
Don’t Know in the µ-Calculus

Orna Grumberg1, Martin Lange2, Martin Leucker3,, and Sharon Shoham1

1 Computer Science Department, The Technion, Haifa, Israel
2 Institut für Informatik, University of Munich, Germany

3 Institut für Informatik, Technical University of Munich, Germany

Abstract. This work presents game-based model checking for abstract
models with respect to specifications in µ-calculus, interpreted over a 3-
valued semantics. If the model checking result is indefinite (don’t know), the
abstract model is refined, based on an analysis of the cause for this result.
For finite concrete models our abstraction-refinement is fully automatic and
guaranteed to terminate with a definite result true or false.

1 Introduction

This work presents a game-based [19] model checking approach for abstract models
with respect to specifications in the µ-calculus, interpreted over a 3-valued seman-
tics. In case the model checking result is indefinite (don’t know), the abstract
model is refined, based on an analysis of the cause for this result. If the concrete
model is finite then our abstraction-refinement is fully automatic and guaranteed
to terminate with a definite result (true or false).

Abstraction is one of the most successful techniques for fighting the state explo-
sion problem in model checking [3]. Abstractions hide some of the details of the
verified system, thus result in a smaller model. Usually, they are designed to be
conservative for true, meaning that if a formula is true of the abstract model then
it is also true of the concrete (precise) model of the system. However, if it is false
in the abstract model then nothing can be deduced of the concrete one.

The µ-calculus is a powerful formalism for expressing properties of transition
systems using fixpoint operators. Many verification procedures can be solved by
translating them into µ–calculus model checking [1]. Such problems include (fair)
CTL model checking, LTL model checking, bisimulation equivalence and language
containment of ω-regular automata.

In the context of abstraction, often only the universal fragment of µ-calculus is
considered [13]. Over-approximated abstract models are used for verification of such
formulae while under-approximated abstract models are used for their refutation.

Abstractions designed for full µ-calculus [6] have the advantage of handling both
verification and refutation on the same abstract model. A greater advantage is
obtained if µ-calculus is interpreted w.r.t the 3-valued semantics [11, 10]. This
semantics evaluates a formula to either true, false or indefinite. Abstract models
can then be designed to be conservative for both true and false. Only if the value
of a formula in the abstract model is indefinite, its value in the concrete model is
unknown. Then, a refinement is needed in order to make the abstract model more
precise. Previous works [12, 15, 16] suggested abstraction-refinement mechanisms
for various branching time logics over 2-valued semantics, for specific abstractions.

Many algorithms for µ-calculus model checking with respect to the 2-valued
semantics have been suggested [8, 20, 22, 5, 14]. An elegant solution to this problem
is the game-based approach [19], in which two players, the verifier (denoted ∃) and
the refuter (denoted ∀), try to win a game. A formula ϕ is true in a model M iff the
verifier has a winning strategy, meaning that she can win any play, no matter what
the refuter does. The game is played on a game graph, consisting of configurations
s ` ψ, where s is a state of the model M and ψ is a subformula of ϕ. The players
make moves between configurations in which they try to verify or refute ψ in s.
These games can also be studied as parity games [7] and we follow this approach
as well.

In model checking games for the 2-valued semantics, exactly one of the players
has a winning strategy, thus the model checking result is either true or false. For
the 3-valued semantics, a third value should also be possible. Following [17], we
change the definition of a game for µ-calculus so that a tie is also possible.

To determine the winner, if there is one, we adapt the recursive algorithm for
solving parity games by Zielonka [23]. This algorithm recursively computes the
set of configurations in which one of the players has a winning strategy. It then
concludes that in all other configurations the other player has a winning strategy.

In our algorithm we need to compute recursively three sets, since there are also
those configurations in which none of the players has a winning strategy. We prove
that our algorithm always terminates and returns the correct result.

In case the model checking game results in a tie, we identify a cause for the tie
and try to eliminate it by refining the abstract model. More specifically, we explain
how to adapt the presented algorithm to keep track of why a vertex in the game is
classified as a tie. The refinement is applied only to parts of the model from which
tie is possible. Vertices from which there is a winning strategy for one of the players
are not changed. Thus, the refined abstract models do not grow unnecessarily. If the
concrete model is finite then our abstraction-refinement is guaranteed to terminate
with a definite result.

It is the refinement based on the algorithm which rules out the otherwise inter-
esting approach taken for example in [11, 10] in which a 3-valued µ-calculus model
checking problem is reduced to two 2-valued µ-calculus model checking problems.

Organization of the paper The 3-valued µ-calculus is introduced in the next sec-
tion. Then we describe the abstractions we have in mind. In Section 4, determinacy
for model-checking games is shown. We give a model-checking algorithm for games
with a finite board in Section 5, and, explain how to refine the abstract model, in
case of an indefinite answer in Section 6.

2 The 3-Valued µ-Calculus

Let P be a set of propositional constants, and A be a set of action names. Every
a ∈ A is associated with a so-called must-action a! and a may-action a?. Let
A! = {a! | a ∈ A} and A? = {a? | a ∈ A}. A Kripke Modal Transition System

(KMTS) is a tuple T = (S, { x−→ | x ∈ A! ∪ A?}, L) where S is a set of states, and
x−→ ⊆ S ×S for each x ∈ A!∪A? is a binary relation on states, s.t. for all a ∈ Act:
a!−−→ ⊆ a?−−→.

2

A labelled transition system in the usual sense can be regarded as a KMTS by

setting
a!−−→ =

a?−−→ for all a ∈ A and not distinguishing them anymore.
Let B3 = {⊥, ?,>} be partially ordered by ⊥ ≤ ? ≤ >. Then L : S → B

P
3 . We

use > to denote that a proposition holds in a state, ⊥ for not holding, and ? if it
cannot be determined whether it holds or not.

Let V be a set of propositional variables. Formulae of the 3-valued modal µ-

calculus in positive normal form are given by

ϕ ::= q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µZ.ϕ | νZ.ϕ

where q ∈ P, a ∈ A, and Z ∈ V. Let 3-Lµ denote the set of closed formulae
generated by the above grammar, where the fixpoint quantifiers µ and ν are variable
binders. We will also write η for either µ or ν. Furthermore we assume that formulae
are well-named, i.e. no variable is bound more than once in any formula. Thus,
every variable Z identifies a unique subformula fp(Z) = ηZ.ψ of ϕ, where the set
Sub(ϕ) of subformulae of ϕ is defined in the usual way.

Given variables Y,Z we write Y ≺ϕ Z if Z occurs freely in fp(Y) in ϕ, and
Y <ϕ Z if (Y,Z) is in the transitive closure of ≺ϕ. The alternation depth ad(ϕ) of
ϕ is the length of a maximal <ϕ-chain of variables in ϕ s.t. adjacent variables in
this chain have different fixpoint types.

The semantics of a 3-Lµ formula is an element of B
S
3 —the functions from S to

B3—which forms a boolean lattice when equipped with the following partial order:
let f, g : S → B3. f v g iff ∀s ∈ S : f(s) ≤ g(s). Joins (meets) in this lattice
are denoted by f t g (f u g, resp.). The complement of f , written f is defined by
f(s) := f(s) for s ∈ S where ⊥ and > are complementary to each other, and ? =?.

Then the semantics [[ϕ]]
T

ρ of a 3-Lµ formula ϕ w.r.t. a KMTS T = (S, { x−→ | x ∈

A! ∪ A?}, L) and an environment ρ : V → B
S
3 , which explains the meaning of free

variables in ϕ, is an element of B
S
3 . We assume T to be fixed and do not mention

it explicitly anymore. With ρ[Z 7→ f] we denote the environment that maps Z
to f and agrees with ρ on all other arguments. Later, when closed formulae are
considered only we will also drop the environment from the semantic brackets.

