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Abstract. Interpreting formulas over infinite-state relational structures whose
states are words over some alphabet and whose relations are recognised by trans-
ducers is known under the term “automatic structures” in the world of predicate
logic, or as “regular model checking” in formal verification. Both approaches
use synchronised transducers, i.e. finite automata reading tuples of letters in each
step. This is a strong transducer model with high expressive power leading to
undecidability of model checking for any specification language that can express
transitive closure.
We develop conditions on a class of binary word relations which are sufficient for
the CTL model checking problem to be computable over the class of automatic
structures generated by such relations. As an example, we consider recognisable
relations. This is an interesting model from an algebraic point of view but it is
also far less expressive than those given by synchronised transducers. As a con-
sequence of the weaker expressive power we obtain that this class satisfies the
aforementioned sufficient conditions, hence we obtain a decidability result for
CTL model checking over a restricted class of infinite-state automatic structures.

1 Introduction

Model checking is a well-known model-based method for proving correctness of the
behaviour of dynamic systems [4]. The earliest approaches were confined to finite-state
systems [15], limited by the rather obvious undecidability of checking even the sim-
plest temporal properties – namely reachability – on arbitrary infinite-state spaces. The
ability to also model check infinite-state systems is indispensable for the verification
of software systems, though. Much effort has therefore gone into the design and study
of model checking procedures for infinite-state systems, mainly focussing on particular
classes of finitely representable infinite-state systems like pushdown systems [10, 34],
Petri nets [28], process algebraic descriptions of infinite-state systems [25, 20], recur-
sion schemes [26], etc.

A rich formalism that gives rise to particular infinite-state systems is known as auto-
matic structures [6]. The name is derived from the fact that (finite-state) automata play
a major role in the construction of such systems: their states are represented as finite
words, and the relations in these structures are recognised by synchronous transduc-
ers. Standard automata-theoretic constructions can then be used to show that the model
checking problem for First-Order Logic (FO) is decidable over such structures [7]. It is
also not difficult to see that model checking for Transitive Closure Logic already – the
extension of FO with an operator to express inclusion in the transitive closure of some
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binary relation – becomes undecidable as the configuration graph of a Turing Machine
can be modelled as an automatic structure.

The richness and flexibility of this framework makes it interesting for verification
purposes, despite the fact that even the simplest specification languages for typical cor-
rectness properties in verification incorporate transitive closures in some form or other
[14]. This has led to the study of regular model checking [9], a term describing the
framework of verifying labelled transition systems (i.e. relational structures with unary
and binary relations only) represented as automatic structures. Interestingly, the use
of such structures in the rather difficult domain of verification of temporal properties
has started a while before the positive and elegant results on FO model checking were
discovered [22, 36].

Research on regular model checking has seen a great amount of effort spent on
the computation of transitive closures [12, 31] using various techniques that circumvent
undecidability issues, for instance by giving up completeness or precision, like fixpoint
acceleration [21, 1], widening [32], abstraction [8], inference [18], etc.

One can argue that the restriction to the computation of transitive closures still
facilitates “doing model checking”, at least for relatively simple temporal properties
like safety or liveness. The approximative nature of procedures like the ones cited
above usually prohibits the study of combinations of such properties, as safety verifica-
tion typically requires over-approximations whereas liveness verification needs under-
approximations.

In this paper we want to study the possibility to do model checking for a richer class
of temporal properties than just safety or liveness. The simple branching-time tempo-
ral logic CTL [11] provides a framework for the specification of combinations of such
properties. Our object of interest is therefore the model checking problem for CTL over
automatic structures. As stated above, this problem is clearly undecidable, and the mul-
titude of work that has gone into studying the subproblem of verifying liveness or safety
properties shows that one cannot expect to find many positive results for regular CTL
model checking unless one gives up completeness, precision, or expressive power. We
aim to retain completeness and precision and study the case where expressive power is
limited on the side of the automatic structures rather than the temporal specification lan-
guage. We consider a particular case of automatic structures for which the accessibility
relation is recognisable. The concept of recognisability, defined via morphisms onto a
finite monoid, is central in the field of algebraic automata theory. An overview over the
classes of relations in focus and the notion of recognisability and synchronisation can
be found in [5, 29].

