j ≤ n − 1} (for “up”) and
d−→ = {(i, j) | 0 ≤ j < i ≤ n− 1} (for “down”).

– `(0) = {pI}, `(|T | − 2) = {p�}, and `(|T | − 1) = pF

The states of this transition system appear in two roles. On one hand, they en-
code the different tiles of the tiling problem K, with the generic tiles tI , t�, tF
identified by propositional labeling, while the rest remain anonymous. The hori-
zontal and vertical matching relations are encoded by the accessibility relations
h and v, respectively. On the other hand, the states double as the digits of the
representation of large numbers. The relation u connects a digit to all digits of
higher significance, d connects to all digits of lower significance, and e is the
global accessibility relation.
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Next we construct, for all k ≥ 1, an HFLk+1
tail formula ϕk such that TK,n |=

ϕk holds iff (K, n) admits a solution to the order-k corridor tiling problem.
We encode the rows of a tiling as functions of order k. Column numbers in
{0, . . . , 2nk − 1} are encoded as functions of order k − 1, following an approach
similar to Jones [8].

Let τ0 = • and τk+1 = τk → • for all k ≥ 0. For all k ≥ 0 and i ∈
{0, . . . , 2nk+1 − 1}, let jonesk(i) be the function in the space JτkKTK,n defined as
follows:

– jones0(i) is the set of bits equal to 1 in the binary representation of i, i.e.
jones0(i) = S ⊆ {0, . . . , n− 1} where S is such that i =

∑
j∈S 2j

– jonesk+1(i) maps jonesk(j) (for all j ∈ {0, . . . , 2nk+1 − 1}) to {0, . . . , n− 1} if
the j-th bit of i is 1, otherwise jonesk+1(i) maps jonesk(j) to ∅.

Consider the following formulas.

ite = λ(b : •), (x : •), (y : •). (b ∧ x) ∨ (¬b ∧ y)
zero0 = ⊥
zerok+1 = λ(m : τk). ⊥
gt0 = λ(m1,m2 : τ0). 〈e〉

(
m2 ∧ ¬m1 ∧ [u](m1 ⇒ m2)

)
gtk+1 = λ(m1,m2 : τk+1). existsk

(
λ(i : τk). (m2 i) ∧ ¬(m1 i)∧

forallk
(
λ(j : τk). (gtk i j)⇒ (m1 j)⇒ (m2 j)

))
next0 = λ(m : •). ite m (〈d〉¬m) ([d]m)
nextk+1 = λ(m : τk+1, i : τk). ite (m i)(

existsk
(
λ(j1 : τk). (gtk i j1) ∧ ¬(m j1)

))(
forallk

(
λ(j2 : τk). (gtk i j2)⇒ (m j2)

))
existsk = λ(p : τk+1).

((
µ(F : τk → •) . λ(m : τk) . ([e](p m))∨

F (nextk m)
)
zerok

)
forallk = λ(p : τk+1). ¬existsk (¬p)

Let >S = J>KTK,n = {0, . . . , n− 1} and ⊥S = J⊥KTK,n = ∅. The functions above
encode the if-then-else-operator, respectively arithmetic functions on Jones en-
codings of large natural numbers. The function gtk allows to compare two inte-
gers : for all m1,m2 ∈ {0, . . . , 2nk+1 − 1}, m1 < m2 iff gtk jonesm1

(k) jonesm2
(k)

evaluates to >S . Level 0 Jones encodings of numbers m1 and m2 are in relation
gt0 if, there is a bit that is set in jones0(m2) but not in jones0(m1), and all more
significant bits that are set in jones0(m1) are also set in jones0(m2). The function
gtk+1 operates on the same principle, except that bit positions are now level k
Jones encodings of numbers, and the bit at position j is set in jonesk+1(mi)
iff (mi j) returns >S . Moreover, quantification over all bit positions uses the
functions forallk and existsk instead of the relation e.

The function nextk returns the level k Jones encoding of the number encoded
by its input, incremented by one: If a bit is set in the encoding of the input, it
stays set if and only if there is a bit of lesser significance that is not set. If it was
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not set in the input, it is set if and only if all lower bits were set in the input. For
example, if m is the set {0, 1, 3} that encodes the number 11, then next0 returns
the set {2, 3} which encodes 12. Encoding of bits and quantification over them
works as in the case of gtk.

Finally, the function existsk checks for the existence of (the level k Jones
encoding of) a number such that parameter p returns >S with this number as
an argument. This is achieved by iterating over all level k Jones encodings of
numbers between 0 and 2nk+1 − 1. Consequently, existsk expects an argument p
of type τk+1, i.e., a function consuming an argument of type τk.