[[q]]ρ := λs.L(s)(q)

[[¬q]]ρ := λs.L(s)(q)

[[Z]]ρ := ρ(Z)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ t [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ u [[ψ]]ρ

[[〈a〉ϕ]]ρ := λs.











> , if ∃t ∈ S, s.t. s
a!−−→ t and [[ϕ]]ρ(t) = >

⊥ , if ∀t ∈ S, if s a?−−→ t then [[ϕ]]ρ(t) = ⊥
? , o.w.

[[[a]ϕ]]ρ := λs.











> , if ∀t ∈ S, if s a?−−→ t then [[ϕ]]ρ(t) = >

⊥ , if ∃t ∈ S, s.t. s a!−−→ t and [[ϕ]]ρ(t) = ⊥
? , o.w.

[[µZ.ϕ]]ρ :=

⊔

{f | [[ϕ]]ρ[Z 7→f] v f}

[[νZ.ϕ]]ρ :=
⊔

{f | f v [[ϕ]]ρ[Z 7→f]}

3

Note that s
a!−−→ t implies s

a?−−→ t.
The functionals λf.[[ϕ]]ρ[Z 7→f] : B

S
3 → B

S
3 are monotone w.r.t. v for any Z,ϕ and

S. According to [21], least and greatest fixpoints of these functionals exist.
Approximants of 3-Lµ formulae are defined in the usual way: if fp(Z) = µZ.ϕ

then Z0 := λs.⊥, Zα+1 := [[ϕ]]ρ[Z 7→Zα] for any ordinal α and any environment ρ,

and Zλ :=

⊔α<λ Z
α for a limit ordinal λ. Dually, if fp(Z) = νZ.ϕ then Z0 := λs.>,

Zα+1 := [[ϕ]]ρ[Z 7→Zα], and Zλ :=
⊔

α<λ Zα.

Theorem 1. [21] For all KMTS T with state set S there is an α ∈ Ord s.t. for

all s ∈ S we have: if [[ηZ.ϕ]]ρ(s) = x then Zα(s) = x.

3 Abstraction

We use Kripke Modal Transition Systems [11, 9] as abstract models that preserve
satisfaction of 3-Lµ formulae.

Let TC = (SC , {
a−→C | a ∈ A}, LC) be a (concrete) Kripke structure. Let SA be

a set of abstract states and γ : SA → 2SC a total concretization function that maps
each abstract state to the set of concrete states it represents. An abstract model,
a KMTS TA = (SA, {

x−→A | x ∈ A! ∪ A?}, LA), can then be defined as follows.
The labelling of an abstract state is defined in accordance with the labelling

of all the concrete states it represents. For p ∈ P : LA(sa)(p) = > (⊥) only if
∀sc ∈ γ(sa) : LC(sc)(p) = > (⊥). In the remaining cases LA(sa)(p) = ?.

The may-transitions in an abstract model are computed such that every concrete
transition between two states is represented by them: For every action a ∈ A, if
∃sc ∈ γ(sa) and ∃s′c ∈ γ(s′a) such that sc

a−→C s
′
c, then there exists a may transition

sa
a?−−→A s

′
a. Note that it is possible that there are additional may transitions as

well. The must-transitions, on the other hand, represent concrete transitions that
are common to all the concrete states that are represented by the source abstract

state: a must-transition sa
a!−−→A s

′
a exists only if ∀sc ∈ γ(sa) ∃s′c ∈ γ(s′a) such that

sc
a−→C s

′
c. Note that it is possible that there are less must transitions than allowed

by this rule. That is, the may and must transitions do not have to be exact, as long
as they maintain these conditions.

Theorem 2. [9] Let T and T ′ be two KMTS s.t. T ′ is obtained from T with the

abstraction process described above. Let s be a state of T and s′ its corresponding

abstract state in T ′. For all closed ϕ ∈ 3-Lµ: [[ϕ]]
T

′

(s′) 6= ? implies [[ϕ]]
T

(s) =

[[ϕ]]
T

′

(s′).

4 Model Checking Games for 3-L
µ

The model checking game ΓT (s0, ϕ0) on a KMTS T with state set S, initial state
s0 ∈ S and a 3-Lµ formula ϕ0 is played by players ∃ and ∀ in order to determine
the truth value of ϕ0 in s0, cf. [18]. Configurations are elements of C ⊆ S×Sub(ϕ0),
and written t ` ψ. Each play of ΓT (s0, ϕ0) is a maximal sequence of configurations
that starts with s0 ` ϕ0. The game rules are presented in Figure 1. Each rule is
marked by ∃ / ∀ to indicate which player makes the move. A rule is applied when

4

s ` ψ0 ∨ ψ1

s ` ψi

∃ : i ∈ {0, 1}
s ` ψ0 ∧ ψ1

s ` ψi

∀ : i ∈ {0, 1}

s ` ηZ.ϕ
s ` Z

∃
s ` Z
s ` ϕ

∃ : if fp(Z) = ηZ.ϕ

s ` 〈a〉ϕ
t ` ϕ

∃ : s
a!

−−→ t or s
a?

−−→ t
s ` [a]ϕ

s ` ϕ
∀ : s

a!
−−→ t or s

a?
−−→ t

Fig. 1. The model checking game rules for 3-Lµ.

the player is in configuration Ci, which is of the form of the upper part of the rule.
Ci+1 is then the configuration in the lower part of the rule. The rules shown in the
first and third lines present a choice which the player can make. Since no choice
is possible when applying the rules shown in the second line, we arbitrarily assign
one player, let us say ∃, and call the rules deterministic.

Definition 1. A play is called ∃-consistent, resp. ∀-consistent, if Player ∃, resp.

Player ∀, never chooses a transition of type
a?−−→ for some a ∈ A.

Player ∃ wins an ∃-consistent play C0, C1, . . . iff

1. there is an n ∈ N, s.t. Cn = t ` q with L(t)(q) = > or Cn = t ` ¬q with
L(t)(q) = ⊥, or

2. there is an n ∈ N, s.t. Cn = t ` [a]ψ and there is no t′ ∈ S s.t. t
a?−−→ t′, or

3. the outermost variable that occurs infinitely often is of type ν.

Player ∀ wins a ∀-consistent play C0, C1 . . . iff

4. there is an n ∈ N, s.t. Cn = t ` q with L(t)(q) = ⊥ or Cn = t ` ¬q with
L(t)(q) = >, or

5. there is an n ∈ N, s.t. Cn = t ` 〈a〉ψ and there is no t′ ∈ S s.t. t a?−−→ t′, or
6. the outermost variable that occurs infinitely often is of type µ.

In all other cases, the result of the play is a tie.

Definition 2. The truth value of a configuration t ` ψ in the context of ρ is the

value of [[ψ]]ρ(t). The value > improves both ? and ⊥, while ? only improves ⊥. On

the other hand, x worsens y iff y improves x. A configuration with truth value x

will also be called an x-configuration.

An inspection of game rules and semantics shows: The deterministic rules pre-
serve the truth value in a move from one configuration to another. Player ∃ cannot
improve it but can preserve >. Player ∀ cannot worsen it but can preserve ⊥.

Theorem 3. Let ϕ ∈ 3-Lµ. Player ∃ does not have a winning strategy for the

game ΓT (s, ϕ) if [[ϕ]]
T

(s) 6= >.