The class of recognisable relations is a proper subclass of the synchronous ones.
Hence, the class of automatic structures defined over them is significantly smaller than
the class of automatic structures over synchronous transducers. It remains to be seen
whether this class includes families of structures that are interesting for software verifi-
cation purposes for instance. On the other hand, a consequence of this loss in expressive
power is – as we show here – that CTL model checking, i.e. including the verification of
simple safety or liveness properties, as well as combinations thereof, is decidable over
this class of infinite-state systems.
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The paper is organised as follows. In Sect. 2 we recall CTL and transition systems
as its standard model of interpretation. CTL model checking over automatic structures
defined by recognisable relations is not meant to be the ultimate goal in infinite-state
verification; instead we want to provide the basis for the study of temporal logic model
checking over restricted classes of automatic structures here. We therefore present a
generic description of automatic structures as transition systems, parametrised by the
machinery used to define its transition relation; recognisable relations and their cor-
responding automaton model are one example of such machinery that falls into this
framework, and it is the one studied in further detail here.

Sect. 3 recalls the generic bottom-up global CTL model checking algorithm, and
it then develops necessary criteria on the underlying structures for this algorithm to be
terminating and correct. In Sect. 4 we then consider the aforementioned recognisable
relations, resp. the automatic structures generated by them and show that they satisfy
the necessary conditions laid out before. Hence, we get decidability of CTL model
checking over this class of automatic structures. Finally, Sect. 5 concludes with remarks
on further work in this area.

2 Preliminaries

2.1 Labelled Transition Systems

Let P = {p, q, . . .} be a set of proposition symbols. A labelled transition system (LTS) is
a T = (S,−→, `) where S is a (possibly infinite) set of states, −→ ⊆ S×S is the transition
relation which is always assumed to be total, i.e. for every s ∈ S there is a t ∈ S with
(s, t) ∈ −→. We usually write s−→ t instead of (s, t) ∈ −→. Finally, ` : P → 2S is a
partial labelling function which assigns sets `(p) of states in which p is true, to some
propositions p. We assume that `(p) is defined for finitely many p only, for otherwise
it is not clear how an LTS should be finitely representable as (part of the) input to an
algorithm solving some computation problem.

Let S ⊆ S. We write PreT (S ) for the set of predecessors of S , i.e. {t ∈ S | ∃s ∈ S
s.t. t−→ s}.

A path in T starting in state s is an infinite sequence π = s0, s1, . . . such that s0 = s
and si −→ si+1 for all i ≥ 0. For such a path π and i ∈ N let π(i) denote its i-th state, i.e.
si. Let ΠT (s) denote the set of all paths in T that start in s.

2.2 The Branching-Time Logic CTL

Let P be as above. Formulas of the branching-time logic CTL are built according to the
following grammar.

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | EXϕ | E(ϕUϕ) | EGϕ

where p ∈ P.
Besides the usual abbreviations for the Boolean operators like ∧,→, tt, ff we also

introduce the standard temporal operators via E(ϕ Rψ) := E(ψ U (ϕ ∧ ψ)) ∨ EGψ, AXϕ :=
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¬EX¬ϕ, A(ϕ Rψ) := ¬E(¬ϕ U¬ψ), EFϕ := E(tt Uϕ), AGϕ := ¬EF¬ϕ, and AFϕ :=
¬EG¬ϕ.

Formulas of CTL are interpreted over labelled transition systems T = (S,−→, `).
The semantics inductively defines the set of states at which each subformula is true.

[[p]]T := `(p)

[[ϕ ∨ ψ]]T := [[ϕ]]T ∪ [[ψ]]T

[[¬ϕ]]T := S \ [[ϕ]]T

[[EXϕ]]T := {s ∈ S | ∃t ∈ S s.t. s−→ t and t ∈ [[ϕ]]T }

[[E(ϕ Uψ)]]T := {s ∈ S | ∃π ∈ ΠT (s), i ≥ 0 s.t. π(i) ∈ [[ψ]]T

and for all j < i : π( j) ∈ [[ϕ]]T }

[[EGϕ]]T := {s ∈ S | ∃π ∈ ΠT (s) s.t. for all i ≥ 0 : π(i) ∈ [[ϕ]]T }

The (global) model checking problem for CTL and a class of labelled transition
systems K is: given a T ∈ K and a ϕ ∈ CTL (over the same set of atomic propositions),
compute [[ϕ]]T . It is well-known that the model checking problem for CTL over finite
LTS is computable in polynomial time [15].

