
Tableaux with Automata (Extended Abstract)

Oliver Friedmann and Martin Lange

Dept. of Computer Science, University of Munich, Germany

1 Introduction

Tableaux and automata are two different (but not unrelated) methodologies
underlying decision procedures for various logics. In this paper we do not want
to argue in favour or against one of these frameworks. Undeniably, each of them
has their own advantages (and maybe also disadvantages) which are the reason
for the success and usefulness of certain decision procedures. Instead we examine
a situation in which, as we think, the best decision procedure is obtained by
combining tableaux with automata using certain advantages of both and avoiding
their disadvantages.

The problem we are going to tackle is the satisfiability (or, by duality, valid-
ity) problem for the modal �-calculus and therefore for various other branching
time logics as well. This is not unsolved [1], but on the one hand the modal �-
calculus is expressive enough to be of wide interest, and on the other it is struc-
turally simple enough in order to attempt a clean presentation which hopefully
does not distract through unnecessary detail from the combination of tableau
and automata methods.

Basically all procedures for the satisfiability problem of the modal �-calculus
use an intermediate step in the attempt to construct a model for a given formula.
In Emerson and Jutla’s automata-theoretic approach this is the notion of pre-
models for instance [1], here we will speak of pre-tableaux instead. Models of
formulas are then obtained by discarding those pre-models that do not satisfy
a certain well-foundedness condition, namely do not guarantee least fixpoint
constructs to be fulfilled in a finite number of steps.

Here we will characterise satisfiability of formulas of the modal �-calculus
through the existence of tableaux which are infinite trees (pre-tableaux) with
such an additional well-foundedness condition. The tableau method seems suit-
able in this step because of the flexibility it provides in the choice of rules. We
therefore do not need Hintikka sets and, most importantly do not need a fixed
(and usually overestimated) arity for trees that are recognised by tree automata
for �-calculus formulas. However, it turns out that non-well-foundedness is eas-
ily recognised by nondeterministic Büchi automata. We then use powerful tools
from automata-theory, namely determinisation and complementation in order to
turn this into a device that decides well-foundedness in the tableaux. In the end,
satisfiability is reduced to the existence of an infinite tableau whose nodes are
labeled with formula sets and states of a deterministic parity automaton. De-
ciding satisfiability is then reduced to the solving of parity games thus avoiding

the re-introduction of automata theory or the invention of decision methods for
infinite tableaux.

2 The Modal �-Calculus

Let V be an infinite set of variables. Formulas of the modal �-calculus (in positive
normal form) over a set P of propositions are given as follows.

' ::= q ∣ q ∣ X ∣ ' ∨ ' ∣ ' ∧ ' ∣ ♢' ∣ □' ∣ �X.' ∣ �X.'

where X ∈ V, q ∈ P. We will write � for either � or � whenever the type of
fixpoint is negligible. They are interpreted over states s of a labeled transition
systems T = (S,−→, ℓ), where (S,−→) is a directed graph and ℓ : S → 2P as
follows. Let � : V → 2S .

s ∣=� q iff q ∈ ℓ(s)
s ∣=� q iff q ∕∈ ℓ(s)
s ∣=� X iff s ∈ �(X)

s ∣=� ' ∨ iff s ∣=� ' or s ∣=�

s ∣=� ' ∧ iff s ∣=� ' and s ∣=�

s ∣=� ♢' iff ∃t ∈ S with s −→ t and t ∣=� '

s ∣=� □' iff ∀t ∈ S : if s −→ t then t ∣=� '

s ∣=� �X.' iff ∀T ⊆ S : if ∀t ∈ T : t ∣=�[X 7→T] T implies t ∈ T then s ∈ T
s ∣=� �X.' iff ∃T ⊆ S s.t. s ∈ T and ∀t ∈ T : t ∣=�[X 7→T] '

We assume the reader to be familiar with the standard notions of syntactic
subformulas Sub('), free variables, closed formulas, substitution '[/X] of all
occurrences of a variable, etc.

A formula ' is in normal form iff there is only one fixpoint binder �X.'′

for every bound variable X and every occurring fixpoint binder �X.'′ is proper,
meaning that X ∈ Sub('′). Clearly, every closed formula ' can easily be trans-
formed into an equivalent closed formula # in normal form. Then there is a
function fp# that maps each variable X occuring in # to the body of its
defining fixpoint subformula �X. .