Proof. Suppose that on one hand [[ϕ]]
T

(s) 6= > but Player ∃ has a winning strategy
ζ for ΓT (s, ϕ). Take the partial game tree induced by this strategy, i.e. the tree of
all plays in which all of Player ∀’s choices are preserved but only those of Player
∃’s choices which agree with ζ.

First we show that this tree contains at least one play with no >-configuration.
Note that the root is not a >-configuration. As mentioned before, deterministic

5

rules preserve the truth value of a configuration, and Player ∃’s choices cannot
improve the truth value. This can only be done by Player ∀. However, suppose
there is a configuration C in which Player ∀ makes a choice and which has a truth
value other than >. Then C is of the form t ` ψ0 ∧ ψ1 or t ` [a]ψ. For the former
case note that the truth value of C is the infimum in B3 of its two successor’s truth
values. Thus, it is not > only if there is a successor which has a truth value other
than >. For the latter case consider [[[a]ψ]](t). It can only differ from > if there is

a t′ s.t. t
a?−−→ t′ and [[ψ]](t′) 6= >. But t′ ` ψ is a possible successor configuration

of C. Thus, it is included in the tree and has a truth value which is not >.
This argument can be iterated yielding a path on which no >-configuration

occurs. Now, this path can either be finite or infinite. The first case immediately
leads to a contradiction since finite paths won by Player ∃ necessarily end in a
>-configuration.

Suppose therefore that the path represents a play which is won by Player ∃’s
winning condition 3. Then there is an outermost variable Z of fixpoint type ν

which occurs infinitely often in this play. Take the last occurrence of a configuration
t ` νZ.ϕ. By assumption, [[νZ.ϕ]]ρ(t) = x for some x 6= > and some ρ which is
irrelevant since no free variable in ϕ other than Z will occur in the play. Otherwise,
the occurrence of this configuration would not have been the last of its kind.

According to Theorem 1, there is an α ∈ Ord s.t. in the following configuration
t ` Z, the variable Z can be interpreted by Zα. The approximant indices can
be decreased along the play, eventually reaching a configuration t′ ` Z with Z

interpreted by Z0. But then, this would be a >-configuration which is impossible.
We conclude that Player ∃ cannot have a winning strategy. ut

The following is proved in a very similar way.

Theorem 4. Let ϕ ∈ 3-Lµ. Player ∃ has a winning strategy for the game ΓT (s, ϕ)

if [[ϕ]]
T

(s) = >.

The situation for Player ∀ is dual: exchanging > and ⊥, “improve” and “worsen”,
ν and µ, Player ∃ and ∀, etc. in the preceding two proofs yields the following.

Theorem 5. Let ϕ ∈ 3-Lµ. Player ∀ has a winning strategy for the game ΓT (s, ϕ)

iff [[ϕ]]
T

(s) = ⊥. Neither Player ∃ nor Player ∀ has a winning strategy for the game

ΓT (s, ϕ) iff [[ϕ]]
T

(s) = ?.
Given a concrete transition system T with state s, one can form an abstraction
T ′, s′ and play the model checking game ΓT ′(s′, ϕ) for a closed formula ϕ. If the
winner is ∀ or ∃ then Theorem 2 can be used in conjunction with Theorems 3, 4
and 5 to show T , s |= ϕ, resp. T , s 6|= ϕ.

5 Winning Model Checking Games for 3-L
µ

While the results of the previous section guarantee that the model checking games
are determined, i.e., either one of the players or none has a winning strategy, an
algorithm estimating the winner and a winning strategy has to be given. Note that
the determinacy result also holds for infinite-state systems. From now on, however,
we restrict to finite KMTS.

6

For the sake of readability we will deal with generalized parity games. Instead of
Player ∃ and ∀, we talk of Player 0 and Player 1, resp., and use σ to denote Player
0 or 1 and σ̄ = 1 − σ for the opponent.1

These games extend parity games in the following way: (1) we have two types of
edges: must edges and may edges, where every must edge is also a may edge, (2) ter-
minal configurations (dead-end) are classified as either >-, ⊥-, or ?-configurations,
and (3) a consistency requirement is added to the winning conditions.

A generalized parity game G = (A,χ) has an arena A = (V0, V1, Vtie ,
must

−→,
may

−→)

for which every v ∈ Vtie is a dead-end and
must

−→⊆
may

−→. The set of vertices is denoted
by V = V0] V1] Vtie . χ : V → N is a priority function that maps each vertex
v ∈ V to a priority.

A play is a maximal sequence of vertices v0, . . . , where Player σ moves from vi to
vi+1 when vi ∈ Vσ and (vi, vi+1) ∈

may

−→. It is called σ-consistent iff Player σ chooses

only moves that are (also) in
must

−→. A σ-consistent play is winning for Player σ if

– it is finite and ends in Vσ, or
– it is infinite and the maximal priority occurring infinitely often is even when
σ = 0 or odd when σ = 1.

All other plays are a tie.
A model checking game is a generalized parity game (see also [7]): Set V0 to the

configurations in which ∃ moves together with configurations in which she cannot
move but in which she wins. Set V1 to the configurations in which ∀ moves, together
with configurations where also ∀ does not move but in which he wins. The remaining
configurations, i.e. the ones of the form t ` q or t ` ¬q with L(t)(q) = L(t)(¬q) = ?

are set to Vtie .
must

−→ comprises the moves based on the rules shown in the first two
lines in Figure 1 or when a a!-transition is taken while

may

−→ comprises all possible
moves. The priority of a vertex t ` ϕ is only non-zero when ϕ is a fixpoint formula.
Then, it is given by the alternation depth of ϕ, possibly plus 1 to assure that it is
even iff the outermost fixpoint variable is ν. It is easy to see that the notions of
winning and winning strategies for both notions of games coincide.

We define an algorithm for solving generalized parity games. Our algorithm
partitions V into three sets: W0,W1,Wtie , where for σ ∈ {0, 1}, the set Wσ consists
of all the vertices from which Player σ has a winning strategy and the set Wtie

consists of all the vertices from which none of the players has a winning strategy.
When applied to model checking whether s0 |= ϕ0, we check when the algorithm
terminates whether v = s0 ` ϕ0 is in W0, W1, or Wtie and conclude true, false, or
indefinite, respectively.

We adapt the recursive algorithm for solving parity games by Zielonka [23]. Its
recursive nature makes it easy to understand and analyze, allows simple correctness
proofs, and can be used as basis for refinement.

The main idea of the algorithm presented in [23] is as follows. In each step σ

denotes the parity of the maximal priority in the current game. The algorithm
computes the set Wσ̄ iteratively and the remaining vertices form Wσ. In our gen-
eralized game, we again compute Wσ̄ iteratively, but we then add a phase where
we also compute Wtie iteratively. Only then, we set Wσ to the remaining vertices.

1 The numbers 0 and 1 have parities and that is more intuitive for this notion of game.

7

We start with some definitions. For X ⊆ V , the subgraph of G induced by
X, denoted by G[X], is (A|X , χ|X) where A|X = (V0 ∩ X,V1 ∩ X,Vtie ∩ X,

must

−→
∩X ×X,

may

−→ ∩X ×X) and χ|X is the restriction of χ to X. G[X] is a subgame of
G if every dead end in G[X] is also a dead end in G.

For σ ∈ {0, 1} and X ⊆ V , we define the must-attractor set Attr!σ(G,X) ⊆ V

and the may-attractor set Attr?σ(G,X) ⊆ V of Player σ in G.
The must-attractor Attr!σ(G,X) ⊆ V is the set of vertices from which Player σ

has a strategy in the game G to attract the token to X or a dead-end in Vσ while
maintaining consistency. The may-attractor Attr?σ(G,X) ⊆ V is the set of vertices
from which Player σ has a strategy to either (1) attract the token to X or a dead-
end in Vσ ∪ Vtie , possibly without maintaining his (her) own consistency or (2) to
prevent σ̄ from playing consistently. In other words, if σ̄ plays consistently, then σ
can attract the token to one of the vertices described above.