2.3 Automatic Structures

We are interested in particular LTS over infinite state spaces, known as automatic struc-
tures [6]. Originally, the term refers to (possibly infinite) relational structures that can
be represented using automata. Here we consider a slightly modified variant that does
not bear any essential differences. First, we restrict our attention to unary and binary
relations – note that LTS are specific relational structures such that the arities of their
relations are two (for the transition relation) and one (for all the atomic propositions).

Second, we consider a slight generalisation, owed to the limits that the original
proposal faces in terms of decidability issues. In the original definition of automatic
structures, relations are recognised by synchronous transducers, i.e. finite automata over
alphabets of the form Σk for some k ≥ 1 (which equals the arity of the underlying
relation). This makes the concept of an automatic structure a syntactic definition.

The aim of this work is to find (restricted) classes of automatic structures for which
the CTL model checking problem is computable. One way to obtain this is to study
restricted mechanisms for defining the relations in an LTS. We therefore prefer a se-
mantic definition of automatic structures here, allowing the representation mechanism
to become a parameter for a class of infinite-state structures.

We assume the reader to be familiar with the basic notions of formal language theory
and the theory of finite-state automata. We use Σ for a finite alphabet and Σ∗ for the set
of all finite words over Σ. The empty word is denoted by ε.

A nondeterministic finite automaton (NFA) over Σ is a A = (Q, Σ, qI , δ, F) with
finite state set Q, initial state qI ∈ Q, final states F ⊆ Q and transition relation δ :
Q × Σ → 2Q. The language of A is denoted L(A), and it consists of all words w ∈ Σ∗

for which there is an accepting run of A on w. We use the standard homomorphic
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extension δ̂ of δ to words via δ̂(q, ε) = {q} and δ̂(q,wa) = {q′ | ∃q′′ ∈ δ̂(q,w) s.t.
q′ ∈ δ(q′′, a)}. Hence, L(A) = {w | ∃ f ∈ δ̂(qI ,w)}.

For our notion of automatic structure we need an abstract concept of a mechanism
that represents binary relations over words.

Definition 1. A binary acceptor A is any finite representation of a binary relation
R(A) ⊆ Σ∗ × Σ∗.

This yields a parametric notion of automatic structures.

Definition 2. Let A be a class of binary acceptors over some alphabet Σ. An LTS T =

(S,−→, `) is said to be an A-automatic transition system, or A-automatic in short, if

– S = Σ∗,
– for each p ∈ P with `(p) , undef there is an NFAAp s.t. L(Ap) = `(p),
– there is a binary acceptorAtr ∈ A s.t. R(Atr) = {(s, t) | s−→ t}.

Thus, roughly speaking, a transition system is automatic, if the labels are repre-
sented by an NFA and the transition relation by a binary acceptor. The size of an A-
automatic structure T , denoted |T |, is the sum of the sizes of the NFA used to define
the interpretation of the atomic propositions plus the size of the binary acceptor, assum-
ing that some sensible notion of representation size is given for it.

The standard notion of an automatic structure as known from [6] – at least when
restricted to one binary and otherwise only unary relations – is obtained in this setting
as a Tsync-automatic transition system with Tsync being the class of synchronous trans-
ducers, i.e. NFA over the alphabet Σ2 ∪ {(a, #), (#, a) | a ∈ Σ}. The relation of such a
transducerA is then defined as R(A) = {(u, v) | zip(u, v) ∈ L(A)} where zip merges the
two words u, v ∈ Σ∗ into a two-tracked word over Σ2, possibly appending the padding
symbol # in case their lengths are not equal. It is inductively defined via

zip(au, bv) :=
(

a
b

)
zip(u, v) , zip(ε, bv) :=

(
#
b

)
zip(ε, v) ,

zip(au, ε) :=
(

a
#

)
zip(u, ε) , zip(ε, ε) := ε ,

where a, b ∈ Σ and u, v ∈ Σ∗.
Another example of a binary acceptor is given by the notion of recognisable rela-