A formula ' is in guarded form iff every occurrence of a bound variable X
is in the scope of a modal operator ♢ or □ under its quantifier �X.'′. Every
formula can be transformed into guarded form incurring a quadratic blow-up [2].
We assume from now on that every formula is guarded and in normal form.

Let ' be fixed and take two variables X, Y occurring in it. Then Y depends
on X, written X ≻' Y , if X occurs freely inside of fp'(Y). Let ≻+

' be the
transitive closure of ≻'. The index of ' is the maximal n in a chain X1 ≻+

'

X2 ≻+
' . . . ≻+

' Xn s.t. adjacent variables in this chain are of different fixpoint
type � or �. A variable X is called outermost among a set of variables V if there
is no Y ∈ V s.t. Y ≻+

' X.

(Or)
'0 ∨ '1, �

'i, �
(And)

'0 ∧ '1, �

'0, '1, �
(FP)

�X.', �

X,�
(Var)

X,�

fp#(X), �

(Mod)
♢'1, . . . ,♢'n,□ 1, . . . ,□ m, q1, . . . , qk, p1, . . . , pℎ

'1, 1, . . . , m '2, 1, . . . , m . . . 'n, 1, . . . , m
if qi ∕= pj for all i, j

Fig. 1. The rules for building pre-tableaux.

3 An Infinite Proof System for the Modal �-Calculus

In the following we fix a formula # for which satisfiability is to be decided. A pre-
tableau for # is a (possibly infinite but finitely-branching) tree in which nodes are
labeled with subsets of Sub(#), the set of subformulas of #. The root is labeled
with the singleton set containing #, and successors in the tree are being built
using the rules in Fig. 1.

The formula # induces the connection relation⇝⊆ 2Sub(#)×Sub(#)×2Sub(#)×
Sub(#) defined as follows. We have �,'⇝ 	, iff there is an instance of a rule
of Fig. 1 s.t.

– ' ∈ �, ∈ 	 , and
– � is the conclusion (on top), 	 is one of the premisses (below), and
– either ' is not principal in this rule application and = ', or ' is a principal

formula in � and is a replacement of '.

For example, in rule (And), '0∧'1 is connected to both '0 and '1. In rule (Mod),
□ j is connected to j in any premiss, literals are not connected to anything,
and ♢'i is only connected to 'i in the i-th premiss; etc.

A thread in an infinite pre-tableaux branch �0, �1, �2, . . . is an infinite se-
quence '0, '1, '2, . . . s.t. �i, 'i ⇝ �i+1, 'i+1 for every i ∈ ℕ. It is called �-thread
if the outermost variable occurring infinitely often in this sequence is of type �.
Otherwise it is called �-thread.

A tableau for # is a pre-tableau s.t. every finite branch ends in a node labeled
with □-formulas and consistent literals only, and every infinite branch does not
have a �-thread. The following is not too difficult to show.

Proposition 1. A formula # is satisfiable iff there is a tableau for #.

The direction from right to left takes a tableau and collapses sequences of
nodes between which no application of rule (Mod) occurs into a state of a tran-
sition system. The converse direction makes use of the fact that every formula
has a pre-tableau. A model for # is then traversed state-by-state in order to con-
struct such a pre-tableau, and the global thread-conditions are shown to hold
using approximants of least fixpoint formulas. An immediate consequence of this
construction is the tree model property for the modal �-calculus.

Proposition 2. Every satisfiable formula # of the modal �-calculus has a tree
model with out-degree bounded by the number of different ♢-subformulas of #.

4 Using Automata

The previous section characterises satisfiability through the existence of an infi-
nite tableau. In this section we describe how automata can be used in order to
decide this existence. Again, we fix a formula #. It induces an alphabet of rule
applications. Let

�# := {And('0 ∧ '1) ∣ '0 ∧ '1 ∈ Sub(#)} ∪ {FP(X), Var(X) ∣ X ∈ Sub(')}
∪ {LOr('0 ∨ '1), ROr('0 ∨ '1) ∣ '0 ∨ '1 ∈ Sub(#)} ∪ {Mod}

With an infinite branch � = �0, �1, . . . of a pre-tableau for # we associate a word
w� ∈ �!

in the natural way: the i-th letter of w� is ROr('0 ∨ '1) for instance
iff �i+1 is obtained from �i through an application of rule (Or) on the principal
formula '0 ∨ '1 which is then replaced by its right disjunct '1; etc.