Let D0, D1, Dtie denote the dead-end vertices of V0, V1, Vtie respectively (i.e.,
Dtie = Vtie). It can be shown that the following is an equivalent definition of the
sets Attr!σ(G,X) and Attr?σ(G,X).

Attr!0σ(G,X) = X ∪Dσ

Attr!i+1
σ (G,X) = Attr!iσ(G,X)

∪ {v ∈ Vσ \Dσ | ∃v′.v
must

−→ v′ ∧ v′ ∈ Attr!iσ(G,X)}
∪ {v ∈ Vσ̄ \Dσ̄ | ∀v′.v

may

−→ v′ =⇒ v′ ∈ Attr!iσ(G,X)}
Attr!σ(G,X) =

⋃

{Attr!iσ(G,X) | i ≥ 0}

Attr?0
σ(G,X) = X ∪Dσ ∪Dtie

Attr?i+1
σ (G,X) = Attr?i

σ(G,X)

∪ {v ∈ Vσ \Dσ | ∃v′.v
may

−→ v′ ∧ v′ ∈ Attr?i
σ(G,X)}

∪ {v ∈ Vσ̄ \Dσ̄ | ∀v′.v
must

−→ v′ =⇒ v′ ∈ Attr?i
σ(G,X)}

Attr?σ(G,X) =
⋃

{Attr?i
σ(G,X) | i ≥ 0}

The latter definition of the attractor sets provides a method for computing them.
As i increases, we calculate Attr!iσ(G,X) or Attr?i

σ(G,X) until it is the same as
Attr!i−1

σ (G,X) or Attr?i−1
σ (G,X), respectively.

Note that Attr!iσ(G,X) ⊆ Attr?i
σ(G,X), and that for X ′ = V \ Attr?σ(G,X)

we have X ′ = Attr!σ̄(G,X ′). Thus, the corresponding must and may attractors
partition V .

Solving the Game

We present a recursive algorithm SolveGame(G) that computes the sets W0, W1,
and Wtie for a parity game G. Let n be the maximum priority occurring in G.

n = 0: W1 = Attr!1(G, ∅)
W0 = V \ Attr?1(G, ∅)
Wtie = Attr?1(G, ∅) \ Attr!1(G, ∅)

Since the maximum priority of G is 0, Player 1 can only win G on dead-ends in
V1 or vertices from which he can consistently attract the token to such a dead-end.
This is exactly Attr!1(G, ∅). From the rest of the vertices Player 1 does not have
a winning strategy. For vertices in V \ Attr?1(G, ∅), Player 0 can always avoid

8

Algorithm 1 Winning vertices for the opponent: ComputeOpponentWin

1 Function ComputeOpponentWin(G, σ, n)
2 Wσ̄ := ∅.
3 repeat

4 W ′

σ̄ := Wσ̄

5 Xσ̄ := Attr!σ̄(G,Wσ̄)
6 Xσ := V \Xσ̄

7 N := {v ∈ Xσ | χ(v) = n}
8 Y := Xσ \ Attr?σ(G[Xσ], N)
9 (Y0, Y1, Ytie) := SolveGame(G[Y])

10 Wσ̄ := Xσ̄ ∪ Yσ̄

11 until W ′

σ̄ = Wσ̄

12 return Wσ̄

reaching dead-ends in V1 ∪ Vtie , while playing consistently. Since the maximum
priority in this subgraph is 0, it is easy to see that she wins in such vertices. The
remaining vertices in Attr?1(G, ∅)\Attr!1(G, ∅) are a subset of Attr?1(G, ∅), which
is why Player 0 does not win from them (and neither does Player 1, as previously
claimed). Therefore none of the players wins in Attr?1(G, ∅) \ Attr!1(G, ∅).

n ≥ 1: We assume that we can solve every game with maximum priority smaller
than n. Let σ = n mod 2 be the player that wins if the token visits infinitely often
the maximum priority n.

We first compute Wσ̄ in G. This is done by the function ComputeOpponentWin

shown in Algorithm 1.
Intuitively, in each iteration we hold a subset of the winning region of Player σ̄.

We first extend it to Xσ̄ by using the must-attractor set of Player σ̄ (which ensures
his consistency, line 5). From the remaining vertices, we disregard those from which
Player σ can attract the token to a vertex with maximum priority n, perhaps by
giving up her consistency. Left are the vertices in Y (line 8) and Player σ is basically
trapped in it. She can only “escape” from it to Xσ̄. Thus, we can add the winning
region of Player σ̄ in G[Y] to his winning region in G. This way, each iteration
results in a better (bigger) under approximation of the winning region of Player σ̄
in G, until the full region is found (line 11). The correctness proof of the algorithm
is sketched in the following.

cf. App. A.3
Lemma 1. 1. For every Xσ as used in Algorithm 1, G[Xσ] is a subgame.

2. For every Y as used in Algorithm 1, G[Y] is a subgame.

Moreover, the maximum priority in G[Y] is smaller than n, which is why the
recursion terminates.

Lemma 2. At the beginning of each iteration in Algorithm 1, Wσ̄ is a winning

region for Player σ̄ in G.

Proof. The proof is by induction. The base case is when Wσ̄ = ∅ and the claim
holds. Suppose that at the beginning of the ith iteration Wσ̄ is a winning region
for Player σ̄ in G. We show that it continues to be so at the end of the iteration
and therefore at the beginning of the i+ 1 iteration.

9

Clearly, Xσ̄ = Attr!σ̄(G,Wσ̄) is also a winning region for Player σ̄ in G: by
simply using his strategy to attract the token to Dσ̄ (where he wins) or to Wσ̄

(while being consistent), and from there using the winning strategy of Wσ̄ in G.
We now show that Yσ̄ is also a winning region of Player σ̄ in G. We know that it is

a winning region for him in G[Y] (by the correctness of the algorithm SolveGame for
games with a maximum priority smaller than n). As for G, for every vertex in Yσ̄, as
long as the token remains in Y , Player σ̄ can use his strategy for G[Y]. Since G[Y]
is a subgame, Player σ̄ will always be able to stay within Y in his moves and if the
play stays there, then he wins (since he uses his winning strategy). Clearly Player σ
cannot move the token from Y to Xσ \ Y = Attr?σ(G[Xσ], N). Otherwise the
vertex v ∈ Y ⊆ Xσ where this is done belongs to Attr?σ(G[Xσ],Attr?σ(G[Xσ], N))
(because the same move is possible in G[Xσ]). Hence v belongs to Attr?σ(G[Xσ], N)
as well, in contradiction to v ∈ Y . Finally, if Player σ moves the token to V \Xσ =
Xσ̄, then Player σ̄ will use his strategy for Xσ̄ in G and also win.

We conclude that Xσ̄ ∪ Yσ̄ is a winning region for Player σ̄ in G. ut
This lemma ensures that the final result Wσ̄ of ComputeOpponentWin is indeed

a subset of the winning region of Player σ̄ in G. It remains to show that this is
actually an equality, i.e. that no winning vertices are missing.

Lemma 3. When W ′
σ̄ = Wσ̄, then V \Wσ̄ is a non-winning region for Player σ̄

in G.