tions, to be looked at in detail in Sect. 4 as a mechanism to define a class of automatic
structures we call recognisable automatic structures. The notion of binary acceptor is
flexible enough, though, to incorporate all sorts of other mechanisms for defining bi-
nary relations. For instance a pair of two NFAs (A,B) with R(A,B) = L(A) × L(B)
would also be a very simple case of a binary acceptor, leading to what one may call
fully asynchronous automatic structures. In fact, such a pair yields a very special case
of a recognisable relation.
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Algorithm 1 The standard procedure for model checking CTL.
procedure ModelCheck(ϕ) . assume LTS T = (S,−→, `) fixed

case ϕ of
p: return `(p) . p ∈ P
¬ψ:

return S\ModelCheck(ψ)
ψ1 ∨ ψ2:

return ModelCheck(ψ1) ∪ModelCheck(ψ2)
EXψ:

return PreT (ModelCheck(ψ))
E(ψUχ):

L1 ←ModelCheck(ψ); L2 ←ModelCheck(χ); M ← ∅
repeat

M′ ← M; M ← L2 ∪ (L1 ∩ PreT (M))
until M = M′

return M
EGψ:

L←ModelCheck(ψ); M ← S
repeat

M′ ← M; M ← L ∩ PreT (M)
until M = M′

return M
end case

end procedure

3 Model Checking CTL

We describe the generic and well-known procedure that can be used to compute the set
of states in a transition system which satisfy a given CTL formula [11]. It can imme-
diately be derived from the semantics and the fixpoint principle, stating that the set of
states satisfying E(ϕUψ), resp. EGϕ, can be computed iteratively in a least, resp. greatest
fixpoint recursion.

Note that the procedure ModelCheck as given in Algorithm 1 is not an algorithm
strictly speaking: if |S| < ∞ then clearly PreT (·) is computable, and termination of the
repeat-until-loops is guaranteed by monotonicity and boundedness of the values of
the variable T in both cases. Hence, procedure ModelCheck can safely be called an
algorithm for CTL model checking on finite structures.

In case of |S| = ∞, termination is not necessarily guaranteed. This does not mean,
though, that computability of the model checking problem is not given. As in the case
of FO model checking on automatic structures which only uses computable operations
on possibly infinite sets, a thorough look at ModelCheck reveals some sufficient condi-
tions under which CTL model checking becomes computable. For this, we assume the
given LTS to be A-automatic for some class A. Then the computability of the Boolean
operations is guaranteed for as long as they are applied to sets of states which form
a regular language. Moreover, computability of the Pre(·)-predicate is needed, which
is the counterpart to closure under projections in the decidability proof for FO model
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checking on automatic structures. At last, we need one more property which has no
counterpart in FO model checking, since FO has no recursion mechanism but CTL has
one in the form of the temporal operators EU and EG.

Definition 3. Let A be a class of binary acceptors and T be a class of A-automatic
structures. We say that T has finite U-closure ordinals if for any T ∈ T and any regular
languages L1, L2 the increasing chain M0 ⊆ M1 ⊆ . . . becomes stationary where

M0 := ∅ , Mi+1 := L2 ∪ (L1 ∩ PreT (Mi)) .

Likewise, we say that T has finite G-closure ordinals if for any T ∈ T and any regular
language L the decreasing chain M0 ⊇ M1 ⊇ . . . becomes stationary where

M0 := Σ∗ , Mi+1 := L ∩ PreT (Mi) .

We say that T has finite closure ordinals if it has finite U- and finite G-closure ordinals.

Here, becoming stationary means that there is an n ∈ N such that Mn+1 = Mn. It is a
simple consequence of the monotonicity of the operators PreT (·), union and intersection
that the series (Mi)i≥0 indeed forms an increasing, resp. decreasing chain.

Lemma 4. The model checking problem for CTL over the class T of A-automatic tran-
sition systems is computable if

a) for any LTST ∈ T and any regular language L, the set PreT (L) is effectively regular,
i.e. an NFA can be computed for it from an NFA for L, and

b) T has finite closure ordinals.

Proof. It is a standard exercise to show by induction on the structure of ϕ that calling
ModelCheck(ϕ) on T returns [[ϕ]]T [4, Thm. 6.23] [13, Lem. 7.3.4], provided that it
terminates. It then only remains to see that termination is guaranteed when each call to
any of the two repeat-until loops terminates.