Lemma 7. The following hold:

1. Assume η(b) ∈ {>S ,⊥S}. If η(b) = >S , then Jite b x yKη is η(x), else it is
η(y).

2. JzerokK = jonesk(0) for all k ≥ 0.
3. If Jnextk mKη = jonesk(i) and η(m) = jonesk(j), then i = j+ 1 modulo 2mk+1.

4. Jexistsk pKη = >S if there exists X ∈ JτkKTK,n such that Jp xKη[x7→X ] = >S ,
otherwise Jexistsk pKη = ⊥S

We are now ready to define the encoding of rows of width 2nk as functions in
the space JτkKTK,n . Let ρ = ρ0 . . . ρ2nk ∈ T

∗ be a row of width 2nk for some k ≥ 1.
The coding rowk(ρ) of ρ is the function that maps jonesk−1(i) to {j} where j is
the number of i-th tile of the row, i.e. ρi = tj . For example, the initial row of
a tiling problem has the form tI t� · · · t�, i.e., the initial tile followed by 2nk − 1
instances of t�. The function encoding it would return the set {0} of tiles labeled
by tI at argument jonesk−1(0) and return the set {|T | − 2} of tiles labeled by t�
at arguments jonesk−1(1), . . . , jonesk−1(2nk − 1).

Consider then the following formulas.

isTile = λ(x : •), . [e]
(
x⇒

(
([u]¬x) ∧ ([d]¬x) ∧ (pF ∨ 〈u〉pF ))

))
isRowk = λ(r : τk). forallk−1

(
λ(m : τk−1). isTile (r m)

)
isZero0 = λ(m : τ0). [e]¬m
isZerok+1 = λ(m : τk+1). forallk

(
λ(o : τk). isZero0(m o)

)
initk = λ(m : τk−1). ite (isZerok m) pI p�
isFinalk = λ(r : τk). [e]

(
(r zerok−1)⇒ pF

)
horizk = λ(r : τk). forallk−1

(
λ(m : τk−1).

[e]
(
(r m)⇒

(
(isZerok−1 (nextk−1 m)) ∨ 〈h〉(r (nextk−1 m))

)))
vertk = λ(r1, r2 : τk). forallk−1

(
λ(m : τk−1). [e]

(
(r1 m)⇒ 〈v〉(r2 m)

))
The function isTile checks whether its argument uniquely identifies a tile by
verifying that it is a singleton set, and that it is not a state of index greater
than |T | − 1. The function isRow checks whether its argument r is a proper
encoding of a row by verifying that rm returns the encoding of a tile for each
m ∈ {jonesk−1(0), . . . , jonesk−1(2nk−1)}. The function initk returns the initial row
encoded as described in the previous paragraph, while isFinalk verifies that its
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argument is a final row, i.e., a row where the tile in position 0 is tF . Moreover, the
function horizk verifies that the row r satisfies the horizontal matching condition.
This is achieved by checking that, for each m ∈ {jonesk−1(0), . . . , jonesk−1(2nk −
1)}, either m is jonesk−1(2nk ) (whence the value isZerok−1(nextk−1 m) is >S) or
that there is a h-transition from the singleton set (r m) into the singleton set
r (nextk−1 m). Finally, vertk verifies that two rows satisfy the vertical matching
condition in a similar way.

Lemma 8. The following hold:

1. JisTile xKη evaluates to >S if η(x) = {i} for some i ∈ {0, . . . , |T | − 1},
otherwise it evaluates to ⊥S .

2. JisRowk xKη evaluates to >S iff η(x) = rowk(ρ) for some row ρ of width 2nk ,
otherwise it evaluates to ⊥S .

3. JinitkK evaluates to rowk(tI · t� · · · t�).
4. Assume η(r) = rowk(ρ) and η(r′) = rowk(ρ′) for some rows ρ = ρ0 . . . ρ2nk

and ρ′ = ρ′0 . . . ρ
′
2nk

. Then

(a) JisFinalk rKη evaluates to >S if ρ0 = tF , otherwise it evaluates to ⊥S .
(b) Jhorizk rKη evaluates to >S if (ρi, ρi+1) ∈ H for all i ∈ {0, . . . , 2nk − 1},

otherwise it evaluates to ⊥S .
(c) Jvertk r r′Kη evaluates to >S if (ρi, ρ

′
i) ∈ V for all i ∈ {0, . . . , 2nk − 1},

otherwise it evaluates to ⊥S .

We now have introduced all the pieces we need for defining ϕk. Intuitively, ϕk
should check for the existence of a solution to the order-k corridor tiling problem
by performing an iteration that starts with a representation of the initial row in
a solution and then guesses the next rows, each time checking that they match
the previous one vertically. The iteration stops when a row is found that begins
with the final tile. Let ϕk =(

µ(P : τk+1). λ(r1 : τk).(isFinalk r1) ∨ (exists succk r1 P )
)
initk

where exists succk =

λ(r1 : τk, p : τk+1). existsk
(
λ(r2 : τk). (horizk r2) ∧ (vertk r1 r2) ∧ (p r2).