Proof. When W ′
σ̄ = Wσ̄, it must be the case that the last iteration of SolveGame

ended with Yσ̄ = ∅, and Wσ̄ = Xσ̄. Therefore it suffices to show that V \Xσ̄ = Xσ

is a non-winning region for Player σ̄ in G.
Clearly, Player σ̄ cannot move from Xσ to Xσ̄ without compromising his con-

sistency. Otherwise the vertex v ∈ Xσ where this is done belongs to Attr!σ̄(G,Xσ̄)
and so to Xσ̄ as well. This contradicts v ∈ Xσ. Hence, Player σ̄ cannot win by
moving to Xσ̄. As G[Xσ] is a subgame, Player σ is never obliged to move to Xσ̄.

Consider the case where the token stays in Xσ. In order to prevent Player σ̄ from
winning, Player σ will play as follows. If the token is in Y , then Player σ will use
her strategy on G[Y] for preventing Player σ̄ from winning (such a strategy exists
since Yσ̄ = ∅). If the token visits a vertex v ∈ N , then Player σ will move it to
any successor v′ inside Xσ. Such a successor must exist since G[Xσ] is a subgame
(by Lemma 1). If the token visits Attr?σ(G[Xσ], N) \N , then Player σ will use his
strategy to either cause Player σ̄ to be inconsistent, or to attract the token in a
finite number of steps to N or Dσ ∪Dtie (such a strategy exists by the definition
of a may-attractor set).

It is easy to see that this strategy indeed prevents Player σ̄ from winning. ut

Corollary 1. The result of ComputeOpponentWin is the full winning region of

Player σ̄ in G.

In the original algorithm in [23], given the set Wσ̄, we could conclude that all
the remaining vertices form the winning region of Player σ in G. Yet, this is not
the case here. We now divide the remaining vertices into Wtie and Wσ. We first
compute the set nowin of vertices in G from which Player σ does not have a
winning strategy, i.e. Player σ̄ has a strategy that prevents Player σ from winning.
This is again done iteratively, by the function ComputeNoWin, given as Algorithm 2.

10

Algorithm 2 Vertices in which no win is possible: ComputeNoWin

13 Function ComputeNoWin(G, σ, n,Wσ̄)
14 nowin := Wσ̄.
15 repeat

16 nowin′ := nowin

17 Xσ̄ := Attr?σ̄(G,nowin)
18 Xσ := V \Xσ̄

19 N := {v ∈ Xσ | χ(v) = n}
20 Y := Xσ \ Attr!σ(G[Xσ], N)
21 (Y0, Y1, Ytie) := SolveGame(G[Y])
22 nowin := Xσ̄ ∪ Yσ̄ ∪ Ytie

23 until nowin′ = nowin

24 return nowin

The algorithm ComputeNoWin resembles the algorithm ComputeOpponentWin.
The initialization here is to Wσ̄, since this is clearly a non-winning region of
Player σ. Furthermore, in this case after the recursive call to SolveGame(G[Y]), the
set Xσ̄ is extended not only by the winning region of Player σ̄ in G[Y], Yσ̄, but also
by the tie-region Ytie (line 22). Apart from those differences, one can see that the
only difference is that the use of a must-attractor set is replaced by a may-attractor
set and vice versa. This is because in the case of ComputeOpponentWin we are after
a definite win of Player σ̄, whereas in the case of ComputeNoWin we also allow a tie,
therefore may edges take a different role. Namely, in this case, when we extend the
current set nowin (line 17), we use a may-attractor set of Player σ̄ because when
our goal is to prevent Player σ from winning, we allow Player σ̄ to be inconsistent.
On the other hand, in the computation of Y we now remove from Xσ̄ only the
vertices from which Player σ can consistently attract the token to the maximum
priority (using the must-attractor set, line 20). This is because only such vertices
cannot contribute to the goal of preventing Player σ from winning. Other vertices
where he can reach the maximum priority, but only at the expense of consistency
can still be of use for this goal.

Lemma 4. 1. For every Xσ as used in Algorithm 2, G[Xσ] is a subgame. cf. App. A.3
2. For every Y as used in Algorithm 2, G[Y] is a subgame.

Again, the maximum priority in G[Y] is smaller than n, which is why the recur-
sion terminates.

Lemma 5. At the beginning of each iteration, the set nowin is a non-winning cf. App. A.3
region for Player σ in G.

This lemma that can be shown with a careful analysis ensures that the final
result nowin of ComputeNoWin is indeed a subset of the non-winning region of
Player σ in G. It remains to show that no winning vertices are missing.

Lemma 6. When nowin′ = nowin, then V \ nowin is a winning region for

Player σ in G.

Proof. When nowin′ = nowin, it must be the case that the last iteration of
SolveGame ended with Yσ̄ = Ytie = ∅, and nowin = Xσ̄. Therefore it suffices
to show that V \Xσ̄ = Xσ is a winning region for Player σ in G.

11

Algorithm 3 The main function: SolveGame

25 Function SolveGame(G)
26 n := max{χ(v) | v ∈ V }
27 if n = 0 then // return (W0, W1, Wtie)
28 return (V \ Attr?1(G, ∅), Attr!1(G, ∅), Attr?1(G, ∅) \ Attr!1(G, ∅))
29 else

30 σ := n mod 2
31 Wσ̄ := ComputeOpponentWin(G, σ, n)
32 Wσ := V \ ComputeNoWin(G, σ, n, Wσ̄)
33 Wtie := V \ (Wσ̄ ∪Wσ)
34 return (W0, W1, Wtie)

Clearly, Player σ̄ cannot move from Xσ to Xσ̄. Otherwise the vertex v ∈ Xσ

where this is done belongs to Attr?σ̄(G,Xσ̄) and therefore to Xσ̄ as well. This
contradicts v ∈ Xσ. Hence, Player σ̄ is “trapped” in Xσ and as G[Xσ] is a subgame,
Player σ is never obliged to move to Xσ̄.

Consider the case where the token stays in Xσ. In order to win, Player σ will
play as follows. If the token is in Y , then Player σ will use his winning strategy
on G[Y] (such a strategy exists since Yσ̄ = Ytie = ∅ and Yσ = Y). If the token
visits a vertex v ∈ N , then Player σ will move it to a must successor v′ inside
Xσ. Such a successor exists because otherwise v ∈ Attr?σ̄(G,Xσ̄) and hence also
in Xσ̄, in contradiction to v ∈ N ⊆ Xσ. If the token visits Attr!σ(G[Xσ], N) \N ,
then Player σ will attract it in a finite number of steps to N or Dσ, while being
consistent.

This strategy ensures that Player σ is consistent and is indeed winning. ut

Corollary 2. ComputeNoWin returns the full non-winning region of Player σ in G.

We can now conclude that the remaining vertices in V \ nowin form the full
winning region of Player σ in G, and the tie region in G is exactly nowin \Wσ̄.
This is the set of vertices from which neither player wins.

Solving the game is now achieved by Function SolveGame shown in Algorithm 3.

We have suggested an algorithm for computing the winning (and non-winning)
regions of the players. The correctness proofs also show how to define strategies for
the players. Yet, we omit this discussion due to space limitations. The algorithm
can also be used for checking a concrete system in which there are no further
may-edges and Vtie = ∅.

Remark 1. Let G be a parity game in which Vtie = ∅ and all edges are must. Then
Wtie computed by the algorithm SolveGame is empty.

Complexity Let l and m denote the number of vertices and edges of G. Let n be the
maximum priority. A careful analysis shows that the algorithm is in O((l+m)n+1).cf. App. A.2

Theorem 6. Function SolveGame computes the winning regions (W0,W1,Wtie)
for a given parity game in time exponential in the number of priorities. Addition-

ally, it can be used to determine the winning strategy for the corresponding winner.