First we note that by assumption (a), each subcall to ModelCheck returns a regular
language. Then assumption (b) is applicable and guarantees termination of the loops
since they iterate through the values of the chains from Def. 3 in their variables M and
M′ until they become stable. ut

4 CTL Model Checking over Recognisable Automatic Transition
Systems

In this section we examine a particular class of binary acceptor and the computability
of the CTL model checking problem over automatic structures generated by this class.
Semantically, it consists of the class of recognisable relations which forms a proper
subclass of the relations represented by synchronous transducers. These, in turn, are
included in the well-known class of rational relations [29, Thm. 6.4].

An automaton model for the class of recognisable relations can immediately be
derived from the fact that every recognisable relation can be expressed as the finite
union of the product of some regular languages [5, Thm. 1.5]. This gives rise to a
syntactic transducer model for these relations.
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Definition 5. An input-output-independent (IOI) automaton is a triple A = (I,O, F)
such that I = (QI, Σ, qII , δ

I, ∅) and O = (QO, Σ, qOI , δ
O, ∅) are NFAs and F ⊆ QI × QO.

The relation defined by an IOI automaton is

R(A) := {(u, v) ∈ Σ∗ × Σ∗ | ∃(p, q) ∈ F s.t. p ∈ δ̂Ii (qII , u) and q ∈ δ̂Oi (qOI , v)} .

Intuitively, an IOI automaton is a pair of NFAs which are only synchronised via
final states. They read the input and output word independently, and the acceptance
condition prescribes which pairs of states their runs need to end in for the pair of words
to be accepted. Clearly, IOI automata are a special form of binary acceptors according
to Def. 1. Hence, they give rise to a class of automatic structures, henceforth called
recognisable automatic structures.

Example 6. Let A = (I,O, F) be the IOI automaton such that I and O are both the
following NFA.

0 1

0001 10 11

000001 100 101010011 110 111

a

a

a

a a

a

a

a

a

a a

a

a

a

b b

b b
b b

I,O :

A state at the bottom is reached by a word that contains exactly two b’s, hence, it is
of the form an1 ban2 ban3 for some n1, n2, n3 ≥ 0. Such a state x1x2x3 then indicates the
parities (even/odd) of n1, n2 and n3.

The final state pairs of A are those of the row at the bottom that differ in at least
two positions, i.e.

F := {(x1x2x3, y1y2y3) | xi , yi for at least two i ∈ {1, 2, 3}} .

Thus, a pair of words (an1 ban2 ban3 , am1 bam2 bam3 ) is in R(A), iff ni = mi mod 2 for at
most one i ∈ {1, 2, 3}.
A generates a recognisable automatic structure with state space {a, b}∗ that is partly

shown in Fig. 1. The grey circles denote subgraphs of nodes of the form an1 ban2 ban3 for
which the values of n1 + n2 + n3 do not differ. The dashed line abbreviates edges from
every node in the left subgraph to the node on the right. Note that R(A) is symmetric in
this case, simply because I = O and F happens to be symmetric.

In order to prove computability of the model checking problem for CTL over recog-
nisable automatic structures it suffices to show that this class satisfies the two conditions
laid out in Lemma 4.

Lemma 7. Let L be a regular language and T be a recognisable automatic structure.
Then PreT (L) is effectively regular.
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bb bab
bba

abb
baab

aabbabab

abba

baba bbaa

ababa · · ·

· · ·

· · ·

Fig. 1. An excerpt of the relation R(A) for the IOI automatonA from Ex. 6.

Proof. Let L be a regular language accepted, e.g., by some NFAB = (QB, Σ, qBI , δ
B, FB)

and let A = (I,O, FA) be the IOI automaton that recognises the transition relation
of some recognisable automatic structure T . Consider the IOI automaton A Y B :=
(I,O′, F) with O′ = (QO × QB, Σ, (qOI , q

B
I ), δ, ∅),

δ((p, q), a) = {(p′, q′) | p′ ∈ δO(p, a), q′ ∈ δB(q, a)}

and F := {( f1, ( f2, f )) | ( f1, f2) ∈ FA, f ∈ FB}. It has the same input component as A,
but its output component O′ is the synchronous product of the one ofA and B. Hence,
it recognises the relation R(A Y B) = {(u, v) | (u, v) ∈ R(A) and v ∈ L(B)}.