Here, exists succ consumes a row r1 of type τk, and a function p of type τk+1. It
guesses a row r2 using existsk, verifies that it matches r1 vertically from above,
and then applies p to r2. Of course, p in this settting is the fixpoint P which
generates new rows using exists succ until one of them is a final row, or ad
infinitum, if the tiling problem is unsolvable.

Theorem 9. Let k ≥ 0. The model-checking problem of HFLk+1
tail is k-EXPSPACE-

hard in data complexity.

Proof. For k = 0 this is already known: there is a simple and fixed HFL1 formula
ϕ0 that expresses the universality problem for NFA [2], a problem known to be
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PSPACE-hard, i.e. 0-EXPSPACE-hard. It is easy to check that this ϕ0 is in fact
tail-recursive.

Let k ≥ 1. The problem of deciding whether Tn,K |= ϕk is equivalent to the
problem of deciding whether (K, n) has a solution to the order-k corridor tiling
problem. Therefore, we only need to give a formula ψk that is tail-recursive and
equivalent to ϕk. Note indeed that ϕk is not tail recursive, because the recursive
variable P of type τk+1 appears as an argument of exists succk. However, after
β-reduction of exists succk r1 P and then existsk(λr2 . . . ), we get a formula ψk
equivalent to ϕk and of the form(

µ(P : τk+1). λ(r1 : τk).

(. . . ) ∨
(
µ(F : τk+1).λ(r2 : τk) ((. . . ) ∧ (P r2)) ∨ (F (nextk r2))

)
r1

)
initk

where the (. . . ) parts do not contain the recursive variables P and F , hence this
formula is tail-recursive. ut

The uppper bound and the fact that the lower one holds for the data com-
plexity already yield a hierarchy of expressive power within HFLtail.

Corollary 10. For all k ≥ 0, HFLktail � HFLk+1
tail .

Proof. Suppose this was not the case. Then there would be a k ≥ 0 such that
HFLktail ≡ HFLk+1

tail . We need to distinguish the cases k = 0 and k > 0.
Let k = 0. Note that HFL0

tail is a fragment of the modal µ-calculus which can
only express regular properties. On the other hand, HFL1

tail contains formulas
that express non-regular properties, for instance uniform inevitability [2].

Now let k > 0 and suppose that for every ϕ ∈ HFLk+1
tail there would exist a

ϕ̂ ∈ HFLktail such that ϕ̂ ≡ ϕ. Take the formula ϕk+1 as constructed above and
used in the proof of Thm. 9. Fix some function enc which represents a transition
system and a state as a string over some suitable alphabet. According to Thm. 9,
L := {enc(T , s) | T , s |= ϕk+1} is a k-EXPSPACE-hard language.

On the other hand, consider ϕ̂k+1 which, by assumption, belongs to HFLktail
and is equivalent to ϕk+1. Hence, L = {enc(T , s) | T , s |= ϕ̂k+1}. According to
Thm. 5, we have L ∈ (k−1)-EXPSPACE and therefore k-EXPSPACE = (k−1)-
EXPSPACE which contradicts the space hierarchy theorem [16]. ut

5 Conclusion

We have presented a fragment of HFL that, given equal type order, is more
efficient to model-check than regular HFL: Instead of (k + 1)-fold exponential
time, model-checking an order k + 1 tail-recursive formula requires only k-fold
exponential space. We have shown that this is optimal. Moreover, since the result
already holds for data complexity, the space hierarchy theorem yields a strict
hierarchy of expressive power within HFLtail.

The definition of tail recursion presented in this paper was designed for clarity
and can be extended with some syntactic sugar. For example, we take advantage
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of the free nondeterminism available due to Savitch’s Thereom to resolve dis-
junctions and modal diamonds. One can, of course, also design a tail-recursive
fragment that uses co-nondeterminism, allows unrestricted use of conjunctions
and modal boxes, but restricts use of their duals. For symmetry reasons this
fragment enjoys the same complexity theoretic properties as the fragment pre-
sented here. In fact, it is even possible to mix both fragments: tail recursion
demands that (some) subformulas under operators that are not covered by Sav-
itch’s Theorem be safe in the sense that they have no free fixpoint variables. It
is completely reasonable to allow a switch from nondeterministic tail recursion
to co-nondeterministic tail recursion, and vice versa, at such safe points. Since
clever use of negation can emulate this in the fragment presented in this paper,
we have chosen not to introduce such switches in this paper for reasons of clar-
ity. Making co-nondeterminism available can be helpful if formulas in negation
normal form, which HFL admits, are needed.

An open question is how much the restrictions of tail recursion can be lifted
for fixpoint definitions of order below the maximal order in a formula. A näıve
approach would conclude that one can lift tail recursion for fixpoints of low order,
since there is enough space available to compute their semantics via traditional
fixpoint iteration. However, this can have undesired effects when lower-order
fixpoints are nested with higher-order ones, breaking tail recursion. Outlining
the definite border on what is possible with respect to lower-order fixpoints is a
direction for future work.
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