12

6 Refinement of Extended Parity Games

Assume we are interested to know whether a concrete state sc satisfies a given
formula ϕ. Let (W0,W1,Wtie) be the result of the previous algorithm for the parity
game obtained by the model checking game. Assume the vertex v = sa ` ϕ, where
sa is the abstract state of sc, is in W0 or W1. Then the answer is clear: sc |= ϕ if
v ∈ W0 and sc 6|= ϕ if v ∈ W1. Otherwise, the answer is indefinite and we have to
refine the abstraction to get the answer.

As in most cases, our refinement consists of two parts. First, we choose a criterion
telling us how to split abstract states. We then construct the refined abstract model
using the refined abstract state space. In this section we study the first part.

Given that v ∈ Wtie , our goal in the refinement is to find and eliminate at
least one of the causes of the indefinite result. Thus, the criterion for splitting the
abstract states is obtained from a failure vertex. This is a vertex v′ = s′a ` ϕ′ s.t.
(1) v′ ∈ Wtie ; (2) the classification of v′ to Wtie affects the indefinite result of v;
and (3) the indefinite classification of v′ can be changed by splitting it. The latter
requirement means that v′ itself is responsible for introducing (some) uncertainty.
The others demand that this uncertainty is relevant to the result in v.

The game solving algorithm is adapted to remember for each vertex in Wtie a
failure vertex, and a failure reason. We distinguish between the case where n = 0
and the case where n ≥ 1 in SolveGame.

n = 0: In this case the set Wtie is computed by Attr?1(G, ∅) \W1. Note that W1

is already updated when the computation of Attr?1(G, ∅) starts. We now enrich
the computation of Attr?1(G, ∅) to record failure information for vertices which
are not in W1 and thus will be in Wtie .

In the initialization we have two possibilities: (1) vertices in D1, which are clearly
not in Wtie , thus no additional information is needed; and (2) vertices in Dtie , for
which the failure vertex and reason are the vertex itself [failDE].

As for the iteration, suppose we have Attr?i
1(G, ∅), with the additional informa-

tion attached to every vertex in it which is not in W1. We now compute the set
Attr?i+1

1 (G, ∅). Let v′ be a vertex that is added to Attr?i+1
1 (G, ∅). If v′ ∈W1, then

no information is needed. Otherwise, we do the following.

1. If v′ ∈ V1 and there exists a may edge v′
may

−→ v′′ s.t. v′′ ∈ W1, then v′ is a
failure state, with this edge being the reason [failP1].

2. If v′ ∈ V0 and has a may edge v′
may

−→ v′′ s.t. v′′ 6∈ Attr?i
1(G, ∅), then v′ is a

failure state, with this edge being the reason [failP0].
3. Otherwise, there exists a may (that is possibly also a must) edge v′

may

−→ v′′ s.t.
v′′ ∈ Attr?i

1(G, ∅) \W1. The failure state and reason of v′ are those of v′′.

Note that the order of the “if” statements in the algorithm determines the failure
state returned by the algorithm. Different heuristics can be applied regarding their
order. A careful analysis shows the following.

Lemma 7. The computation of failure vertices is well defined, meaning that all

the possible cases are handled. Furthermore, if the failure reason computed by it is cf. App. A.3
a may edge, then this edge is not a must edge.

13

Intuitively, during each iteration of the computation, if the vertex v′ ∈Wtie that
is added to Attr?i+1

1 (G, ∅) is not responsible for introducing the indefinite result
(cases 1 and 2), then the computation greedily continues with a vertex in Wtie that
affects its indefinite classification (case 3).

There are three possibilities where we say that the vertex itself is responsible for
? and consider it a failure vertex: failDE, failP1 and failP0. For a vertex in Vtie

(case failDE), the failure reason is clear. Consider case failP1. In this case v′ ∈ V1 is
considered a failure vertex, with the may edge to v′′ ∈W1 being the failure reason.
By Lemma 7 we have that it is not a must edge. The intuition for v′ being a failure
vertex is that if this edge was a must edge, it would change the classification of v ′

to W1. If no such edge existed, then v′ would not be added to Attr?i+1
1 (G, ∅) and

thus to Wtie . Finally, consider case failP0. In this case v′ ∈ V0 has a may edge to
v′′ which is still unclassified at the time v′ is added to Attr?1(G, ∅). This edge is
considered a failure reason because if it was a must edge rather than a may edge
then v′ would remain unclassified as well for at least one more iteration. Thus it
would have a better chance to eventually remain outside the set Attr?i

1(G, ∅) until
the fixpoint is reached, changing the classification of v′ to W0.

n ≥ 1: In this case the set Wtie is computed by V \ (Wσ̄ ∪ Wσ). This equals
ComputeNoWin(G, σ, n, Wσ̄) \Wσ̄, where Wσ̄ is already updated when the com-
putation of ComputeNoWin(G, σ, n, Wσ̄) starts. Similarly to the previous case, we
enrich the computation of ComputeNoWin(G, σ, n, Wσ̄), and remember a failure
vertex for each vertex which is not in Wσ̄ and thus will be in Wtie .

In each iteration of ComputeNoWin the vertices added to the computed set are of
three types: Xσ̄, Yσ̄ and Ytie .

The set Xσ̄ is computed by Attr?σ̄(G,nowin). Thus in order to find failure
vertices for such vertices that are not in Wσ̄ we use an enriched computation of
the may-attractor set, as described in the case of n = 0. This time the role of W1

is replaced by Wσ̄, 0 is replaced by σ and 1 by σ̄. Furthermore, in the initialization
of the computation we now also have the set nowin from the previous iteration,
for which we already have the required information.

Vertices in Ytie already have a failure vertex and reason, recorded during the
computation of SolveGame(G[Y]).

We now explain how to handle vertices in Yσ̄. Such vertices have the property
that Player σ̄ wins from them in G[Y]. Hence, as long as the play stays in G[Y],
Player σ̄ wins. Furthermore, Player σ̄ can always stay in G[Y] in his moves. Thus,
for a vertex v′ in Yσ̄ that is not in Wσ̄ it must be the case that Player σ can force
the play out of G[Y] and into (V \ Y) \Wσ̄ (If the play reaches Wσ̄ then Player σ̄
can win after all). Thus, v′ ∈ Attr?σ(G, (V \Y) \Wσ̄). Let Ȳ = V \Y be the set of
vertices outside G[Y]. We get that Yσ̄ \Wσ̄ = Yσ̄∩Attr?σ(G, Ȳ \Wσ̄). Therefore, to
find the failure reason in such vertices, we compute Attr?σ(G, Ȳ \Wσ̄). During this
computation, for each vertex v′ in Yσ̄ that is added to the attractor set (and thus
will be in Wtie) we choose the failure vertex and reason based on the reason for v′

being added to the set. This is because if the vertex was not in Attr?σ(G, Ȳ \Wσ̄),
it would be in Wσ̄ in G as well. The information is recorded as follows.

In the initialization of the computation we have vertices in Dσ, Dtie or Ȳ \Wσ̄

which are clearly not in Yσ̄, thus no additional information is needed.

14

As for the iteration, suppose we have Attr?i
σ(G, Ȳ \Wσ̄), with the additional

information attached to every vertex in it which is in Yσ̄ (by the above equality
such a vertex is not in Wσ̄). We now compute the set Attr?i+1

σ (G, Ȳ \Wσ̄). Let v′

be a vertex that is added to Attr?i+1
σ (G, Ȳ \Wσ̄). If v′ 6∈ Yσ̄, then no information

is needed. Otherwise, we do the following.