Next, consider the NFA I′ := (QI, Σ, qII , δ
I, F′) with F′ := { f1 | ∃( f2, f ) s.t.

( f1, ( f2, f )) ∈ F}. We then have L(I′) = {u | ∃v s.t. (u, v) ∈ R(A Y B)} = PreT (L). ut

This is of course a standard construction of forming the intersection of the automa-
ton’s second component with a regular language and then projecting it onto its first
component. We have spelled out the construction in detail because of an important ob-
servation to be made: note that the transition table of the NFA for PreT (L) does not
depend on L; instead, L only determines its accepting states. This can be seen as an in-
dication of the weakness of IOI automata as a model for automatic structures; however,
some sort of weakness is necessary in order to obtain computability.

Lemma 8. The class of recognisable automatic structures has finite closure ordinals.

Proof. We will only prove the claim for finite U-closure ordinals. The case of G-closure
ordinals is analogous.

Let A = (I,O, F) be the IOI automaton underlying some recognisable automatic
structure T , and let L1, L2 be two regular languages. Consider the chain M0 ⊆ M1 ⊆

. . . approximating the set of states in T that satisfy – by slight abuse of notation –
E(L1 U L2), as constructed in Def. 3.

By the observation following the previous lemma, we have that PreT (L) is recog-
nised by an NFA of the form (QI, Σ, qII , δ

I, F) for some F ⊆ QI. Thus, the graph struc-
ture of the NFA does not depend on the input language L, only the set of final states
does. Therefore, there are at most 2|Q

I | many different languages PreT (L) for arbitrary
regular L.
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Now consider the chain M0 ⊆ M1 . . .. Each Mi with i > 0 is obtained as L2 ∪ (L1 ∩

PreT (Mi−1)). Assuming that union and intersection are always formed using the same
procedure on the same fixed NFA for L1 and L2, we get that there are at most 2|Q

I | many
different NFA for the Mi. With union and intersection being monotone operations, the
chain M0 ⊆ M1 ⊆ . . . has to become stable after at most 2|Q

I | many steps. ut

Putting Lemmas 4, 7 and 8 together, we immediately obtain the following.

Theorem 9. The model checking problem for CTL over the class of recognisable au-
tomatic structures is computable.

An immediate question arising from such a decidability result concerns the worst-
case complexity of the model checking problem for CTL over recognisable automatic
transition systems. We note that the time needed to compute [[ϕ]]T for some such T and
arbitrary CTL formula ϕ is determined by several factors: (1) the use of intersection and
complementation constructions arising from conjunctions and negated subformulas; (2)
upper bounds on the number of iterations needed to obtain stability in the in-/decreasing
chains of Def. 3. The following lemma shows that stability is reached after a small
number of iterations.

Lemma 10. Consider an IOI automaton A = (I,O, F) and two regular languages
L1, L2 ⊆ Σ

∗ represented by NFA B1,B2. LetA0,A1, . . . be the sequence of NFA recog-
nising the languages M0,M1, . . . in an in-/decreasing chain according to Def. 3, and let
F0, F1, . . . be their final states respectively. Then F0, F1, . . . also forms an increasing,
resp. decreasing chain.

Proof. We assume that in each step of building theAi, i ≥ 1, the standard constructions
for forming the union and intersection of two languages are being used. Hence, for every
final state f in some Fi we have that f is either a final state of B2, or it is of the form
( f ′, f ′′) such that f ′ is a final state of B1 and f ′′ is a final state of the NFA constructed
in the proof of Lemma 7 by projecting the automatonA Y Ai−1 accordingly.

Now consider the case in which M0 ⊆ M1 ⊆ . . . forms an increasing chain. The case
of a decreasing chain is entirely analogous. W.l.o.g. we can assume that F0 = ∅ since
M0 = ∅. Clearly, we have F0 ⊆ F1. Now let i > 0 and assume that Fi−1 ⊆ Fi. We want
to show that Fi ⊆ Fi+1 holds.