Lemma 1. There is a nondeterministic Büchi automaton (NBA) ℬ# over �#
s.t.

– the number of states in ℬ# is bounded by (ind(#) + 1) ⋅ ∣Sub(#)∣,
– L(ℬ#) = {w ∣ if w = w� for some � then � has a �-thread }.

The NBA simply guesses threads by tracing single subformulas in its state
set. Upon reading an input letter it knows whether the next rule application
transforms the currently traced subformula or whether it remains the same on
that thread. A parity condition that reflects the alternation depth of each vari-
able inside # can then be used in order to recognise the language at hand. At
last on uses the standard and simple transformation of nondeterministic parity
automata into NBA.

Next we will use a powerful automata-theoretic result in order to make the
global thread conditions in tableaux algorithmically handable.

Theorem 1 ([3]). For every NBA ℬ with n states there is a deterministic parity
automaton (DPA) A with 2O(n logn) states and index O(n) s.t. L(A) = L(ℬ).

Combining this theorem with Lemma 1 yields a DPA A# with some exponen-
tially sized state setQ that recognises exactly those sequences of rule applications
that either do not correspond to a pre-tableau branch, or that do correspond to
a branch which does not contain a �-thread. This allows us to define a parity
game G# with a node v0 s.t. this node is won by player 0 iff # is satisfiable.
The nodes of the game are of the form 2Sub(#) × Q, the designated node v0 is
({#}, q0) where q0 is the initial state of A#. A node w = (, q′) is a successor of
v = (�, q) if a uniquely (for (�, q)) chosen rule is applied to � that yields 	 as
one of its premisses, this rule is represented by r ∈ �# and �(q, r) = q′ where � is
the transition function of A#. The node ownership in the game is determined by
these uniquely chosen rules: player 0 owns nodes in which rule (Or) is applied,
player 1 owns nodes in which rule (Mod) is applied. All other nodes can have at
most one successor. Finally, the priority of a game node (�, q) is simply
(q)
where
 is the priority function of A#.

Proposition 3. Let # be a formula with n = ∣Sub(#)∣ and k = ind(#). There is

a parity game G# with number of nodes bounded by 2O(n2k log(nk)) and a desig-
nated node v that is won by player 0 iff # is satisfiable.

Furthermore, the subgame induced by a winning strategy for player 0 is in
effect a model for #. This immediately yields a small model property of corre-
sponding size for all levels of the alternation hierarchy of the modal �-calculus.
However, better bounds may be obtained by considering this construction in a
modular fashion. This is summarised in the following statement.

Proposition 4. Let # be a formula and A# be a deterministic automaton with n
states that recognises among branches of a pre-tableau for # exactly those that not
contain a �-thread. Then there is a game G# of the same acceptance condition
as A# and size 2∣#∣ ⋅ n s.t. solving this game decides satisfiability of #, and a
model for # can be found as a subgame of G#.

This more abstract formulation avoids explicit determinisation of NBA. This
is particularly beneficial when considering fragments of the modal �-calculus.
Take for instance the fragment in which no �-bound variable occurs freely inside
a �-quantified formula. Then a �-thread can be recognised using a co-Büchi con-
dition since the corresponding automaton only has to check whether it eventually
remains inside the unfolding of a �-formula. Co-Büchi automata of size n can be
determinised and then complemented to a deterministic Büchi automaton of size
22n. Hence, for this fragment we immediately obtain the small model property
of size 23∣#∣. Additionally, this fragment can be decided through a reduction to
co-Büchi games, i.e. max-parity games in which only the priorities 0 and 1 occur
which is easier than solving general parity games.

References

1. E. A. Emerson and C. S. Jutla. Tree automata, �-calculus and determinacy. In
Proc. 32nd Symp. on Foundations of Computer Science, pages 368–377, San Juan,
Puerto Rico, 1991. IEEE.

2. Radu Mateescu. Local model-checking of modal mu-calculus on acyclic labeled
transition systems. In TACAS ’02: Proceedings of the 8th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 281–
295, London, UK, 2002. Springer-Verlag.

3. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. In Proc. 21st Symp. on Logic in Computer Science, LICS’06,
pages 255–264. IEEE Computer Society, 2006.