1. If v′ ∈ Vσ and there exists a may edge v′
may

−→ v′′ which is not a must edge s.t.
v′′ ∈ Ȳ \Wσ̄, then v′ is a failure state, with this edge being the reason.

2. If v′ ∈ Vσ and it has a must edge to v′′ ∈ Xσ̄ \Wσ̄, then we set the failure
vertex and reason of v′ to be those of v′′ (which are already computed).

3. Otherwise, v′ has a may (possibly must) edge to a vertex v′′ ∈ Attr?i
σ(G, Ȳ \

Wσ̄) ∩ Yσ̄. In this case the failure state and reason of v′ are those of v′′.

Lemma 8. The computation of failure vertices is well defined, meaning that all cf. App. A.3
the possible cases are handled.

Intuitively, in case 1 v′ is considered a failure state, with the may (not must)
edge to v′′ ∈ Ȳ \Wσ̄ being the reason because if this edge did not exist, v′ would
not be added to the may-attractor set, and thus would remain in Wσ̄ in G. A
careful analysis shows that the only possibility where there exists such a must

edge to v′′ ∈ Ȳ \Wσ̄ is when this edge is to Xσ̄ \Wσ̄. This is handled separately
in case 2. The set Xσ̄ \Wσ̄ is a subset of Wtie for which the failure was already
analyzed, and in case 2 we set the failure vertex and reason of v′ to be those of
v′′ ∈ Xσ̄ \Wσ̄. This is because changing the classification of v′′ to Wσ̄ would make
a step in the direction of changing the classification of v′ ∈ Vσ to Wσ̄ as well.
Similarly, since the edge from v′ to v′′ is a must edge, changing the classification
of v′′ to Wσ would change the classification of v′ ∈ Vσ to Wσ. In all other cases,
the computation recursively continues with a vertex in Yσ̄ that was already added
to the may-attractor set and that affects the addition of v′ to it (case 3).

This concludes the description of how SolveGame records the failure information
for each vertex in Wtie . A simple case analysis shows the following.

Theorem 7. Let vf be a vertex that is classified by SolveGame as a failure vertex.

The failure reason can either be the fact that vf ∈ Vtie , or it can be an edge

(vf , v
′) ∈

may

−→ \
must

−→.

Once we are given a failure vertex v′ = s′a ` ϕ′ and a corresponding reason
for failure, we guide the refinement to discard the cause for failure in the hope
for changing the model checking result to a definite one. This is done as in [17],
where the failure information is used to determine how the set of concrete states
represented by s′a should be split in order to eliminate the failure reason. A criterion
for splitting all abstract states can then be found by known techniques, depending
on the abstraction used (e.g. [4, 2]).

After refinement, one has to re-run the model checking algorithm on the game
graph based on the refined KMTS to get a definite value for sc and ϕ. However, we
can restrict this process to the previous Wtie . When constructing the game graph
based on the refined KMTS, every vertex s2a ` ϕ′ for which a vertex sa ` ϕ′ exists
in W0 or W1 in the previous game graph can be considered a dead end winning for
Player 0 or Player 1, respectively. In this way we avoid unnecessary refinement.

15

References

1. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

2. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement. In Computer Aided Verification (CAV), LNCS 1855, 2000.

3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, Dec. 1999.
4. E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement

using ILP and machine leraning techniques. In Computer-Aided Verification (CAV),
2002.

5. R. Cleaveland. Tableau-based model checking in the propositional mu-calculus. Acta
Inf., 27:725–747, 1990.

6. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 19(2), March 1997.

7. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of
mu-calculus. In Computer-Aided Verification, LNCS 697, pp. 385–396, 1993.

8. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the proposi-
tional mu-calculus. In Logic in Computer Science (LICS), 1986.

9. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. In Computer-Aided Verification (CAV), LNCS 2404, pp. 137–150, 2002.

10. P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In
Verification, Model Checking and Abstract Interpretation (VMCAI), LNCS 2575, pp.
206–222, 2003.

11. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation for
three-valued program analysis. In European Symposium on Programming (ESOP),
LNCS 2028, pp. 155–169, 2001.

12. W. Lee, A. Pardo, J.-Y. Jang, G. D. Hachtel, and F. Somenzi. Tearing based auto-
matic abstraction for CTL model checking. In ICCAD, pp. 76–81, 1996.

13. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:11–45, 1995.

14. D. Long, A. Browne, E. Clark, S. Jha, and W. Marrero. An improved algorithm for
the evaluation of fixpoint expressions. In Computer Aided Verification, (CAV), LNCS
818, pp. 338–350, 1994.

15. A. Pardo and G. D. Hachtel. Automatic abstraction techniques for propositional
mu-calculus model checking. In Computer Aided Verification (CAV), 1997.

16. A. Pardo and G. D. Hachtel. Incremental CTL model checking using BDD subsetting.
In Design Automation Conference (DAC), pp. 457–462, 1998.

17. S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinemnet. In Computer Aided Verification (CAV), LNCS
2725, pp. 275–287, 2003.

18. C. Stirling. Local model checking games. In Concurrency Theory (CONCUR), LNCS
962, pp. 1–11, 1995.

19. C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.
20. C. Stirling and D. J. Walker. Local model checking in the modal mu-calculus. In

Theory and Practice of Software Development, LNCS, 1989.
21. A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific J.Math.,

5:285–309, 1955.
22. G. Winskel. Model checking in the modal ν-calculus. In International Colloquium on

Automata, Languages, and Programming (ICALP), 1989.
23. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

16

A Appendix

A.1 Preliminaries

Lemma 9. For every parity game G and set of vertices X we have

1. Attr!σ(G,Attr!σ(G,X)) = Attr!σ(G,X).
2. Attr?σ(G,Attr?σ(G,X)) = Attr?σ(G,X).

A.2 Complexity

Let l and m denote the number of vertices and edges of G, and, let n be the maxi-
mum priority. Computing attractor sets is a reachability problem and as such linear
in m+ l. Let SG(m, l, n), COW (m, l, n), and CNW (m, l, n) denote the complexity
of SolveGame, ComputeOpponentWin, and ComputeNoWin, respectively. We get the
following relations:

SG(m, l, 0) ≤ c1 · (l +m)

SG(m, l, n+ 1) ≤ COW (l,m, n+ 1) + CNW (l,m, n+ 1) + c2(l +m)

COW (l,m, n+ 1) ≤ (l + 1) · (c3(l +m) + SG(l,m, n))

CNW (l,m, n+ 1) ≤ (l + 1) · (c4(l +m) + SG(l,m, n))

From this we easily conclude that the algorithm is in O((l+m)n+1). Thus, the com-
plexity is comparable to known upper bounds for the two-valued model checking
problem.

A.3 Proofs

Lemma 1.1

For every Xσ as used in Algorithm 1, G[Xσ] is a subgame.

Proof. We show that no vertex becomes a dead-end when moving from G to G[Xσ].
Let v ∈ Xσ be a vertex which is not a dead-end in G. Suppose that all of its
successors are in V \Xσ = Xσ̄. This means that v ∈ Attr!σ̄(G,Xσ̄) and therefore
v ∈ Xσ̄ as well (by Lemma 9 since Xσ̄ is a must-attractor), in contradiction. ut

Lemma 1.2

For every Y as used in Algorithm 1, G[Y] is a subgame.