Take some f ∈ Fi. If f is a final state of B2 then it clearly also belongs to Fi+1.
Hence, suppose that f = ( f ′, f ′′) with f ′ being a final state of B1 and f ′′ being a
final state of the NFA for PreT (Mi−1). According to the construction of the automaton
A Y Ai−1 as in the proof of Lemma 7 there must exist some g, g′ such that ( f ′′, (g, g′))
is a final state of A Y Ai−1. This is only possible if ( f ′′, g) is a final state of the
automatonA and g′ is a final state of the NFAAi−1, thus g′ ∈ Fi−1. Then we can apply
the induction hypothesis and get g′ ∈ Fi and therefore ( f ′′, (g, g′)) as a final state of
A Y Ai. Then f ′′ is also a final state of the NFA for PreT (Mi) and therefore f is a final
state of the NFA for L1 ∩ PreT (Mi) and, hence, f ∈ Fi+1. ut

Note that this does not necessarily yield a polynomial bound on the number of
iterations needed to compute [[E(ϕUψ)]]T for instance. Lemma 10 shows that the fixpoint
will be reached after after at most nϕ + nψ · n steps where nϕ, nψ are the number of states
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of an NFA recognising [[ϕ]]T and [[ψ]]T , respectively. Again, similar considerations can
be made for the decreasing chains in Def. 3 and formulas of the form EGϕ. In any case,
n equals the number of states of the output component of the IOI automaton recognising
the accessibility relation of the underlying recognisable transition system. Hence, n is
clearly bounded by |T |, the size of a representation of T . However, nϕ and nψ are not a
priori bounded since these subformulas can be arbitrary and in particular make use of
expensive intersection and complementation constructions.

5 Conclusion and Further Work

We have defined a simple framework for the study of restricted classes of automatic
structures in which the binary relations are defined by weaker automata than syn-
chronous ones. This can of course be extended to relations of arbitrary arity, but au-
tomatic structures that represent transition systems (i.e. have relations of arity at most
two) are most interesting for purposes of verification of reactive and concurrent sys-
tems. This also motivates the choice of specification language, here the branching-time
temporal logic CTL.

There are plenty of ways that this work can be extended to in the future. The ex-
act complexity of CTL model checking over recognisable automatic transition systems
needs to be established. It also remains to be seen whether the sufficient conditions
(or similar ones) on IOI automata can be used to prove decidability of model checking
problems for richer or similar specification languages like PDL [17] with various ex-
tensions [30], regular extensions of CTL [19, 24, 3] or even the modal µ-calculus [23].
Note that these logics are all state-based in the sense that typical global model checking
procedures can proceed in a bottom-up fashion similar to Alg. 1.

The next question that comes up in terms of investigations w.r.t. specification lan-
guages concerns linear-time logics like LTL [27] and PSL [2] and then combinations
with branching-time features resulting in something like CTL∗ [16]. Note that model
checking for such logics typically requires very different techniques like automata- [33]
or tableau-based [35] ones. It therefore remains to see if the sufficient conditions laid out
in Lemma 4 would also yield computability of model checking problems for linear-time
properties, or whether other conditions can be found similarly.

Another obvious direction for future work is of course to find further instantiations
of the relaxed framework of binary acceptors which preferably leads to richer classes
of automatic structures but still satisfies the conditions of Lemma 4. One way to go
about this is to give up working with essentially two-tracked words since this is one
of the main course of undecidability. A simple suggestion for a binary acceptor that is
based in the world of one-tracked words is, for instance, the following: given an NFA
A, let R(A) = {(u, v) | uv ∈ L(A)}. Hence, it defines a relation by cutting words in a
regular language apart. It is a simple exercise, though, to see that this model of binary
acceptor is effectively equivalent to the IOI automata studied here. Hence, it does not
generate a new class. We therefore propose a slight variant and leave it open whether
this model of binary acceptor satisfies the conditions of Lemma 4: given an NFAA, let
R(A) = { (u, v) | there is w ∈ L(A) such that u is a prefix of w and v is a suffix of w}. We
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suspect that CTL model checking is computable for the class of automatic structures
defined by such binary acceptors but have no formal proof at the moment.

We also suspect that recognisable relations may form the largest class of syntacti-
cally definable relations for which CTL model checking, or even model checking for
some weaker logic like EF, is decidable. It remains to be seen whether it is possible to
encode some undecidable reachability problem using an arbitrary relation that incorpo-
rates only the slightest form of synchronisation between the runs on the input and the
output word.
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