Proof. We show that no vertex becomes a dead-end when moving from G to
G[Y]. Let v ∈ Y be a vertex which is not a dead-end in G. Then v has a suc-
cessor in Xσ, by Lemma 1. It remains to show that at least one such succes-
sor is not in Attr?σ(G[Xσ], N). This is because if all the successors in Xσ are
also in Attr?σ(G[Xσ], N), then v ∈ Attr?σ(G[Xσ],Attr?σ(G[Xσ], N)), and there-
fore v ∈ Attr?σ(G[Xσ], N) as well (by Lemma 9), in contradiction to v ∈ Y =
Xσ \ Attr?σ(G[Xσ], N). ut

Lemma 4.1

For every Xσ as used in Algorithm 2 G[Xσ] is a subgame.

17

Proof. We show that no vertex becomes a dead-end when moving from G to G[Xσ].
Let v ∈ Xσ be a vertex which is not a dead-end in G. Suppose to the contrary
that all its successors are in V \Xσ = Xσ̄. This means that v ∈ Attr?σ̄(G,Xσ̄) and
therefore v ∈ Xσ̄ as well (by Lemma 9 since Xσ̄ is a may-attractor), in contradic-
tion. ut

Lemma 4.2

For every Y as used in Algorithm 2 G[Y] is a subgame.

Proof. We show that no vertex becomes a dead-end when moving from G to
G[Y]. Let v ∈ Y be a vertex which is not a dead-end in G. Then v has a suc-
cessor in Xσ, by Lemma 1. It remains to show that at least one such succes-
sor is not in Attr!σ(G[Xσ], N). This is because if all the successors in Xσ are
also in Attr!σ(G[Xσ], N), then v ∈ Attr!σ(G[Xσ],Attr!σ(G[Xσ], N)), and there-
fore v ∈ Attr!σ(G[Xσ], N) as well (by Lemma 9), in contradiction to v ∈ Y =
Xσ \ Attr!σ(G[Xσ], N). ut

Lemma 5

At the beginning of each iteration, the set nowin is a non-winning region for

Player σ in G.

Proof. The proof is by induction. The base case is when nowin = Wσ̄ and the claim
holds. Suppose that at the beginning of the ith iteration nowin is a non-winning
region for Player σ in G. We show that it continues to be so at the end of the
iteration and therefore at the beginning of the iteration i+ 1.

Clearly, Xσ̄ = Attr?σ̄(G,nowin) is also a non-winning region for Player σ in G:
Player σ̄ can use his strategy to either (1) cause Player σ to be inconsistent, (2)
attract the token to a dead-end in Dσ̄ ∪Dtie (in which case Player σ cannot win),
or (3) attract the token to nowin, where he can use his strategy for preventing
Player σ from winning in G (by the induction hypothesis).

We now show that Yσ̄∪Ytie is also a non-winning region of Player σ inG. We know
that it is a non-winning region for her in G[Y] (by the correctness of the algorithm
SolveGame for games with a maximum priority smaller than n). As for G, for every
vertex in Yσ̄ ∪Ytie , as long as the token remains in Y , Player σ̄ can use his strategy
in G[Y]. Since this is a subgame, Player σ̄ will always be able to remain in Y in his
moves and if the play stays there Player σ will not win. Clearly Player σ cannot
consistently move the token from Y to Xσ \ Y = Attr!σ(G[Xσ], N). Otherwise the
vertex v ∈ Y ⊆ Xσ where this is done belongs to Attr!σ(G[Xσ],Attr!σ(G[Xσ], N))
(because the same move is possible in G[Xσ]). Hence v belongs to Attr!σ(G[Xσ], N)
as well (by Lemma 9), in contradiction to v ∈ Y . Finally, if Player σ moves the
token to V \Xσ = Xσ̄, then Player σ̄ will use his strategy for Xσ̄ in G to prevent
her from winning.

We conclude that Xσ̄ ∪ Yσ̄ ∪ Ytie is a non-winning region for Player σ in G. ut

Lemma 7

The computation of failure vertices in the case n = 0 of SolveGame is well defined,

meaning that all the possible cases are handled. Furthermore, if the failure reason

computed by it is a may edge, then this edge is not a must edge.

18

Proof. To be convinced of this, one needs to notice that all the possible cases
are handled. Moreover, we need to ensure that whenever cases 1 and 2 apply,
then the edge chosen as a failure reason is not a must edge. By the definition of
Attr?1(G, ∅), every vertex v′ 6∈ W1 that is added to the set Attr?i+1

1 (G, ∅) fulfills
one of the following possibilities.

– v′ ∈ V1 and has a may edge to a vertex v′′ ∈ Attr?i
1(G, ∅). If there exists such an

edge for which v′′ ∈W1, then case 1 applies. In this case we are guaranteed that
(v′, v′′) 6∈

must

−→, since otherwise v′ would be in W1 as well. If there is no such edge
for which v′′ ∈W1, then there exists an edge to a vertex v′′ ∈ Attr?i

1(G, ∅)\W1

and case 3 applies.
– v′ ∈ V0 and all its must edges are to vertices in Attr?i

1(G, ∅). If it has a may
edge v′

may

−→ v′′ s.t. v′′ 6∈ Attr?i
1(G, ∅), then case 2 applies. Furthermore, this

edge is not a must edge, because otherwise the condition for adding v′ to
the attractor set would not be fulfilled. If there is no such edge, then all the
outgoing edges of v′ are to Attr?i

1(G, ∅). If all of them are in W1, then v′ has
also to be in W1, in contradiction. Thus, there exists at least one outgoing edge
to Attr?i

1(G, ∅) \W1 and case 3 applies.
ut

Lemma 8

The computation of failure vertices in the case n ≥ 1 of SolveGame is well defined,

meaning that all the possible cases are handled.

Proof. To be convinced of this, one needs to notice that all the possible cases are
handled. By the definition of Attr?σ(G, Ȳ \Wσ̄), every vertex v′ ∈ Yσ̄ that is added
to the set Attr?i+1

σ (G, Ȳ \Wσ̄) fulfills one of the following possibilities.

– v′ ∈ Vσ and has a may edge to a vertex v′′ ∈ Attr?i
σ(G, Ȳ \Wσ̄). We have three

possibilities.

• If there exists such an edge which is not a must edge and for which v′′ ∈
Ȳ \Wσ̄, then case 1 applies.

• If v′ has a must edge to a vertex v′′ ∈ Ȳ \Wσ̄, then we have the following.
We first show that it must be the case that v′′ ∈ Xσ̄ \ Wσ̄. Note that
Ȳ \Wσ̄ = (Xσ̄\Wσ̄)∪(Attr!σ(G[Xσ], N)\Wσ̄). Thus it suffices to show that
v′′ 6∈ Attr!σ(G[Xσ], N)\Wσ̄. Assume the contrary. We know that v′ ∈ Yσ̄ ⊆
Y ⊆ Xσ. Therefore we get that v′ ∈ Attr!σ(G[Xσ],Attr!σ(G[Xσ], N)) =
Attr!σ(G[Xσ], N) (Lemma 9). Yet, we have that Attr!σ(G[Xσ], N) = Xσ \
Y , in contradiction to the fact that v′ ∈ Y . We conclude that v′′ ∈ Xσ̄ \Wσ̄

and case 2 applies.
• Otherwise, v′ has a may edge to v′′ ∈ Attr?i

σ(G, Ȳ \Wσ̄)∩Y . Since v′ ∈ Vσ

is in Yσ̄ all its successors in Y have to be in Yσ̄ as well. This is true in
particular for v′′ ∈ Y . Thus, it must be the case that v′′ ∈ Yσ̄ and case 3
applies.

– v′ ∈ Vσ̄ and all its must edges are to vertices in Attr?i
σ(G, Ȳ \ Wσ̄). Since

v′ ∈ Yσ̄, then at least one of these must edges has to be to a vertex v′′ ∈ Yσ̄ as
well. Thus case 3 applies.

ut

19

